IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 1, FEBRUARY 2008

VisuaJVM: A Visua Tool for
Teaching Java Technology

Pedro Pablo Garrido Abenza, Angel Grediaga Olivo, and Bernardo Ledesma Latorre

Referencia

Garrido Abenza, Pedro Pablo; Grediaga Olivo, Angel; Ledesma Latorre, Bernardo; "VisualJVM:
a visual tool for teaching Java technology", IEEE Transactions on Education, Vol. 51 (1), pp. 86-
92, 2008

Referencia BibTex

@ARTI CLE{ vi sual j vnm2008,
aut hor = {Garrido Abenza, P.~Pablo and Grediaga divo, Angel and
Ledesma Latorre, Bernardo},

title = "{Visual JVWM a visual tool for teaching Java technol ogy}",
journal = {I EEE Transacti ons on Education},
year = 2008,
mont h = feb,
volume = 51,
pages = {86-92},
doi = {10.1109/ TE. 2007. 906601}

©2008 IEEE. Personal use of this material is peteait However, permission to reprint/republish this
material for advertising or promotional purposesfor creating new collective works for resale or
redistribution to servers or lists, or to reuse amgpyrighted component of this work in other warksst
be obtained from thEEEE.

Digital Object Identifier 10.1109/TE.2007.906601

86

IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 1, FEBRUARY 2008

VisualJVM: A Visual Tool for
Teaching Java Technology

Pedro Pablo Garrido Abenza, Angel Grediaga Olivo, and Bernardo Ledesma Latorre

Abstract—This paper presents a laboratory session of an
Advanced Programming course to introduce students to the
technology involved with the Java programming language. In this
special lab session the educational software tool VisualJVM is
used, providing a graphical front-end to a Java virtual machine
(JVM). This tool helps students learn about JVM architecture,
learn how JVM works, and consequently, to understand why a
Java program is platform independent. The student reaction to
this experience was very positive and the authors are planning to
use the tool in other contexts.

Index Terms—Educational technology, Java language, ob-
ject-oriented programming (OOP), program interpreters, user
interfaces.

1. MOTIVATION

ITH the explosion of the Internet and the demand for

platform independent software, Java technology has
grown in popularity. Java has a wide range of applications and
target platforms, ranging from PCs and Web servers to em-
bedded devices and smart cards. Thus, there is a strong demand
for knowledgeable Java programming engineers. Therefore,
Java programming courses have been introduced into many
curricula. Java is not only a programming language, but also a
set of specialized platforms that are also known as Java runtime
environments (JRE), which are necessary to execute Java
programs. JRE is composed of the Java library of classes [Java
application programming interface (API) implementation] and
a Java program interpreter. The interpreter, also called Java
virtual machine (JVM)), is a program implemented for a specific
platform that executes the multiplatform sequence of bytes
generated by a Java compiler (bytecodes). This unique feature
is the basis of the platform independence of Java programs, and
can be difficult to understand for many students, even those
able to write Java programs [1].

The primary motivation for the development of Visual/VM
was to provide a graphical user interface (GUI) or front-end
to a JVM implementation, which had been developed from
scratch by the authors for research purposes. The role of the
front-end was to facilitate the debugging and testing of the
extensive source code written in C. This front-end shows at

Manuscript received August 11, 2006; revised June 14, 2007.

P. P. Garrido Abenza is with the Department of Physics and Computer
Architecture, Miguel Hernandez University, 03202 Elche, Spain (e-mail:
pgarrido@umb.es).

A. Grediaga Olivo and B. Ledesma Latorre are with the Department
of Computing and Information Technology, University of Alicante, 03690
San Vicente del Raspeig, Alicante, Spain (e-mail: angel.grediaga@ua.es;
bernardo.ledesma@ua.es).

Digital Object Identifier 10.1109/TE.2007.906601

any time the internal state of the interpreter in a graphic and
interactive mode. So Visual/JVM is composed of the Java inter-
preter and the front-end; the former works as a back-end and
is able to run together with or without the front-end. However,
the use of this tool revealed that Visual/VM was very suitable
for teaching some theoretical concepts involved with the Java
programming language. Because of this the front-end was
improved, giving special attention to factors like usability and
readability, and a set of laboratory exercises were developed
and successfully integrated into an Advanced Programming
course for Telecommunications Engineering degrees at Miguel
Hernandez University, Elche, Spain. Whereas the authors use
this tool to debug the source code of their own JVM imple-
mentation, the students use Visual/VM as an educational tool
to learn Java technology.

This paper is focused particularly on the benefits of
VisualJVM as an educational tool, and is structured as follows.
First, Section II examines other related tools and discusses the
advantages of Visual/VM. Section III presents the lab session,
while Section IV details the first exercise developed, and de-
scribes the use of the Visual/VM tool. The results of the student
evaluation of the effectiveness of VisualJVM in enhancing the
learning process are discussed in Section V. Finally, Section VI
consists of concluding remarks and future plans.

II. RELATED TOOLS

Existing tools, like jclasslib Bytecode Viewer and Class
Viewer for Java, could help in achieving the goals of this lab
session. However, these tools only show static information
about Java compiled classes; they do not show the internal state
of the JVM during the execution of a Java program.

There are other tools that can be used to trace the execution
of Java programs. Loggers, like Java Logging API and log4;j,
need to modify the source code so as to collect information at
execution time. In contrast, since Visual/JVM works with .class
files (like any other JVM), a user can work with Java programs
even when their source code is not available. Tracers, debug-
gers and profiler tools have been developed using Java platform
debugger architecture (JPDA), including JTracor, jLouiss, Java-
Tracelt! [2], extensible Java profiler (EJP), JProfiler, or hprof.
None of these tools require a recompilation of the Java source
code. However, much as in integrated development environ-
ments (IDEs) such as Microsoft Visual Studio (which includes
Visual J#), Borland JBuilder, VisualCafe, NetBeans, or Eclipse,
they work at the source code level and they do not show the inner
workings of the JVM.

Javy [3] is a virtual environment that simulates the JVM, and
allows users to learn the JVM structure and the Java language

0018-9359/$25.00 © 2008 IEEE

GARRIDO ABENZA et al.: VISUALIVM: A VISUAL TOOL FOR TEACHING JAVA TECHNOLOGY 87

compilation. A Java class visualization tool has also been de-
veloped [4] that allows interaction with a visualization of any
Java class through the instantiation of objects. Several applets
that simulate JVM executing a few bytecode instructions are
included in [5]. Unlike these tools, VisualJVM is not a simu-
lator; when a Java program is loaded by the Java interpreter
that program really is executed. In other words, Visual/VM has
many of the benefits but none of the limitations of a simulation
tool [6], [7].

Moreover, nearly all the previously mentioned tools have
normally been developed for only one target platform, whereas
VisualJVM is highly platform-independent because JVM is
written in standard C and the front-end is based on the Qt 4.0
Opensource toolkit [8]. Such a front-end cannot be found in
common JVM implementations (e.g., Sun Microsystems’ JDK
[9], IBM lJikes research virtual machine (RVM) [10], [11],
Kaffe [12], Joeq [13], etc.). Specifically, the Jikes RVM is used
in many teaching courses such as Advanced Compiler Tech-
niques, Advanced Object-Oriented Programming, Compiler
Design and Optimization, etc. However, to the knowledge of
the authors, VisualJVM is the first JVM including a graphical
interface that visualizes the internal state and the behavior of
a real JVM. Thus, Visual/JVM is very suitable for teaching
purposes.

III. DESIGN OF THE LAB SESSION

In this section the design of the lab session is described. The
context of the course and prerequisites are first specified, and
then the learning objectives are described. Finally, the procedure
to be followed and the necessary lab infrastructure are detailed.

A. Context of Course

The Advanced Programming course aims to teach third-year
students the Java programming language, and to introduce them
to good computer program design principles using the object-
oriented programming (OOP) methodology. The course con-
sists of a one-hour lecture and a two-hour lab session per week.
Thus, this one-semester course (15 weeks) features an important
practical component. Even though there are no official course
prerequisites, the students are expected to have basic program-
ming experience in either C or assembler; this background is
acquired through several preceding courses. Some familiarity
with abstract data types (ADT) (e.g., lists, stacks, or queues),
although not required, would be helpful.

B. Learning Objectives

The two-hour lab session is not intended to give students a
complete knowledge of JVM; this experience is, in fact, a unique
opportunity for them to become familiar with Java technology.
The learning objectives (LOs) are divided into two parts.

1) Outside the JVM: The goal of this first part is to reinforce

theoretical concepts about Java technology.

* Objective #1 (LO#1): To distinguish between an inter-
preted and a compiled language. Students will be able
to differentiate between a compiler and an interpreter, in

other words, to distinguish CPU-specific machine code
from platform-independent bytecodes.

* Objective #2 (LO#2): To understand why a Java program
is platform independent. Students will prove to them-
selves that, unlike the C programming language, a Java
program can be executed under two different operating
systems (OSs) without recompiling the source code.

* Objective #3 (LO#3): To differentiate the concepts of
JVM, JRE, and the Java development kit (JDK), which
are often confused by students.

2) Inside the JVM: Part 2 addresses issues related to the in-
ternal structure of the JVM. The goal is for students to get

a general overview of how the Java programming language

is implemented, since this is an unknown area for them.

* Objective #4 (LO#4): To interpret the structure of the
class file format, which defines the representation of a
Java class. Students will be able to recognize binary files
representing a Java class.

* Objective #5 (LO#5): To become familiar with the JVM
instruction set (opcodes). The JVM has a complex in-
struction set computer (CISC) architecture because JVM
supports about 200 instructions, in contrast to the re-
duced instruction set computer (RISC), which supports
fewer instructions. Java class files are, therefore, very
compact. Students will be able to know the format of
some of the opcodes and the operations they perform.

* Objective #6 (LO#6): To identify and recognize the JVM
architecture. Students will acquire an understanding of
the runtime data areas used during the execution of a
Java program (namely: frames, JVM stacks, the heap, or
the runtime constant-pool).

* Objective #7 (LO#7): To describe some of the processes
involved with the execution of Java programs, such as
the inner loop of the JVM, method invocations, passing
arguments to a method, returning a value from a method,
use of the operand stack of a frame (e.g., doing arith-
metic operations), instancing objects, etc. Students will
also verify that JVM is stack-oriented, meaning that, for
example, the arithmetic instructions take the necessary
operands from the operand stack and the results of the
operation are pushed onto the operand stack.

* Objective #8 (LO#8): To understand how the high-level
Java source code is compiled to the low-level bytecodes.
This LO would be useful for compiler writers and for
compiler construction courses, but was not addressed in
the lab session presented in this paper.

A different instrument was used to measure each of these
parts, which will be discussed in Section V. Once the LOs were
defined, the procedure and a set of exercises were designed to
enable the students to attain them.

C. Procedure

The two-hour lab session presented in this paper takes place
in the last week of the semester, when all the important features
of Java technology have already been explained in lectures. De-
spite the fact that most of the students have a good knowledge
of the Java programming language, their comments reveal that
JVM is a black box for them, since the internal structure is an

88

obscure concept, and they have only a limited belief in the the-
oretical explanation given of the Java technology, specifically,
the concept of Java platform independence.

In addition, to prepare the students for the new lab session, a
brief slide presentation that introduced several concepts about
the JVM architecture was given in a lecture during the pre-
ceding week. A first example, the “Hello World” program, was
addressed in a step-by-step manner in this presentation. At the
end of this introductory class the preparatory reading of the
VisualJVM manual was assigned to the students as homework.

D. Lab Infrastructure

These four elements are required to accomplish this lab ses-
sion: 1) the lab room must include one PC per student, able to
boot two desktop OSs, including Windows and Linux (alterna-
tively, making use of a Linux Server or Linux Live-CD is partic-
ularly useful for both students and educators alike); 2) the JDK,
available for both platforms [9], which includes the JRE and
provides several command line tools for the development of Java
programs, including the Java compiler (javac), and a disas-
sembler of Java classes (javap); 3) the JVM specification [14];
and 4) the Visual/VM binary and documentation for the specific
platform. All the course material, as well as several other exer-
cises, is available for downloading from the Visual/JVM website:
http://obelix.umh.es/pa/visualjvm.

IV. LAB EXERCISES

A lab session is presented in this section in which the stu-
dents examine the execution of several ready-made Java pro-
grams. The first one is the “HelloWorld” program that just writes
a “Hello World!!” message on the computer screen. This short
program is usually the first to be attempted when learning any
programming language [15].

//HelloWorld.java
class HelloWorld (

public static void main(String[] args) (

System.out.println(“Hello, World!!");

This HelloWorld.java file is compiled into a bytecode se-
quence and written to a HelloWorld.class file by using the Java
compiler included in the J2SE [9] (javac command). Then,
in the first exercise, several other command line tools included
in the J2SE are used in order to execute the program, whereas
in the second exercise, only Visual/JVM is used. Both exercises
are detailed below.

A. Lab Exercise: HelloWorld—Without VisualJVM

The student executes this program using the Java runtime in-
terpreter (java command) as follows:

C:\java HelloWorld

Hello, World!!

IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 1, FEBRUARY 2008

Although the Java interpreter runs the program opcode-by-
opcode, this process is not observable by the students. In order
to understand how the JVM interpreting the bytecodes works, it
is necessary to look into the HelloWorld.class file.

Identifying the class file is easy using any binary file editor
and looking at the first four bytes of the file, which must be the
hexadecimal magic number 0xCAFEBABE. However, the class
file format is not simple and it is very difficult to analyze the
rest of the bytes by hand, since they contain the version number,
access flags, the runtime constant-pool, fields and methods de-
clared by the class, generated opcodes for each method, etc. So
to get these data more simply, instead of analyzing the binary
files by using a binary file editor, the javap command tool
(which is a disassembler of class files that parses them and prints
out all the previously mentioned data) was used as follows:

C:\javap -c HelloWorld
Compiled from “HelloWorld.java”
class HelloWorld extends java.lang.Object{
HelloWorld() ;
Code:
0: aload 0
1: invokespecial #1; //Object.”<init>"
4: return
public static void main(java.lang.Stringl[]);

Code:

0: getstatic #2;
out:LPrintStream;

3: ldc #3;

//Field

//String Hello, World!!

5: invokevirtual #4; //PrintStream.println

8: return

At first glance the “HelloWorld” program seems very simple.
However, following the execution is a complex and time-con-
suming task if done manually, due to the great amount of nested
method invocations that are made from the print1n method.
When a method is invoked (with either invokespecial or
invokevirtual opcodes), the following steps are necessary.
1) Extract the corresponding class file (e.g., Object.class)
from the ZIP or JAR files containing the Java APL

2) Use the javap tool to disassemble the class as shown pre-
viously, and look for the invoked method.

3) Follow the execution flow opcode-by-opcode by hand. If
an invoke opcode is found, then go to step 1.

Because the JVM instruction set has about 200 opcodes,
the students need to consult the JVM Specification [14] to
learn which operation each opcode performs. In order to avoid
wasting time, educators suggested skipping this exercise and
going on with the next one, once the student realizes that
putting this process into practice is not feasible.

B. Lab Exercise: HelloWorld—With VisualJVM

To illustrate the usefulness of Visual/VM, the “HelloWorld”
program will again be examined in this section. To achieve

GARRIDO ABENZA et al.: VISUALIVM: A VISUAL TOOL FOR TEACHING JAVA TECHNOLOGY 89

visuall¥M v1.3

File vM Window Help

=lolx|

1. J¥M Configuration | 2. Logging options I 3. JVM start-up 4. Execution I
— Executing data
Java program to execute (main class):
JHellovw/orld ... | # Run I

Working directory:
|D:NisuaUVM Htest/Hello (e | eAbon I

Arguments:

| @ Run step-by-step |
Equivalent command-line:
m Statistics ... |

|iava -cp D:VisuallVM ftest/Hello HelloWorld

VM started-up. Now, you can select a java program to execute. 4

Fig. 1. Screenshot of the main window of VisualJVM.

LO#1 and LO#2, the exercise is first done using Windows
OSs, and then repeated using Linux OSs. In both cases the
same HelloWorld.class file is used (i.e., without recompiling
the source code), so that the student realizes that an interpreted
program is different from a compiled one.

Within VisualJVM (Fig. 1), the JVM must be configured and
started up before a Java program can be executed. Visual/VM
is not a full JRE, but only a JVM; in other words Visual/VM
does not include the Java API classes. Therefore, the user must
provide the exact location of the Java API classes, which differs
according to the platform, library version, and developer (e.g.,
Sun Microsystems’ JDK or GNU Classpath). This configuration
can be set by either setting the VISUALJVM_JAVAPATH envi-
ronment variable before calling Visual/JVM, or by selecting the
path from the application. After that the student can distinguish
between JVM, JRE, and JDK (LO#3).

Before executing any Java program the interpreter must be
started up, that is, loading and linking of the basic Java classes.
A JVM implementation may choose to use lazy resolution (i.e.,
to resolve each symbolic reference in a class individually, only
when used) or static resolution (i.e., to resolve all symbolic ref-
erences at once, when the Java interpreter starts up). Visual/JVM
allows either of the two methods to be chosen. Static resolu-
tion implies that much greater delays are involved in the JVM
start-up; the execution, however, will be faster later on.

Once the interpreter has been started up, no matter which
kind of resolution is chosen, the student selects the .class file
containing the main class of the Java program to execute (e.g.,
HelloWorld), and optionally, to specify the command line argu-
ments passed to the main method (Fig. 1). Finally, the program
can be executed by clicking either the [run] or [run step-by-step]
button. In the latter case the execution dialog opens as a new
window, allowing the user to step through the code opcode-by-
opcode (not line-by-line at the source code level) to see how the
execution progresses. This dialog, which will be explained later,
has been very helpful in developing the interpreter, and also very
instructive because this simple window gives the student a clear
understanding of how JVM works.

The Class Browser dialog (Fig. 2) shows all the classes
loaded into the JVM in three different ways: sorted in alpha-
betical order, grouped by the packages hierarchy, and clustered

Class browser (static info) _"Jll
r~ Class data
QJ 1. Loaded Java classes (8-2) | Name: Helowold
o 2 Loaded Java dlasses (Packages) | | Supsrclass: [lava/lang/Obiect
Flags: i
— Loaded Java classes (Packages) 2 2 Ipnva\e cless{...} -
State: 10, Initializirig | Version: 43.0

Package/Class Ay

com Methods | Interfaces] Attributes I 4|

ConstantPool] Fields
B § defaul
HelloW/orld

| Name] Descriptor I
7 (<inity) 8((V)

11 (main] 12 (([Lijavalang/Sting; V)

N | Access

7 ':Xf 1 [000. 000 (0<00) -
3001, 008 (0x03) - public static

Bits
BufferedinputStream
BufferedOutputStream
BufferedReader
Bufferedwiiter
BytedrraylnputStream
BytedrayOutputStre...
CharConversionExce...
Closeable

Datalnout Lj

E 3. Loaded Java classes [Hash table) |

@ Method details ...

Fig. 2. Screenshot of the class browser dialog.

in buckets of the internal hash table of the JVM. In each case,
when a class is selected, all the details are shown to the right,
which helps students to reach LO#4. The information given
for each class includes superclass, state (e.g., loaded, linked,
resolved or initialized), visibility (e.g., public or pri-
vate), the runtime constant-pool (opcodes refer to symbolic
information in this table, which is similar to a symbol table
for a conventional programming language), fields, methods,
implemented interfaces, attributes, and the classes hierarchy.
When an specific method is selected by double-clicking the
method name in the list of methods defined for the class, the
corresponding method details dialog appears, explained below.
This allows the user to access the method code of any loaded
class at any time more easily and faster than by using the
javap tool.

The Method details dialog, which can be opened from either
the class browser dialog (as explained previously) or from the
execution dialog, displays data about a specific method, such
as the disassembled code of that method and the descriptor (i.e.,
the parameters that the method receives and the type of the value
that the method returns). The method’s code is shown in table-
form where each line corresponds to one instruction, including
the one-byte opcode and associated mnemonic (e.g., 021(0 X
15) — iload), followed by zero to five bytes of additional ar-
guments (e.g., “0” to specify the local variable #0), and a brief
description of the operation that the instruction performs (e.g.,
load an “int” value from the specified local variable). This table
is similar to that in the execution dialog described in (Fig. 3).
This dialog is useful in familiarizing the student with the JVM
instruction set, removing the need to consult the JVM Specifi-
cation [14], and contributing to the attainment of LO#S.

When the user chooses to execute a program step-by-step,
the Execution dialog appears (Fig. 3), showing the architecture
of the JVM and allowing students to accomplish LO#6. The
left-hand side of this dialog shows a list of all JVM threads and
the private JVM stack of the selected thread (the current thread
by default). A JVM stack stores frames, which are shown in
a scrollable list. When a method is invoked (current method),
a new frame is created and pushed into the stack of the cur-
rent thread; this frame will be referred to as the current frame.
When the method invocation is complete, the corresponding

90

%4 Execution (dynamic info)] 21x|
Stack calls | Trace execution flow | Memory | Console |
JYM Thread i~ Frame data
heuum =] | | o [avalioinGuean b Class bowser .|
Method: 5 @ Method deas ..
 JVM stack (frames)
Arguments: Local vars.: Operand stack:
Class Method | PC E v = van
alue alue |4 alue
1 [Feloword man 0005 skl
Plliavalio/PintStreampintin 0005 X0 0:04035640 | [T I
001 0:0401F7F8 ﬂ 0x0401F7F8
0404035640 —
oFrreEEeE |
Args. num.: 1 Max.: 4 Ma. I z

Method code:
Opcode | Mnemonic | Argl [Arg2 [Arg3 | Arg | Arg5 | Comn2]

0002|077 (0x4D) astore_2
0003 194 (0xC2) monitorenter
0004|042 (0x24) aload_0
0005 |043 (0x28) aload_1

>3 » s

<
PC 70008 [cinits<ciinits

Depth: [2
Co

Fig. 3. Screenshot of the execution dialog.

frame is popped off the stack and deleted. The selected frame
state is shown to the right of this dialog, including the associ-
ated method and opcodes, the program counter (PC) register,
arguments received, local variables, operand stack, and a refer-
ence to the class of the current method (the current class). The
highlighted code line shows the JVM instruction pointed to by
the PC that will be executed next. Each time the student clicks
the [step] or [step over] buttons a single opcode is executed and
the execution stops again. Both behave identically if the current
opcode does not contain a method call (invoke); otherwise,
if the [step] button has been pressed, the next instruction will
be the first one in the called method, but if the button pressed
is [step over], the whole called method will be executed. By
pressing the [run] button the execution will continue until the
student, at any time, temporarily halts or permanently aborts
the execution by clicking the [pause] or [stop] buttons, respec-
tively. While execution is paused, student can examine the state
of previous frames in the JVM stack, including data from their
associated method, or visualize any data of any loaded class
with the class browser dialog. The program execution can be re-
sumed by pressing the [step] or [run] buttons. Thus, LO#7 can
be easily achieved because at each step the student can, among
other possibilities, watch the values of the local variables or the
effect on the operand stack of a given opcode (e.g., arithmetic
instructions), and understand processes like passing parameters
when a method is invoked, or how a value is returned to the
calling method when the called method ends. The program exe-
cution flow is recorded, allowing later analysis of the sequence
of method calls made from start to finish. Finally, a summary
report can be generated from statistics gathered during the pro-
gram execution, showing how many times each opcode in the
JVM Instruction Set has been executed, along with a brief de-
scription of that instruction (Fig. 4). These data could be used
as a part of a performance profiler.

V. STUDENT EVALUATION AND RESULTS

Outcome data collected from written surveys used to evaluate
the effectiveness of the aforementioned lab session is presented
and discussed in this section. Students were surveyed using two

IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 1, FEBRUARY 2008

21|
Opcodes report |
Opcodes sorted by category I
Category / Opcode P | Times | % | Description l;
=) Load & Store 19 23.75 These instructions load values onto the operand st...
028 - iload_2 3 3.75Load int from local variable (2)
042 - aload_0 8 10.00 Load reference from local variable (0)
043 - aload_1 3 3.75Load reference from local variable (1)
045 - aload_3 2 2.50Load reference from local variable (3)
061 - istore_2 1 1.255tore int into local variable (2)
077 - astore_2 1 1.25Store reference into local variable (2)
078 - astore_3 1 1.255tore reference into local variable (3)
Avitmethic 0 0.00 These instructions pops the right number of operan...
- Type conversion 0 0.00 The value on the top of the operand stack must be ...
[#- Object Creation and Manipulation 15 18.75 Create a new class instance or array, access fields ...
28 O perand Stack Management 15 18.75Pop or push the top value from the operand stack. ...
001 - aconst_null 5 6.25Push null
003 - iconst_0 4 5.00Push int constant (0) |
003 - Iconst_0 3 3.75Push long constant (0)
018 - 1de 1 1.25Push item from runtime constant pool (idx)
089 - dup 2 2.50Duplicate the top operand stack value
B 7.50 These instructions (conditionally or unconditionally) ... ;]

- Control Transfer

IDispIay only executed opcodes LI Total: I 80

Fig. 4. Screenshot of the statistics dialog.

short duration paper-based surveys: 1) a posttest achievement
and 2) an attitudinal survey. The following data correspond to
the most recent semester, when enrollment was 69 students. De-
spite the fact that participation in the lab sessions of this course
was optional, the rate of participation in this special session was
high. There were 41 of 69 (59%) participants, whereas the mean
of the regular sessions was 31 of 69 (about 45%). This partic-
ipation ratio shows an increased enthusiasm on the part of the
student before the session began.

A. Posttest Achievement

After doing the exercises the students were asked to take a
test in order to examine their conceptual understanding of the
theoretical concepts of Java technology. This test was in two
parts, reflecting the two types of learning objectives defined
previously. The first part, Outside the JVM, presented 7 mul-
tiple-choice items assessing student knowledge of the external
interface of the JVM. The second part, Inside the JVM, com-
prised a set of numeric and short-answer items assessing student
understanding of the JVM internal operation. In this second part,
the student had to “fill in the gaps” with specific values from
VisualJVM after executing some Java program (e.g., a local vari-
able) or briefly explain some process.

The student responses to each item were compiled into the
set of the defined learning objectives, and the mean scores are
shown in Table I. As expected, the success rate on most of
the learning objectives for part 1 was higher than those from
part 2 because the latter was totally new for the students. Table I
summarizes student performance on both parts scored between
0-10, and part 2 was more heavily weighed (60%) than part 1
(40%). According to the table the variability is low, since the
SD is a little more than 1/4 of the overall mean, which is about
2/3 of the maximum possible score.

B. Attitudinal Survey

The students also answered a second questionnaire comprised
of 10 items for the measurement and evaluation of the partici-
pant attitudes and satisfaction level. The instrument used for this
purpose was a questionnaire based on a five-point Likert-scale,

GARRIDO ABENZA et al.: VISUALIVM: A VISUAL TOOL FOR TEACHING JAVA TECHNOLOGY 91

TABLE 1
POSTTEST ACHIEVEMENT; ITEM RESPONSES (N = 41)

Learning Objective Measured PC

Part 1: Outside the JVM (M1=7.11; SD1=2.78)

#1. Distinguishing between interpreted and compiled .83
programs

#2. Understanding why Java is platform independent .84

#3. Differentiating the concepts of JVM, JRE, and JDK .65

Part 2: Inside the JVM (M2=5.89; SD2=2.13)

#4. Interpreting the structure of the class file format .58
#5. Demonstrating familiarity with the JVM Instruction Set | .67
#6. Identifying and recognizing the JVM architecture .67

#7. Being able to describe the processes involved with the | .50
execution

Overall mean = M1*0.4 + M2*0.6 = 6.38; Overall SD = 1.77

PC = Proportion Correct
M; = Mean for Part i
SD; = Standard Deviation for Part i

coded as shown in Table II, which summarizes the main results
of the statements asked (all the sentences score on a positive
scale).

Data analysis of responses: On this five-point scale, the av-
erage of these questions was above 3.59. Similarly, if the overall
score can vary from 10 (totally negative attitude) to 50 (highly
positive attitude), the obtained student scores were high, ranging
from 25 to 49, with a mean of 35.93. Therefore, in general it
can be said that the students had a favorable attitude to this
experience.

The most-valued items: Nearly all the items show a very pos-
itive attitude. The most-valued items were numbers 2 and 9,
which directly referred to the students’ learning. Numbers 1 and
5, with a slightly lower score, indicate that the students under-
stand the lab session materials and recognize the usefulness of
the exercises, respectively.

The least-valued items: The lowest rated statement was
number 7, which referred to the little time available. Real-
istically, the students can only conduct two exercises in this
time-limited lab session (two hours), even though the time
devoted to each of these is adequate to complete the work.
Another lower-valued item was number 4, referring to the use
of VisualJVM. The authors interpret these results as suggesting
that the students enjoyed this experience, and that more time
is necessary to learn about JVM architecture than is available
within the scope of the Advanced Programming course.

Variability: From Table II the answers are quite homogenous,
since overall SD (4.96) is about 1/7 of the mean (35.93).

Reliability: The reliability was estimated using a Cronbach’s
alpha score across all survey items, which is a measurement of
the internal consistency of the survey. The obtained value of
0.58 indicates good reliability of the attitudinal survey.

TABLE I
ATTITUDINAL SURVEY: FREQUENCY RESULTS (N = 41)

Questions/Answers prop 1 2 3 4 5 M SD

1. Instructional content has | .05 .00 .17 .56 .22| 3.90 0.92

been presented effectively

2. 1 learned about the JVM | .00 .00 .20 46 .34| 4.15 0.74

architecture

3. I enjoyed this experience | .02 .05 39 46 .07| 3.51 0.82

4. Using the VisuallVM | .02 .24 27 .37 .10| 327 1.03

tool was easy

5. The proposed practice | .02 .07 .22 .54 .15| 3.71 0.91

activities were useful

6. There was a sufficient | .10 .10 .27 .32 22| 346 1.24

number of exercises

7. There was sufficienttime | .24 24 .10 .17 24| 293 1.57

to complete the exercises

8. My level of involvement | .10 .12 24 29 24| 346 128

was high

9. I would like to learn | .00 .07 .20 .41 32| 3.98 0.92

more about JVM

10. This was a worthwhile | .05 .20 .10 .46 20| 3.56 1.15

learning experience

Average 06 .11 21 40 21| 359 -
Overall mean = 35.93; Overall SD = 4.96

1—Strongly Disagree; 2—Disagree; 3—Undecided; 4—Agree;
5—Strongly Agree; M = Mean; SD = Standard Deviation

C. A Comparative Study

This section presents the results of a comparative study in
order to determine the impact this lab session has had on student
achievement. This study used two groups: one control group
from the academic year 2003-2004 (N = 60), which did not
have the support of the Visual/VM tool, and one experimental
test group from the academic year 20052006 (N = 41), which
attended the lab session described previoulsy (and whose data
is shown in the previous sections). The instrument used was the
comparison of the correct answers to specific questions in the
common final exam of both groups. Only the questions relevant
to the part 1 (outside the JVM) learning objectives were con-
sidered (i.e., LO#1, LO#2, and LO#3) because as mentioned
previously, the part 2 (inside the JVM) learning objectives rely
on new concepts explained only to the experimental group, and
were not evaluated in the standard final exam.

The differences between both groups are shown in Table III.
Students from the experimental group showed evidence of con-
siderable improvement of Java technology knowledge, reaching

92

TABLE 1II
COMPARATIVE STUDY
LO#1 LO#2 LO#3 Overall
Group M SD M SD M SD M SD
Experim. (N=41) .80 .20 82 22 69 25 77023
Control (N=60) 5223 56 .23 A48 21 52 22
M = Mean proportion of correct answers

SD = Standard Deviation

a higher score in terms of the mean percentage of correct an-
swers on the final examination (77%) than students from the
control group (52%).

VI. CONCLUSION AND FUTURE WORK

The VisualJVM tool, which consists of a graphical front-end
and a JVM, is presented in this paper. The graphical front-end
was initially designed for debugging purposes in JVM develop-
ment and was then improved to be used for laboratory instruc-
tion. Visual/JVM has been compared with other JVM implemen-
tations and related tools. The authors are not aware of any other
tool that shows what is happening within the JVM during a Java
program execution.

A lab session is described in detail, which has been integrated
into an Advanced Programming course. The intended learning
objectives have been met. Although measuring the impact of ed-
ucational technology in student learning outcomes is often prob-
lematic [16], the results obtained with this lab support the con-
clusion that Visual/VM is a helpful educational tool for learning
Java technology. Furthermore, from observations and informal
conversations with students, many of them enjoyed performing
these “hands-on” exercises. Although more time would be nec-
essary to confirm this conclusion, this experience has proved
to be an effective methodology to stimulate student interest, as
a number of students were subsequently attracted to do their
Master’s theses on this topic.

Moreover, this tool is suitable for use in other courses, such
as those on assembly language [17] and compiler construction
[18]. The authors are planning to apply Visual/JVM to such
courses and to offer an advanced seminar for interested re-
searchers or postgraduate students, which would provide an
in-depth understanding of the fundamentals of virtual machine
and Java technology.

Additional future work includes improving the front-end in
response to student comments and the development of a more
complete Java interpreter. In particular, to include the imple-
mentation of a garbage collection algorithm.

REFERENCES

[1] D. Friedman, M. Wand, and C. Haynes, Essentials of Programming
Languages, 2nd ed. Cambridge, MA: MIT Press, 2001.

[2] D. Gonzalez-Pea and F. Fernandez-Riverola, “Understanding JPDA
(debugging) & JVMTI (profiling) Java APIs within JavaTracelt,” in
Proc. IADIS Int. Conf. WWW/Internet, Murcia, Spain, Oct. 2006, pp.
334-338.

[3] P. Gomez-Martin, M. Gomez-Martin, and P. Gonzalez-Calero, “Javy:
Virtual environment for case-based teaching of JVM,” in Proc. 7th Int.
Conf. Knowledge-Based Intelligent Information and Engineering Sys-
tems, Oxford, U.K., 2003, vol. 2773, pp. 906-913.

IEEE TRANSACTIONS ON EDUCATION, VOL. 51, NO. 1, FEBRUARY 2008

[4] H.L.Dershem and J. Vanderhyde, “Java class visualization for teaching
object-oriented concepts,” SIGCSE Bull., vol. 30, no. 1, pp. 53-57,
1998.

[5] B. Venners, Inside the Java Virtual Machine.
Hill, 2000.

[6] C.O. Swift and R. W. Cook, “Sales management simulation: Bringing
reality to the classroom,” in Proc. Society for Marketing Advances
Meeting, St. Petersburg, FL, Nov. 2004, pp. 195-198.

[7]1 K.J. Chapman and C. L. Sorge, “Can a simulation help achieve course
objectives? An exploratory study investigating differences among in-
structional tools,” J. Educ. Bus., vol. 74, no. 4, pp. 225-230, Mar./Apr.
1999.

[8] J. Blanchette and M. Summerfield, C++ GUI Programming With Qt
4. Upper Saddle River, NJ: Prentice-Hall, 2006.

[9] K. Arnold, J. Gosling, and D. Holmes, The Java Programming Lan-
guage, 4th ed. Upper Saddle River, NJ: Prentice-Hall, 2005.

[10] J. Zhao, I. Rogers, C. Kirkham, and I. Watson, “Loop parallelisation
for the Jikes RVM,” in Proc. 6th Int. Conf. Parallel and Distributed
Computing Applications and Technologies, Dalian, China, 2005, pp.
35-39.

[11] G. Cabri, L. Leonardi, and R. Quitadamo, “Enabling Java mobile com-
puting on the IBM Jikes research virtual machine,” in Proc. 4th Int.
Symp. Principles and Practices of Programming in Java, Mannheim,
Germany, 2006, pp. 62-71.

[12] A. Sartini and J. Waldron, “Dynamic profiling & comparison of Sun
Microsystems JDK1.3.1 versus the Kaffe VM APIs,” in Proc. 1st Int.
Symp. Information and Communication Technologies, Dublin, Ireland,
2003, pp. 468-474.

[13] J. Whaley, “Joeq: A virtual machine and compiler infrastructure,” Sci.
Comput. Program., vol. 57, no. 3, pp. 339-356, Sep. 2005.

[14] F. Yellin and T. Lindholm, The JVM Specification, 2nd ed. Reading,
MA: Addison-Wesley, 1999.

[15] B. W. Kernighan and D. M. Ritchie, The C Programming Language.
Englewood Cliffs, NJ: Prentice-Hall, 1978.

[16] G. D. Haertel and B. Means, Evaluating Educational Technology.
New York: Teachers College Press, 2003.

[17] C.Bredlau and D. Deremer, “Assembly language through the Java vir-
tual machine,” SIGCSE Bull., vol. 33, no. 1, pp. 194-198, 2001.

[18] J. Engel, Programming for the Java Virtual Machine. Reading, MA:
Addison-Wesley, 1999.

New York: McGraw-

Pedro Pablo Garrido Abenza received the M.S. in computer science engi-
neering from the University of Alicante, Spain, in 1997.

He is currently working toward the Ph.D. degree in physics, computing,
and communication. He has been an Assistant Professor in the Department
of Physics and Computer Architecture, Miguel Hernandez University, Elche,
Spain, since 2001. His current research interests include Java programming
language and reconfigurable computing. Specifically, he is focused on the
development of a Java virtual machine for embedded systems.

Angel Grediaga Olivo received the M.S. degree in telecommunication engi-
neering from the University of Alcala de Henares, Spain, in 1977, the M.S. de-
gree in electronics engineering from the University of Valencia, Spain, in 1998,
and the Ph.D. degree in computer architecture from Miguel Hernandez Univer-
sity, Elche, Spain, in 2002.

He is currently an Associate Professor in the Department of Computing and
Information Technology, University of Alicante, Spain. His research interests
focus on reconfigurable hardware in the area of computer science security,
image processing, and robotics. He has authored numerous books and papers in
specialized journals including Lecture Notes in Computer Science and WSEAS
Transactions on Circuits and Systems.

Dr. Grediaga is a member of several international conference program com-
mittees including the Southern Conference on Programmable Logic (SPL) and
International Business Information Management (IBIMA).

Bernardo Ledesma Latorre received the M.S. degree in computer science
from the University of Valencia, Spain and the Ph.D. degree in computer ar-
chitecture from Miguel Hernandez University, Spain, in 1994 and 2001, respec-
tively.

He is an Associate Professor in the Department of Computing and Informa-
tion Technology, University of Alicante, Spain. His current research interests
include open software tools, Java development, security reconfigurable hard-
ware, and image processing.

