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Abstract

Most wavelet based encoders, do not compress
the wavelet coefficients sign because it has been as-
sumed to be inefficient for a long time. However,
in the last years several image encoders like JPEG
2000 include sign coding capabilities. In this pa-
per, we present a new sign coding approximation
which uses a genetic algorithm to efficiently predict
the sign of wavelet coefficients. Preliminary results
show that, by including sign coding capabilities to a
non-embedded encoder, the compression gain is up
to 17.35%, being the Rate-Distortion (R/D) per-
formance improvement up to 0.25 dB.
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I. Introduction

WAVELET transforms have proved to be
very powerful tools for image compression.

Many state-of-the-art image codecs, including the
JPEG2000 standard [1], employ a wavelet transform
in their algorithms. One advantage is the provision
of both frequency and spatial localization of image
energy. The image energy is compacted into a small
fraction of the transform coefficients and compres-
sion can be achieved by coding these coefficients.
The energy of a wavelet transform coefficient is re-
stricted to non-negative real numbers, but the coef-
ficients themselves are not, and they are defined by
both a magnitude and a sign. Shapiro stated in [2]
that a transform coefficient is equally likely to be
positive or negative and thus one bit should be used
to encode the sign. In recent years, several authors
have begun to use context modeling for sign coding
[3][4][5].

For example, in [5], A. Deever and S. Hemami ex-
amines sign coding in detail in the context of an em-
bedded wavelet image coder. The paper shows that a
Peak Signal to Noise Ratio (PSNR) improvement up
to 0.7 dB is possible when sign entropy coding and
a new extrapolation technique based on the mutual
information that biorthogonal basis vectors provide
to improve the estimation of insignificant coefficients
are combined. However, the contribution of sign cod-
ing by itself to the PSNR improvement is only up to
0.4 dB.

In [4] the Embedded Block Coding with Optimized
Truncation of the embedded bit-streams (EBCOT),
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core coding tool of the JPEG 2000 standard, en-
codes the sign of wavelet coefficients using context
information from the sign of horizontal and vertical
neighbor coefficients (North, South, East, West di-
rections). Five context are used to model the sign
coding stage.

In [3], X. Wu presents a high order context mod-
eling encoder. In this coder, the sign and the tex-
tures share the same context modeling. This model
is based on a different neighborhood for the HL, LH
and HH wavelet subbands. For the HL subband,
the information of North, North-West, North-East,
North-North and South sign is used to predict the
current coefficient sign. The neighbors sign infor-
mation used for the LH subband are North, North-
West, North-East, West-West and East. Finally, for
the HH subband, an inter-band prediction is used be-
sides the intra-band prediction used by the HL and
LH subbands.

Genetic algorithms were first introduced by Hol-
land in [6] and they are nowadays well known tech-
niques for finding nearly optimal solutions of very
large problems and also, they have been used in im-
age processing [7][8].

In a genetic algorithm, the evolution usually starts
from a population of randomly generated individ-
uals and happens in generations. In each genera-
tion, the fitness of every individual in the population
is evaluated by means of a cost function that de-
termines the optimal degree we are looking for (i.e
compression rate). Multiple individuals are stochas-
tically selected from the current population (based
on their fitness), and modified (recombined and pos-
sibly randomly mutated) to form a new population.
The new population is then used in the next iter-
ation of the algorithm. Commonly, the algorithm
terminates when either a maximum number of gen-
erations has been produced, or a satisfactory fitness
level has been reached for the population.

In this paper, we will design a genetic algorithm
to efficiently predict the wavelet coefficient signs. If
the sign prediction is really good, a binary entropy
encoder will be able to get significant compression
rates. So, our goal is to define a genetic algorithm
that finds out the paremeters of our sign predictor
that achieve the best prediction performance. As
studied in the literature, the parameters to be found
by our genetic algorithm will be a) the neighbor set
that defines the prediction context, and b) the sign
values (sign patterns) of wavelet coefficient neighbor
set with the correspondent sign prediction for current
wavelet coefficient.
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After running the genetic algorithm and config-
ured the sign predictor, we will evaluate the impact
of the sign coding module in the overall performance
of an image wavelet encoder. In particular, we will
use the LTW wavelet encoder [9] to determine the
bit-rate savings for several test images.

The remainder of the paper is organized as follows:
Section II describes our sign coding approximation
and also the genetic algorithm structure. In Section
III, we show the results of the global encoder sys-
tem (with sign coding stage) and compare it with
SPIHT and JPEG 2000. Finally, in Section IV some
conclusions are drawn.

II. Wavelet sign prediction

Most wavelet image codecs do not consider the use
of sign coding tools since the wavelet coefficients lo-
cated at the high frequency subbands form a zero-
mean process, and therefore equally likely positive
as negative.

Schwartz, Zandi and Boliek were the first authors
to consider sign coding, using one neighboring pixel
in their context modeling algorithm [10]. The main
idea behind this approach is to find correlations along
and across edges.

The HL subbands of a multi-scale 2-D wavelet de-
composition are formed from low-pass vertical filter-
ing and high-pass horizontal filtering. The high-pass
filtering detects vertical edges, thus the HL subbands
contain mainly vertical edge information. Oppositely
defined are the LH subbands that contain primarily
horizontal edge information.

As Deever explained in [5], given a vertical edge in
an HL subband, it is reasonable to expect that neigh-
boring coefficients along the edge have the same sign
as the coefficient being coded. This is because verti-
cal correlation often remains very high along vertical
edges in images. When a low-pass filter is applied
along the image columns, it results in a series of sim-
ilar rows, as elements in a row tend to be very similar
to elements directly above or below due to the high
vertical correlation. Subsequent high-pass filtering
along similar rows is expected to yield vertically cor-
related transform coefficients.

It is also important to consider correlation across
edges, being the nature of the correlation directly af-
fected by the structure of the high pass filter. For
Daubechies’ 9/7 filters, wavelet coefficient signs are
strongly negatively correlated across edges because
this filter is very similar to a second derivative of a
Gaussian, so, it is expected that wavelet coefficients
will change sign as the edge is crossed. Although
the discrete wavelet transform involves sub sampling,
the sub sampled coefficients remain strongly nega-
tively correlated across edges. In this manner, when
a wavelet coefficient is optimally predicted as a func-
tion of its across-edge neighbors (e.g. left and right
neighbors in HL subbands), the optimal prediction
coefficients are negative, indicating an expected sign
change. This conclusion is general for any wavelet
with a shape similar to a second derivative of a Gaus-

sian.

To estimate sign correlation in a practical way, we
have applied a 6-level Dyadic Wavelet Transform de-
composition of the source image and then a low quan-
tization level to the resulting wavelet coefficients. As
a first approach and taking into account that the
sign neighborhood correlation depends on the sub-
band type (HL,LH,HH) as Deever assesses in [5], we
have used three different neighbors depending on the
subband type. So, for HL subband, the neighbors
used are N, NN and W. Taking into account sym-
metry, for the LH subband, those neighbors are W,
WW, and N. For the HH subband they are N, W,
and NW, exploiting the correlation along and across
the diagonal edges. This lead us to a maximum of
33 Neighbor Sign Patterns (NSP) for each subband
type.

TABLE I

Probability distribution of neighbor sign patterns

(NSPs) of HL6 subband (8x8 coefficients) in Lena

image

C N NN W Occurrences %Probability
+ + + + 13 20.31
+ + + - 8 12.50
- - - + 8 12.50
- + + + 6 9.38
- - + + 6 9.38

Others 23 35.93

In Table I we show the NSP probability distribu-
tion for HL6 subband (from the sixth decomposition
level) of Lena test image. As shown, the probability
that the current coefficient (C) is positive when its N,
NN and W neighbors are also positive is around 20%.
Besides, if the N and NN neighbors have the same
sign and the W neighbor has the opposite sign, the
current coefficient (C) has the opposite sign of its W
neighbor with a probability of 25% as shown in rows
two and three in Table I. The visible sign neighbor-
hood correlation suggest that the sign bits of wavelet
coefficients are compressible. Using the previously
mentioned neighborhood for each subband type, we
have developed a genetic algorithm (GA) in order to
find an accurate sign estimation.

A. Genetic algorithm for wavelet sign prediction

The goal of the desired genetic algorithm would
be to find a table where for each Sign Neigborhood
Pattern (Vk) we have a sign prediction (Si,j) for co-
efficient Ci,j . There is no an univocal relationship
between a neighbor sign combination, i.e not always
for a same Vk pattern, Si,j is always positive or neg-
ative. However, it is possible that for a Vk pattern,
Si,j is more probably to be positive or negative. But,
the problem is still more complex, because a sign pre-
diction for a neighbor sign pattern could fit well for
an image and not for others. Therefore, the idea is
to find suboptimal neighbor sign pattern predictions
that better fit for a representative set of images.
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The use of genetic algorithms to compress the sign
of wavelet coefficients is twofold. First, when the
number of neighbors used to analyze the sign cor-
relation grows or when there is a great number of
images to be used in the analysis, the search space is
excessively wide. Second, it is not intuitive to find a
way of combining the predictions obtained for several
images.

In Figure 1 we show the genetic algorithm pseu-
docode for sign prediction. First of all we define each
individual, containing a sign prediction for each 33

NSP, then each NSP sign prediction of each indi-
vidual of the universe is randomly initialized as a
positive or negative sign.

During evolution, sequences mate and mutate to
generate new sequences in the population and best
sequences are selected for survival on the basis of
their fitness function. The mating of sequences is
performed through crossover operator, where parents
are randomly selected and its gens (NSPs) are mixed.
The best two individuals, the ones that exhibit best
prediction performance, are selected for survival. In-
dividuals can also undergo mutation, where a se-
quence prediction is randomly modified.

Finally, after performing the maximum itera-
tions, the algorithm finishes, obtaining an opti-
mal/suboptimal sign prediction for each NSP. We
have performed the fitness evaluation over Lena and
Barbara test images, because these images are rep-
resentative for both low and high textured images
respectively.

Individual Structure{
//Prediction array for each neighbor sign pattern combination

sign[NSP];
//indicates the goodness of the individual

fitness;
}Individual universe[NUM-POPULATION];

function SignPrediction (SubbandType, ImageFiles,
mutation Probability)

//Initialization phase:
sign[NSPs]= random(POSITIVE/NEGATIVE)

Initialize(universe, NUM-POPULATION, NSP);
//we evaluate each individual of the universe.

For each image in ImageFiles
EvaluateFitness(SubbandType, ImageFiles, universe);
for i=0 to NUM-ITERATIONS
//Select the best two individuals from universe for survival.

best = SelectBestIndividuals(2);
//Crossover
crossPoint=random(NSP);
//randomly selects a father and a mother to mix gens
SelectFatherAndMother(random(NUM-POLUTATION));
universe = MergeFatherAndMother(crossPoint);
Mutation(universe, mutation Probability);
universe = universe + best;
EvaluateFitness(SubbandType, ImageFiles, universe);

end
//Finally get the best individual.
best = SelectBestIndividuals(1);

end of function

Fig. 1. Genetic algorithm for sign prediction

Several parameters should be taken into account
when training a genetic algorithm: The population
size, the individuals initialization, the number of it-
erations performed, the mutation probability, the
crossover point, the crossover method, the selection
criteria of the best sequences to be selected for sur-
vival, etc. We have performed lots of tests vary-

ing these parameters to tune the genetic algorithm.
The parameters used to obtain the sign prediction
are: population size (100), individuals initialization
(ramdomly), number of iterations (1000), mutation
probability (0.001), crossover point (ramdomly) and
crossover method (best two fitness individuals over
four randomly selected parents).

After running the genetic algorithm for each sub-
band type, we obtain an individual containing the
prediction of the current coefficient sign (ŜCi,j [k]),
for each NSP (k) of each subband type. So, what we
are going to encode is the correctness of this predic-
tion, i.e., a binary valued symbol from ŜCi,j [k]·SCi,j

(see Table II). In order to compress this binary val-
ued symbol, we use two contexts in the arithmetic
encoder for each subband type, distributing all sign
coding predictions from NSPs between them so as
to minimize the zero order entropy of both contexts.
The selection criterion is to isolate in one context
those NSPs with the highest correctness prediction
probability and highest number of occurrences de-
rived from the probability distribution found in the
previous analysis. The rest of them are grouped into
the other context. However, there are certain NSPs
with low correctness probability but with a great
amount of occurrences, so we have to heuristically
determine the convenience of including them in the
first context or not.

TABLE II

Sign prediction for HL subband in Lena image for

some NSPs

NSP(k) N NN W Prediction

(ŜCi,j [k])
0 * * * -

. . .
13 + + + +
14 + + - +

. . .
26 - - - +

III. Performance Evaluation

In this section we analyze the behavior of the sign
coding when implemented on LTW image encoder
[9]. This new encoder implementation is called S-
LTW. We will also compare the S-LTW encoder ver-
sus JPEG2000 (Jasper 1.701.0) and SPIHT (Spiht
8.01) in terms of R/D and coding delay. All encoders
have been tested on an Intel PentiumM Dual Core
3.0 GHz with 2 Gbyte RAM memory.

The test images used in the evaluation are: Bar-
bara (512x512), Bike (2560x2048), Boat (512x512),
Cafe (2560x2048), GoldHill (512x512), Lena
(512x512), Mandrill (512x512), Woman (2560x2048)
and Zelda (512x512).

In Table III we show the relative compression gain
with respect to the original LTW due only to the sign
coding capability for Barbara and Bike test images.
As we can see, the maximum sign compression gain
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TABLE III

Sign compression performance at different bit-rates.

Bit-rate S-LTW SPIHT %Gain
(bpp) #Significant #Bits #Significant #Bits

Coefficients Saved Coefficients Saved
Barbara (512x512)

1 45740 7936 54657 9482 17.35
0.5 22331 3648 27535 4499 16.34
0.25 10484 1520 13460 1951 14.50
0.125 4343 304 6016 421 7.00

Bike (2048x2560)
1 855266 115200 1371280 184711 13.47

0.5 412212 64424 798202 124758 15.63
0.25 198943 30472 366927 56213 15.32
0.125 91767 11992 162990 21302 13.07
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Fig. 2. PSNR-Gain for Bike image

is 17.35%. Furthermore, we show an estimation of
the bit savings for SPIHT encoder.

TABLE IV

Coding delay (seconds).

Bit-rate JPEG SPIHT LTW S-LTW
(bpp) 2000 Orig.

CODING Barbara (512x512)
1 0.080 0.042 0.037 0.023

0.5 0.076 0.026 0.022 0.014
0.25 0.074 0.018 0.013 0.009
0.125 0.073 0.014 0.010 0.006

CODING Bike (2048x2560)
1 2.623 0.920 0.647 0.430

0.5 2.543 0.521 0.381 0.259
0.25 2.507 0.323 0.224 0.162
0.125 2.518 0.221 0.158 0.117

In Figure 2 we show the R/D improvement when
comparing original LTW versus JPEG2000/SPIHT
and S-LTW versus JPEG2000/SPIHT. As shown,
there is an increase in the PSNR difference between
SPIHT and the new S-LTW encoder, and regarding
JPEG2000, we can see than now S-LTW has a minor
loss in PSNR than original LTW.

Regarding coding delay, the use of a higher context
modeling in the arithmetic encoder implies a higher

computational cost. In order to compensate the cod-
ing speed loss, we have changed the arithmetic en-
coder stage by a fast arithmetic encoder [11]. As
it can be seen in Table IV, S-LTW encoder is 49%
faster on average in the coding process than SPIHT
encoder and 86% faster on average than JPEG2000.
Furthermore, S-LTW encoder is even faster than the
original LTW version which does not include the sign
coding stage (1.5 times faster on average in the cod-
ing process).

IV. Conclusions

We have presented a genetic algorithm that is able
to find a good sign predictor of wavelet coefficient
sign. So, by encoding the sign prediction result (suc-
cess or failure) with an arithmetic encoder, the sign
information will be highly compacted in the final bit-
stream. In order to prove our proposal we have im-
plemented the sign predictor over the non-embedded
LTW encoder. The new S-LTW proposed encoder
has slightly better R/D performance (up to 0.25 dB),
or in terms of bitstream, it is able to reduce the bit-
stream size up to 17% for the same quality level.
Regarding coding delay, the new image encoder is
on average 2 times as fast as SPIHT in the coding
process and 1.5 times as fast as original LTW due to
the inclusion of a fast arithmetic encoder.
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