Combining In-Transit Bufferswith Optimized Routing
Schemes to Boost the Performance of Networkswith
Sour ce Routing*

J. Flich!, P. Lopez!, M. P. Malumbres!, J. Duato!, and
T. Rokicki?

! Dpto. Informatica de Sistemas y Computadores
Universidad Politécnica de Valencia, Spain
jflichegap.upv.es
2 Instantis, Inc. Menlo Park, California, USA
rokicki@instantis.com

Abstract. In previous papers we proposed the ITB mechanism to improve the
performance of up*/down* routing in irregular networks with source routing.
With this mechanism, both minimal routing and a better use of network links
are guaranteed, resulting on an overall network performance improvement. In
this paper, we show that the ITB mechanism can be used with any source routing
scheme in the COW environment. In particular, we apply ITBs to DFS and routing
algorithms, which provide better routes than up*/down* routing. Results show
that ITB strongly improves DFS and Smart throughput (by 63% and 23%, res-
pectively, for 64-switch networks).

1 Introduction

Clusters of workstations (COWS) are currently being considered as a cost-effective
alternative for small-scale parallel computing. In these networks, topology is usually
fixed by the location constraints of the computers, making it irregular. On the other
hand, source routing is often used as an alternative to distributed routing, because
switches are simpler and faster.

Up*/down* [7] is one of the best known routing algorithms for irregular networks.
It is based on an assignment of direction labels (“up” or “down”) to links. To eliminate
deadlocks a route must traverses zero or more “up” links followed by zero or more
“down” links. While up*/down™* routing is simple, it concentrates traffic near the “root”
switch and uses a large number of non-minimal paths.

Other routing algorithms like Smart [2] and DFS [6] achieve better performance
than up*/down*. Smart first computes all possible paths for every source-destination
pair, building the channel dependence graph (CDG). Then it uses an iterative process
to remove dependencies in the CDG taking into account a heuristic cost function.
Although Smart routing distributes traffic better than other approaches, it has the draw-
back of its high computation overhead. DFS computes a depth-first spanning tree with

* This work was supported by the Spanish CICYT under Grant TIC97-0897-C04-01 and by
Generalitat Valenciana under Grant GVV98-15-50

no cycles. Then, it adds the remaining channels to provide minimal paths, breaking
cycles by restricting routing. A heuristic is also used to reduce routing restrictions.

These routing strategies remove cycles by restricting routing. As a consequence,
many of the allowed paths are not minimal, increasing both latency and contention
in the network. Also, forbidding some paths may result in an unbalanced network
traffic distribution, which leads to a rapid saturation. In this paper, we propose the use
of a mechanism that removes channel dependences without restricting routing. This
mechanism has been first proposed in [3] to improve up*/down* routing, but it can be
applied to any routing algorithm. In this paper we will apply it to improved routing
schemes (Smart and DFS).

The rest of the paper is organized as follows. Section 2 summarizes the mechanism
works and its application to Smart some optimized routing strategies. In Section 3,
evaluation results for different networks and traffic load conditions are presented, ana-
lyzing the benefits of using our mechanism combined with previous routing proposals.
Finally, in Section 4 some conclusions are drawn.

2 Applyingthe ITB Mechanism to Remove Channel Dependences

We will firstly summarize the basic idea of the mechanism. The paths between source-
destination pairs are computed following any given rule and the corresponding CDG is
obtained. Then, the cycles in the CDG are broken by splitting some paths into sub-paths.
To do so, a intermediate host inside the path is selected (in-transit buffer, ITB), and, at
this host, packets are completely ejected from the network as if it was their destination.
Later, packets are re-injected into the network to reach their final destination. Notice
that more than one intermediate host may be needed. As packets are completely ejected
at intermediate hosts and enough buffer space is provided, the dependences between the
input and output switch channels are completely removed. CDG can become acyclic by
repeating this process until no cycles are found.

On the other hand, ejecting and re-injecting packets at some hosts also improves
performance by reducing network contention. Packets that are ejected free the channels
they have reserved, thus allowing other packets requiring these channels to advance
through the network (otherwise, they would become blocked). Therefore, adding some
extra ITBs at some hosts may help in improving performance. Hence, the goal of the
ITB mechanism is not only to provide minimal paths by breaking some dependences
but also to improve performance by reducing network contention. However, ejecting
and re-injecting packets at some intermediate hosts also increases the latency of these
packets and requires some additional resources in both network (links) and network
interface cards (memory pools and DMA engines).

If the rules used to build the paths between source-destination pairs lead to an unba-
lanced traffic distribution, then adding more 1TBs than the ones strictly needed will help.
This is the case for up*/down*, because this routing tends to saturate the area near the
root switch. Thus, there is a trade-off between using the minimum number of ITBs that
guarantees deadlock-free minimal routing and using more than these to improve net-
work throughput. Therefore, when we apply the ITB mechanism to up*/down*, we will
use these two approaches. In the first case, we will place the minimum number of ITBs

that guarantees deadlock-free minimal routing. Thus, given a source-destination pair,
we will compute all minimal paths. If there is a valid minimal up*/down* path it will
be chosen. Otherwise, a minimal path with ITBs will be used. In the second approach,
we will use more ITBs than strictly needed to guarantee deadlock-free minimal routing.
In particular, we will randomly choose one minimal path. If the selected path complies
with the up*/down™* rule, it is used without modification. Otherwise, ITBs are inserted
even if there exist valid minimal up*/down* paths between the same source-destination
pair.

In the case of DFS, we will use ITBs in the same way as in the second approach used
for up*/down™* but verifying if the paths comply with the DFS rule. However, for Smart
routing, we will use a different approach. We first compute the paths between source-
destination pairs that better balance network traffic. Notice that the obtained routes are
not the same that Smart computes, because it computes both balanced and deadlock-free
routes whereas we compute only balanced routes. For this reason, we will refer to these
routes as “balanced” rather than “smart”. Then, we compute the CDG and place ITBs to
convert it into an acyclic one. On the other hand, since computing balanced routes alone
is easier than computing both balanced and deadlock-free routes, the computational cost
of the resulting routing algorithm is lower than the one of Smart routing.

3 Performance Evaluation

3.1 Network Model and Network L oad

Network topology is irregular and has been generated randomly, imposing three restric-
tions: (i) all the switches have the same size (8 ports), (ii) there are 4 hosts connected to
each switch and (iii) two neighboring switches are connected by a single link. We have
analyzed networks with 16, 32, and 64 switches (64, 128, and 256 hosts, respectively).

Links, switches, and interface cards are modeled based on the Myrinet network [1].
Concerning links, we assume Myrinet short LAN cables [5] (10 meters long, 160 MB/s,
4.92 ns/m). Flits are one byte wide. Physical links are one flit wide. Transmission of data
across channels is pipelined [8] with a rate of one flit every 6.25 ns and a maximum of
8 flits on the link at a given time. A hardware “stop and go” flow control protocol [1] is
used to prevent packet loss. The slack buffer size in Myrinet is fixed at 80 bytes. Stop
and go marks are fixed at 56 bytes and 40 bytes, respectively.

Each switch has a simple routing control unit that removes the first flit of the header
and uses it to select the output link. The first flit latency is 150 ns through the switch.
After that, the switch is able to transfer flits at the link rate. Each output port can process
only one packet header at a time. A crossbar inside the switch allows multiple packets
to traverse it simultaneously.

Each Myrinet network interface card has a routing table with one entry for every
possible destination of messages. The tables are filled according to the routing scheme
used.

In the case of using ITBs, the incoming packet must be recognized as in-transit and
the transmission DMA must be re-programmed. We have used a delay of 275 ns (44
bytes received) to detect an in-transit packet, and 200 ns (32 additional bytes received)

to program the DMA to re-inject the packet. These timings have been taken on a real
Myrinet network. Also, the total capacity of the in-transit buffers has been set to 512KB
at each interface card.

In order to evaluate different workloads, we use different message destination dis-
tributions to generate network traffic: Uniform (the destination is chosen randomly with
the same probability for all the hosts), Bit-reversal (the destination is computed by
reversing the bits of the source host id.), Local (destinations are, at most, 5 switches
away from the source host, and are randomly computed), Hot-spot (a percentage of
traffic (20%, 15%, and 5% for 16, 32, and 64-switch networks, respectively) is sent to
one chosen randomly host and the rest of the traffic randomly among all hosts) and a
Combined distribution, which mixes the previous ones. In the later case, each host will
generate messages using each distribution with the same probability.

Packet generation rate is constant and the same for all the hosts. Although we use
different message sizes (32, 512, and 1K bytes), for the sake of brevity results will be
shown only for 512-byte messages.

3.2 Simulation Results

First, we analyze the behavior of the routing algorithms without using in-transit buffers.
Results for up*/down*, DFS and the Smart routing algorithms will be refered to as
UD,DFS and SMART, respectively. Then, we evaluate the use of in-transit buffers over
up*/down* and DFS routing. For up*/down* routing, we analyze the two approaches
mentioned above: using the minimum number of ITBs needed to guarantee deadlock-
free minimal routing (UD MITB), and using more ITBs (UD ITB). For DFS routing,
we only use the second approach, which will be referred to as DFS ITB. Finally, we
evaluate the use of in-transit buffers over balanced but deadlocking routes supplied
by the Smart routing algorithm. This routing will be referred to as B 1TB (B from
“balanced”).

For each network size analyzed, we show the the increase in throughput when
using the in-transit buffer mechanism with respect to the original routing algorithms.
Minimum, maximum and average results for 10 random topologies are shown. In addi-
tion, we will plot the average message latency versus the accepted traffic for selected
topologies.

Routing Algorithms without 1TBs Figure 1 shows the results for the uniform dis-
tribution of message destinations for selected topologies of 16, 32, and 64 switches,
respectively. SMART routing is not shown for the 64-switch network due to its high
computation time.

As it was expected, the best routing algorithm is SMART. It achieves the highest
network throughput for all the topologies we could evaluate. In particular, it increases
throughput over UD and DFS routing by factors up to 1.77 and 1.28, respectively.

The performance improvement achieved by SMART is due to its better traffic ba-
lancing. Figure 3.a shows the utilization of links connecting switches for the 32-switch
network. Links are sorted by utilization. Traffic is 0.03 flits/ns/switch. For this traffic
value, UD routing is reaching saturation. When using UD routing, half the links are

12000

8500 - 8500

Z 8000 up —+— z z |
< 7500 DFS £ 80 DFS £ 11000]
§ SMART -~ H g 7500 SMART % § 10000 i
£ 7000 * £ £ i
5 / 5 7000 M S o000 |
> 6500 / 2 6500 P |
& * g2 : £ 8000 :
% 6000 % 6000 * g i
;K . i

£ 5500 < S ss00 A £ 7000 |
P P y > Y
% 5000 . * 2 s000 K £ 6000 L
g 4500 ¥ 2 s] -

= 4500 ¥ 5000
< 4000 fuiem® X < PP e e * < o

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 001 002 003 004 005 0005 00l 0015 002 0025
Traffic (flits/ns/switch) Traffic (flits/ns/switch) Traffic (flits/ns/switch)
@) (b) (©

Fig. 1. Average message latency vs. accepted traffic. Message length is 512 bytes. Uniform dis-
tribution. Network size is (a) 16 switches, (b) 32 switches, and (c) 64 switches.

8500
8000
7500 !
7000 | [
6500 ¢
6000
5500

8500 —— 8500

| ' 8000
7500
7000
6500
6000
5500

0 up ——

UD_MITB -
UD_ITB
7000

DFS_ITB -~

6500 | "S\ART -
6000 | BAL_ITB
5500

"~ up ——]

Average Message Latency (ns)

Average Message Latency (ns)

Average Message Latency (ns)

“UD_MITB -
5000 5000 5000 kL UD_ITB -~
4500 4500 S DFS —&
4000 sl i 4500 g DFS_ITB &
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.01 002 003 0.04 005 006 0.07 0.01 0.02 0.03 0.04 0.05
Traffic (flits/ns/switch) Traffic (flits/ns/switch) Traffic (flits/ns/switch)

@) (b) (©

Fig. 2. Average message latency vs. accepted traffic. UD, DFS, SMART, UD_MITB, UD_ITB,
DFS_ITB and B_ITB routing. Message length is 512 bytes. Uniform distribution. Network size is
(a) 16 switches, (b) 32 switches, and (c) 64 switches.

poorly used (52% of links with a link utilization lower than 10%) and a few links highly
used (only 11% of links with a link utilization higher than 30%), some of them being
overused (3 links with a link utilization higher than 50%). Traffic is clearly unbalanced
among all the links. DFS routing reduces this unbalancing and has 31% of links with
link utilization lower than 10% and 9% of links with link utilization higher than 30%.
The best traffic balancing is achieved by SMART routing. For the same traffic value,
links are highly balanced, link utilization ranging from 7.76% to 20.26% (76% of links
with a link utilization between 15% and 20%). As traffic is better balanced, more traffic
can be handled by the SMART routing and therefore, higher throughput is achieved.

Routing algorithmswith | TBs Figure 2 shows the performance results obtained by the
UD_MITB, UD_ITB, DFS_ITB and B_ITB routing algorithms for the uniform distribu-
tion of message destinations for selected 16, 32, and 64-switch networks, respectively.
Table 1 shows the average results for 30 different topologies. For 64-switch networks,
Smart routes were not available due to its high computation time.

Let us first comment the influence of in-transit buffers on up*/down* and DFS.
As can be seen, the ITB mechanism always improves network throughput over both
original routing algorithms. Moreover, as network size increases, more benefits are
obtained. In particular, UD_MITB improves over UD by factors of 1.12, 1.50, and 2.00
for 16, 32, and 64-switch networks, respectively. However, when more ITBs are used,

UD_MITB vs UD|UD_ITB vs UD|DFS_ITB vs DFS|B_ITB vs SMART
Sw|Min|Max| Avg [Min|Max| Avg|Min|Max| Avg |Min/Max| Avg
16 (1.00|1.29| 1.13 |1.00{1.57|1.29|1.01|1.20] 1.12 |1.00|1.16| 1.07
3211.16(1.72| 1.46 |1.50{2.14|1.88|1.25/1.56| 1.41 (1.11{1.33] 1.23
64 (1.60({2.25| 1.91 |2.20|3.00|{2.57|1.50{1.85| 1.63 |N/A|N/A| N/A
Table 1. Factor of throughput increase when using in-transit buffers on the UD, DFS,
and SMART routing. Uniform distribution. Message size is 512 bytes.

SMART
20 BALANCED_|TB se—

@
g

DFS_ITB oo
40| BALANCED_ITB mmmmm

IS
&

15

UTILIZATION (%)
w
8
UTILIZATION (%)

~
3
BLOCKED TIME (%)

S

)

20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120
LINKS LINKS LINKS

(@) (@ ()

Fig. 3. Link utilization and blocked time. Network size is 32 switches. Message size is 512 bytes.
Uniform distribution. (a) Link utilization for original routings. (b) Link utilization for routings
with ITBs. (c) Blocked time for SMART and B_ITB routings. Traffic is (a, b) 0.03 and (c) 0.05
flits/ns/switch.

more benefits are obtained. In particular, UD 1TB improves over UD by factors of 1.22,
2.14, and 2.75 for the 16, 32, and 64-switch networks, respectively. Concerning DFS,
DFS_ITB routing improves network throughput over DFS by factors of 1.10, 1.39, and
1.54. for the same network sizes.

Notice that UD_ITB and DFS_ITB achieves roughly the same network throughput.
These routing algorithms use the same minimal paths and the main difference between
them is where the in-transit buffers are allocated and how many in-transit buffers are
needed. Also, DFS_ITB routing exhibits lower average latency than UD ITB. This is
because DFS routing is less restrictive than UD routing, and therefore, DFS 1TB needs
less ITBs on average than UD _ITB. When using DFS_ITB routing in the 64-switch net-
work, messages use 0.3 ITBs on average, while the average number of ITBs per message
is 0.55 in UD_ITB. This also explains the higher throughput achieved by UD 1TB since
messages using ITBs are removed from the network, thus reducing congestion.

On the other hand, as network size increases, network throughput increases with
respect to routing algorithms that do not use ITBs. UD and DFS routing are computed
from a spanning tree and one of the main drawbacks of such approach is that, as network
size increases, a smaller percentage of minimal paths can be used. For the 16-switch net-
work, 89% of the routes computed by UD are minimal. However, for 32 and 64-switch
networks, the percentage of minimal routes goes down to 71% and 61%, respectively.
When DFS routing is used, something similar occurs. There are 94%, 81%, and 70%
of minimal routes for the 16, 32, and 64-switch networks, respectively. When using
in-transit buffers, all the computed routes are minimal.

Another drawback of routing algorithms computed from spanning trees is unbalan-
ced traffic. As network size increases, routing algorithms tend to overuse some links
(links near the root switch) and this leads to unbalanced traffic. As in-transit buffers
allow the use of alternative routes, network traffic is not forced to pass through the root
switch (in the spanning tree), thus improving network performance. Figure 3.b shows
the link utilization for UD_MITB, UD_ITB, DFS_ITB and B_ITB routing, respectively,
in the 32-switch network. Network traffic is 0.03 flits/ns/switch (where UD routing
saturates). We observe that UD_MITB routing achieves a better traffic balancing than
UD (see Figure 3.a). Only 33% of links have a link utilization lower than 10% and only
10% of links are used more than 30% of time. However, as this algorithm uses ITBs
only when neccesary to ensure deadlock-free minimal routing, a high percentage of
routes are still valid minimal up*/down* paths, and therefore, part of the traffic is still
forced to cross the root switch. UD _MITB traffic balancing is improved by UD 1TB and
DFS_ITB. UD_ITB routing has all the links with a utilization lower than 30% and only
20% of links are used less than 10% of time. DFS _ITB routing shows roughly the same
traffic balancing.

Let us analyze now in-transit buffers with Smart routing. Smart routing is not based
on spanning trees. Moreover, its main goal is to balance network traffic. In fact, we
have already seen the good traffic balancing achieved by this routing algorithm (see
Figure 3.a). Therefore, it seems that in-transit buffers will have little to offer to Smart
routing. However, we observe that for Smart routing, the in-transit buffer mechanism
also increases network throughput (except for one 16-switch network where it obtains
the same network throughput). For a 32-switch network, B 1TB routing increases net-
work throughput by a factor of 1.33.

In order to analyze the reasons for this improvement, Figure 3.b shows traffic ba-
lancing among all the links for B_ITB routing at 0.03 flits/ns/switch. As can be seen,
it is very similar to the ones obtained by Smart (see Figure 3.a). The reason is that
SMART routing is quite good in balancing traffic among all the links, and therefore, the
in-transit buffer mechanism does not improve network throughput by balancing traffic
even more.

To fully understand the better performance achieved by B 1TB routing we focus now
on network contention. For this reason, we plot the link blocked time for both routing
algorithms. Blocked time is the percentage of time that the link stops transmission due
to flow control. This is a direct meassure of network contention. Figure 3.c shows the
link blocked time for a 32-switch network when using SMART and B 1TB routing.
Traffic is near 0.05 flits/ns/switch. We observe that Smart routing has some links blocked
more than 10% of time, some particular links being blocked more than 20% of time. On
the other hand, when using in-transit buffers, blocked time is kept lower than 5% for all
the links for the same traffic point.

In order to analyze the overhead introduced by ITBs, Table 2 shows the latency
penalty introduced by in-transit buffers for very low traffic (the worst case). We show
results for 512 and 32-byte messages. For 512-byte messages we observe that, on
average, the in-transit buffer mechansim slightly increases average message latency.
This increase in never higher than 5%. Latency increase is only noticeable for short
messages (32 bytes). In this case, maximum latency increase ranges from 16.66% to

UD_MITBvs UD| UD_ITBvs UD |DFS_ITB vs DFS|B_ITB vs SMART
Msg. size|Sw| Min [Max | Avg | Min | Max | Avg |Min|Max| Avg | Min| Max| Avg
512 |16|-0.24/0.76| 0.20 | 1.01| 2.63 | 1.69|0.22{0.74| 0.57 |-0.20| 2.22| 1.64
512 |32|0.26(2.42| 1.24 | 2.31| 4.20| 3.33|0.90{1.08| 0.93 | 1.78| 2.95| 2.34
512 |64|-3.85[-1.03|-2.22|-1.23| 1.46 | 0.31 [0.67|1.27| 1.02 | N/A| N/A| N/A
32 16(0.80|3.41| 2.29 | 8.52 |16.66(10.52|1.56|5.50| 3.49 |-0.35/10.18 7.77
32 3212.33|7.57| 5.32|13.16/18.07|16.44/6.09| 7.28| 6.59 | 9.26|13.28 11.00
32 64)1.40|5.97| 3.64 |11.69|22.09| 16.87|6.44/8.56| 7.64 | N/A| N/A| N/A
Table 2. Percentage of message latency increase for very low traffic when using in-
transit buffers on UD, DFS, and SMART routing. Uniform distribution.

UD_MITB vs UD|UD_ITB vs UD|DFS_ITB vs DFS|B_ITB vs SMART
Distrib. |Sw|Min|Max| Avg [Min|Max| Avg |Min{Max| Avg [Min|Max| Avg
Hot-spot |16 ({0.99/1.17| 1.04 |0.99{1.21|1.10|1.00{1.17| 1.05 |0.85/1.17| 0.96
Hot-spot | 32(1.00{1.40| 1.18 |1.00{1.39|1.18|0.98/1.17| 1.03 |1.00/1.00{ 1.00
Hot-spot | 64|1.60|2.08| 1.71 |1.66|2.57|2.03|1.21|1.49] 1.35 |N/A|N/A| N/A
Bit-rev. |16(0.94(1.44| 1.16 |0.87|1.81|1.17|0.79|1.27| 1.03 |0.731.13] 0.93
Bit-rev. [32(1.12(2.00| 1.59 |1.56/2.57|1.87|1.20/1.99| 1.51 |0.99/1.45 1.21
Bit-rev. |64 (1.74(2.99| 2.05 |2.21/3.50|2.76|1.46|2.20| 1.78 |N/A|N/A| N/A

Local |16(0.97|1.26| 1.08 |1.02|1.56|1.24|1.00{1.30| 1.17 (1.00/1.17 1.10
Local |32(1.00{1.40| 1.16 [1.12{1.60|1.44|1.15(1.45 1.29 (1.10/1.29 1.17
Local |64(1.00{1.20| 1.07 |1.40{1.57|1.49|1.13{1.33| 1.24 |N/A[N/A| N/A

Combined| 16|1.00|1.45| 1.15 |1.00|1.56| 1.26|0.98/1.28| 1.14 |1.00/1.17| 1.06

Combined| 32(1.12|1.57| 1.31 |1.31{1.86|1.65|1.20{1.50| 1.35 [1.04/1.27| 1..14

Combined| 64|1.48|2.00| 1.74 |1.82|2.65|2.31|1.43/1.80] 1.56 |N/A|N/A| N/A

Table 3. Factor of throughput increase when using in-transit buffers on the UD, DFS,

and SMART routing for different traffic patterns. Message size is 512 bytes.

22.09% for UD_ITB. The explanation is simple. The ITBs only increase the latency
components that depend on the number of hops. Therefore, short messages suffer a
higher penalty in latency. Additionally, the latency penalty depends on the number
of ITBs needed to guarantee deadlock freedom. This is also shown in Table 2 where
average latency penalty is lower when using ITBs with Smart, DFS or the minimum
number of ITBs with UD (UD_MITB).

Table 3 shows the factor of throughput increase for the hot-spot, bit-reversal, local,
and combined traffic patterns. We observe that the in-transit buffer mechanism always
increases, on average, network throughput of UD and DFS routing. In particular, when
the combined traffic pattern is used, UD _ITB improves over UD by factors of 1.26, 1.65,
and 2.31 for 16, 32, and 64-switch networks, respectively. Also, DFS 1TB improves
over DFS by factors of 1.14, 1.35, and 1.56 for 16, 32, and 64-switch networks, respec-
tively. Finally, B_ITB increases, on average, network throughput by a factor of 1.14 for
32-switch networks.

We conclude that, by using in-transit buffers on all the routing schemes analyzed,
network throughput is increased. As network size increases, higher improvements are
obtained. In-transit buffers avoid congestion near the root switch (in the tree-based
schemes), always provide deadlock-free minimal paths and balance network traffic. On

the other hand, average message latency is slightly increased, but this increase is only
noticeable for short messages and small networks.

4 Conclusions

In previous papers, we proposed the ITB mechanism to improve network performance
in networks with source routing and up*/down* routing. Although the mechanism was
primarly intended for breaking cyclic dependences between channels that may result
in a deadlock, we have found that it also serves as a mechanism to reduce network
contention and better balance network traffic. Moreover, it can be applied to any source
routing algorithm.

In this paper we apply the ITB mechanism to up*/down*, DFS, and Smart routing
schemes, analyzing its behavior in detail using up to 30 randomly generated topologies,
different traffic patterns (uniform, bit-reversal, local, hot-spot, and combined), and net-
work sizes (16, 32, and 64 switches). Network design parameters were obtained from a
real Myrinet network.

Results show that, the in-transit buffer mechanism improves network performance
for all the studied source routing algorithms. Up*/down* routing is significantly im-
proved due to the many routing restrictions that it imposes and the unbalanced traffic
nature of the spanning trees. Better source routing algorithms, like DFS and Smart, are
also improved by the ITB mechanism. Finally, we have observed that as more ITBs
are added to the network, throughput increases but the latency also increases due to the
small penalty of using in-transit buffers. Therefore, there is a trade-off between net-
work throughput and message latency. Thus, network designers have to decide on the
appropiate number of ITBs depending on the application requirements.

As for future work, we plan to implement the proposed mechanism on an actual
Myrinet network in order to confirm the obtained simulation results. Also, we are
working on techniques that reduce ITB overhead.

References

1. N.J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. Seizovic and W. Su,
“Myrinet - A gigabit per second local area network,” IEEE Micro, pp. 29-36, February 1995.

2. L. Cherkasova, V. Kotov, and T. Rokicki, “Fibre channel fabrics: Evaluation and design,” in
29th Int. Conf. on System Sciences, Feb. 1995.

3. J. Flich, M.P. Malumbres, P.L6pez, and J. Duato, “Improving Routing Performance in

Myrinet Networks,” in Int. Parallel and Distributed Processing Symp., May 2000.

GM protocol, ’http://www.myri.com/GM’

Myrinet, "M2-CB-35 LAN cables, http://www.myri.com/myrinet/product_list.html’

J.C. Sancho, A. Robles, and J. Duato, “New Methodology to Compute Deadlock-Free

Routing Tables for Irregular Networks,” in Workshop on Communications and Architectural

Support for Network-based Parallel Computing, January, 2000.

7. M. D. Schroeder et al., “Autonet: A high-speed, self-configuring local area network using
point-to-point links,” Tech. Rep. SRC research report 59, DEC, April 1990.

8. S. L. Scott and J. R. Goodman, “The Impact of Pipelined Channels on k-ary n-Cube
Networks,” in IEEE Trans. on Parallel and Distributed Systems, vol. 5, no. 1, pp. 2-16,
January 1994,

o oA

