
Noname manuscript No.
(will be inserted by the editor)

MPCM: A hardware coder for super slow motion

video sequences

Estefańıa Alcocer · Otoniel

López-Granado · Roberto Gutierrez ·

Manuel P. Malumbres

Received: date / Accepted: date

Abstract In the last decade the improvements in VLSI integration levels and
image sensor technologies has leaded to a frenetic rush to provide image sen-
sors with higher resolutions and faster frame rates. As a result, video devices
were designed to capture real-time video at high resolution formats with frame
rates reaching the 1000 fps and beyond. This ultra high-speed video cameras
are widely used in scientific and industrial applications like car crash tests,
combustion research, materials research and testing, fluid dynamics, flow visu-
alization, etc. that demand real-time video capturing at extremely high frame
rates with high definition formats. Therefore, data storage capability, com-
munication bandwidth, processing time and power consumption are critical
parameters that should be carefully considered in their design. In this paper,
we propose a fast FPGA implementation of a simple codec called MPCM that
reports similar quality than traditional PCM coding scheme but is able to
reduce the bandwidth requirements up to 1.4 times, permitting current high-
speed cameras to capture in a continuous manner into a massive storage device
like an SSD.

Keywords PCM · image coding · FPGA design · high speed · integrated
circuits

This research was supported by the Spanish Ministry of Education and Science under grant
TIN2011-27543-C03-03

E. Alcocer O. López-Granado M. P. Malumbres
Physics and Computer Architecture Department
Miguel Hernández University. Elche, Spain 03202
Tel.: +34-966658392
E-mail: estefania.alcocer@goumh.umh.es,{otoniel,mels}@umh.es

R. Gutierrez
Communications engineering Department
Miguel Hernández University. Elche, Spain 03202
E-mail: roberto.gutierrez@umh.es

2 Estefańıa Alcocer et al.

1 Introduction

Video compression has been an extremely successful technology that has found
its commercial application across many areas, from scientific and industrial
applications like video archiving, high quality medical video, surveillance and
security applications, to the audio-visual industry (TV and cinema) and the
broad spectrum of video appliances available in the market such digital cam-
eras, DVD, Blue-Ray, DVB, etc.

In the last decade the improvements in VLSI integration levels and image
sensor technologies has leaded to a frenetic rush to provide image sensors with
higher resolutions and faster frame rates. As a result, video devices were de-
signed to capture real-time video at high resolution formats with frame rates
above 100 Hz. Nowadays, it can be found in the market ultra high-speed video
cameras like Phantom v641 [11] which is able to capture high resolution video
(2560 x 1600 pixels) at 1450 frames per second (fps). These video cameras are
specially suited for scientific or industrial applications like car crash tests, ex-
plosives and pyrotechnics, ballistics, projectile tracking, combustion research,
materials research and testing, fluid dynamics, flow visualization, etc. which
demand real-time video capturing at extremely high frame rates with high def-
inition formats. Therefore, data storage capability, communication bandwidth,
processing time and power consumption are critical parameters that should be
carefully considered in the design process of high-speed video camera.

To fight against these constraints, most of nowadays high-speed cameras
store the captured images in a fast SDRAM module of up to 64GB [16,5,7,
11] without performing compression, using Pulse Code Modulation (PCM) [9].
The huge amount of data of the resulting uncompressed image/video needs to
be processed to guarantee its transmission or storage, being a really challenging
task. Thus, the internal communication bus may not be fast enough to transfer
the video out of the camera, or the writing speed of the storage device may not
be high enough to save the video [6]. So, the approach of using fast SDRAM
memory as video storage is feasible since memory bandwidth is high enough,
but when memory is run out, the camera stops recording and needs to save
the stored video to a secondary storage in raw or compressed format. This
is a limitation because depending on the capturing resolution of the camera,
only a few seconds could be recorded in the RAM module, and so, continuous
capturing is not possible.

In order to overcome these restrictions, it would be of interest to reduce
the video storage requirements by means of hardware encoders that fulfill
the application requirements, i.e. high frame rate and high definition and be-
yond video formats. Therefore, if we are able to perform some kind of ultra
fast encoding, we would reduce the required storage resources, and real-time
recording like in conventional video cameras would be possible.

Many hardware coders based on different coding algorithms are used in
real systems [18,8,2,13,17,1,14,4]. Most of them are Application Specific In-
tegrated Circuits (ASICs) dedicated to specific encoding algorithms that are

MPCM: A hardware coder for super slow motion video sequences 3

not designed to work in real-time with ultra high frame rates and high defini-
tion video formats.

However, several attempts have been made in order to deal with high-speed
camera encoding. In [3] authors present JPEG FPGA-based encoder which is
able to compress up to 500 frames/s at a resolution of 1280x1024. Also, in
[19] an improved version of the Fast Boundary Adaptation Rule (FBAR) [10]
algorithm in conjunction with Differential Pulse Code Modulation (DPCM)
is applied to increase the R/D efficiency, although coding delays were not
provided.

In general, the constraints imposed by ultra-high frame rate video capture
applications discard most of the existing coding techniques (e.g., predictive
coding or transform coding) since they are much more complex than PCM
and/or use predictive and entropy coding (which destroys the scalability and
random access properties). Therefore, a coding algorithm that has properties
similar to those of PCM (low complexity, random access, and scalability) but
with a better coding efficiency would be of interest. Modulo-PCM (MPCM)
[12] image coder fulfills these requirements. To encode an image, MPCM en-
coder removes certain bits from each pixel value which represents a very simple
processing. The complexity is moved to the decoder side, where the bits that
were removed from each pixel will be predicted by using its codeword (re-
mainig bits of a pixel) and side information (SI) that the decoder computes
by interpolating previously decoded pixels.

In this paper we implement a fast codec based on Modulo Pulse Code Mod-
ulation scheme (MPCM) [12] over a XC7Z020-1CLG484CES Xilinx FPGA
device. Results show that FPGA-based MPCM encoder obtains a throughput
of up to 409.84 MBytes/sec at high compression rates, allowing to store on a
non volatile memory 2501 frames per second at a 1280 x 1024 resolution. Fur-
thermore, in this paper we present a hardware implementation of the MPCM
decoding system, which is able to reproduce a Full-HD definition video at 204
frames per second.

The rest of the paper is organized as follows. In section 2 we present a
brief overview of the Modulo-PCM encoder. In section 3, the description of
the proposed architecture is presented. A detailed evaluation of the archi-
tecture proposal is shown in section 4 in terms of R/D, coding delay, power
consumption and occupied board area. Finally, in section 5 some conclusions
are drawn.

2 Encoding system

In this section we describe the MPCP-based coding algorithm for the encod-
ing of a one-dimensional signal. Let x̂n (n ∈ N) be a continuous-amplitude
discrete-time signal whose amplitude values lie in [Amin, Amax]. Let xn be the
digital signal that results from the quantization and encoding of x̂n with a
fixed-rate uniform quantizer of B bits/sample and step-size:
∆ = (Amax −Amin) /2

B.

4 Estefańıa Alcocer et al.

LSB

MSBLSB

Side
information
generation

Recons.

Decision Recons.

Q

A/D Encoder Decoder

Analog front−end Digital back−end

−l0

−m1−l1x2n x̂2n

y2n

x̂n

x̃n
xn

x̂2n+1x2n+1

Fig. 1 Block diagram of MPCM coding algorithm

The easiest way of reducing the bit rate of x̂n is to remove the l -LSBs
(Least Significant Bits) of each codeword of x̂n. To achieve a more efficient rate
reduction, we propose the use of a MPCM-based coding algorithm (Fig. 1). The
samples of x̂n are divided into sets that are encoded with different accuracies.
For the sake of simplicity, let us consider we divide x̂n into two sets: S0 =
{x2n+1|n ∈ i = 0, 1, 2, . . .} and S1 = {x2n|n = 1, 2, . . .}. As shown in Fig. 1,
each sample in S0 is encoded by removing the l0-LSBs of its codeword while
each sample in S1 is encoded by removing the m1-MSBs (Most Significant
Bits) and l1-LSBs of its codeword. Then, the encoder works at an average rate
R = B − (l0 + l1 +m0)/2 bits/sample.

As the encoding of x2n+1 is equivalent to a quantization with a uniform
quantizer with step size equal to 2l0∆, the decoder can directly reconstruct
the samples of S0 from their codewords (Fig. 1). With respect to the encoded
samples in S1 (Fig. 2(a)), removing the l1-LSBs of x2n is equivalent to quan-
tizing its original continuous value with a uniform quantizer with step size
equal to 2l1∆ (Fig. 2(b)). After removing the m1-MSBs, the resulting code-
word identifies a set of 2m1 disjoint intervals {Ii|i = 0, . . . , 2m1 − 1}, with each
interval being of length 2l1∆ (Fig. 2(c)).

In the decoder, to decide which Ii interval x̂2n belongs to, MPCM decoders
exploit the correlation between the signal samples by furnishing a prediction
for each sample in S1 based on previously decoded samples in S0. This predic-
tion y2n acts as SI (Side Information) to decide the interval (Fig. 2(d)). The
accuracy of the SI depends on the degree of correlation between the samples
xn and the distortion introduced in the encoding of S0. To limit the impact
of the coding distortion on the quality of the SI, in the encoding algorithm l0
must be lower than l1 (l0 < l1). If the decision process is done without error
for x2n, its m1-MSBs are properly recovered. Once the decoder has estimated
the m1-MSBs of x2n, it tries to recover its l1-LSBs which finally provides a

MPCM: A hardware coder for super slow motion video sequences 5

(a)

(b)

(c)

(d)

(e)

(f)

010

010

×0× ×1× ×0× ×1×

x̃2n

00× 10× 11×01×

2l1∆

×0× ×0× ×1×01×

x̃2n

×0× ×0× ×1×01×

y2n

000 001 111110101100011

x̃2n

000 001 111110101100011

∆
Amin Amax

y2n

y2n

x̌2n

x̃2n

x̃2n

x̃2n

I1I0

Fig. 2 Quantization intervals and codewords for R = 3, l1 = 1 and m1 = 1: (a) after A/D
conversion, (b) after removing l1 bits, (c) after removing m1 bits, (d) after deciding between
I0 and I1, (e) after reconstruction and (f) after final quantization. Symbol X represents the
removed bits. Boldfaced codewords represent the codeword selected in each step for the
values of x2n and y2n shown. Marked intervals are the intervals represented by the selected
codeword in each step

reconstruction x̂2n. This reconstruction is done using the quantization interval
Ii where supposedly lies x2n and its SI (y2n).

For a more detailed description of MPCM encoder, the reader is referred
to [12,15].

3 Hardware Implementation

In order to cope with the high throughput bandwidth of nowadays high speed
cameras, both MPCM encoder and decoder have been implemented over a
hardware architecture. The description language used to build its design is
VHDL. The proposed hardware implementation has been developed over a
Zynq-7000 FPGA of Xilinx family, specifically over the ZC702 model which
includes the XC7Z020-1CLG484CES SoC (System-on-Chip) [20].

3.1 Encoder architecture

The implemented encoder architecture is illustrated in Fig. 3. The original
image captured by the camera sensors is stored in the memory block whose

6 Estefańıa Alcocer et al.

reading is determined by the control block. In that structure, 16 pixels are read
on each cycle so as to speed the encoding process as much as possible within
the scope of the device’s internal memory. This memory acts as an internal
buffer of frames to read them in high speed applications and it is implemented
with block RAMs. In this way, we use 52 Dual-port 36 Kb block RAMs with
ports configured as 512x64 bits, where 64 output bits, namely 8 pixels, are
read in each memory output port. These pixels are processed in the following
block, without delay, in the same reading cycle, where they are encoded by
removing the corresponding l0 or lk and mk bits. Finally, we obtain the coded
samples of the image which are sent to the final storage device.

Fig. 3 Encoder architecture design

In our proposed implementation design, the image is divided into sev-
eral parts of 4 different samples x0,0 [n1, n2], x0,1 [n1, n2], x1,0 [n1, n2] and
x1,1 [n1, n2] such that

xp,q [n1, n2] = x [2n1 + p, 2n2 + q]

with p and q ∈ [0, 1]. Then, the first one is encoded using PCM, removing
l0 LSBs, and the remaining parts using MPCM, removing lk LSBs and mk

MSBs. A diagram of the steps used in our hardware algorithm is shown in
Fig. 4. Remark that both the reading and coding of the 16 pixels is performed
in the same cycle.

3.2 Decoder architecture

In Fig. 5 we show the proposed decoder architecture. In this approach, the
buffer is filled with coded samples until the first three lines are completed, then
the decoding process starts. The decoder is divided into two steps: decision
and reconstruction. The recovery of the original image is performed as follows:

MPCM: A hardware coder for super slow motion video sequences 7

0

5��5��

0 5��

��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ���

�

1

� 7

��� �

x��
k � 2 3

k � 2 3

Fig. 4 Example of the encoder algorithm with l0 = 2, lk = 1 and mk = 1

– Three columns of data are processed in decision block, where the signal
PCM is reconstructed, accurate SIs are generated from PCM samples and
one of the possible intervals 2mk is selected in which each MPCM decoded
signal will be placed.

– At the decoder reconstruction block, we recover the LSB removed in the
encoding process using its SI and interval corresponding to each MPCM
sample. After completing these steps, we get 4 decoded pixels.

– In each cycle, two columns of encoded samples leave the decoder and an-
other two enter into it. This process is carried out iteratively until all
samples of the three rows from the buffer have been decoded.

– Then, the buffer is shifted. Two rows leave the buffer and two new ones
enter into it. All the above operations continue until all the input encoded
samples are decoded.

X�	� X�	

X
	� X
	

X�	�

X�	� X�	�

X
	�

X�	

 �	� �	��	

X�	� X�	

X
	� X
	

Fig. 5 Decoder architecture design

8 Estefańıa Alcocer et al.

The proposed decoder design has been completely pipelined, so this makes
each of the aforementioned steps used for decoding to be performed concur-
rently. In addition, as previously mentioned, 4 decoded pixels are obtained
in each cycle. In this approach, the operating frequency has been set to get
the 4 pixels, but in order to organize the entire decoded image, a Phase-
Locked-Loop (PLL) module has been used, which generates multiple clocks
for a given input clock. Therefore, in each cycle, 4 pixels are stored in a buffer
with a fixed frequency, but these pixels are read with a frequency 4 times
higher, thus achieving a serial output without delay. The buffers used in the
proposed architecture have been implemented using single dual port 18 Kb
block RAMs.

4 Results

Both encoder and decoder architecture designs have been tested. In this sec-
tion we present the performance evaluation of the complete system in terms of
PSNR, encoding/decoding times, board area usage, maximum frame rate and
speed-ups obtained when compared to a CPU sequential algorithm. The archi-
tectures have been synthesized, placed and routed using Xilinx ISE 14.3 tool,
and have been simulated and verified using Matlab/Simulink through System
Generator toolbox. They have been designed into the Zynq AP SoC-based
board previously mentioned. Occupied board area, maximum frequency and
power consumption estimation have been measured from the Xilinx ISE 14.3
tool. In our experiments, we have assessed the results of five gray-scale images
(Zelda, Lena, Peppers, Barbara and Baboon) with a resolution of 512x512
pixels and 8 bits per sample. Furthermore, we have assigned optimum values
to the coding/decoding parameters so as to obtain the maximum PSNR for a
given bit-rate. The assignment of encoding parameters values for the MPCM
coder/decoder (with N = 4, l1 = l2 = l3 and m1 = m2 = m3) was proposed
by Marleen Morbee in [15].

4.1 Encoder evaluation

In Table 1 the PSNR obtained for all tested images as a function of the bit-
rate (R) is presented. As expected, for higher rates (R), which means removing
few bits in the encoding process, MPCM algorithm generally provides good
PSNR due to the fact that no significant loss occurs in the coding process, and
consequently, not big errors are introduced in the decoding process. Therefore,
the lower rate (R), the lower PSNR value. Note that, for each rate, parameters
l0, l1, m1 are not necessarily the same for all images. Each image has its
appropriate parameters to get the optimal quality of the recovered image.

Regarding coding/decoding delay, the proposed encoder architecture works
at a maximum clock frequency of 204,96 MHz, that is 4,879 ns. Furthermore,
the algorithm requires 16387 cycles to perform the encoding process for an

MPCM: A hardware coder for super slow motion video sequences 9

R=1bpp R=2bpp R=4bpp R=6bpp

Image (l0,l1,m1) PSNR (l0,l1,m1) PSNR (l0,l1,m1) PSNR (l0,l1,m1) PSNR
Zelda (4,8,0) 33.83 (0,8,0) 36.57 (1,3,2) 40.07 (2,1,1) 48.07
Lena (4,8,0) 31.79 (3,6,1) 33.71 (1,4,1) 37.74 (2,1,1) 47.80

Peppers (4,8,0) 30.57 (3,7,0) 32.14 (4,4,0) 34.88 (4,4,0) 44.62
Barbara (4,8,0) 24.87 (3,7,0) 26.59 (4,4,0) 33.67 (4,4,0) 44.56
Baboon (4,8,0) 22.53 (3,7,0) 24.22 (4,4,0) 32.20 (4,4,0) 43.85

Table 1 Optimum parameters and PSNR value for all tested images

image resolution of 512x512 pixels. Therefore, we require 79,952 µs to encode
any image for the aforementioned resolution, which is 12 times faster than the
sequential algorithm on an Intel Core 2 CPU at 1.8 Ghz with 5 GBytes RAM.
As the encoding process does not depend on the internal characteristics of the
image, but only on the image resolution, in Fig. 6, the maximum frame rate
achievable for the proposed architecture is presented. As shown, the hardware
implementation of the MPCM encoder is able to compress up to 3558 frames
per second for HD-Ready resolution or up to 1668 frames per second for Full-
HD resolution.

The high speed encoding process makes high speed cameras be able to
capture continuously and grab without the restrictions of the internal RAM
size. For example, at a compression rate of 1 bpp, the encoding system has a
throughput of 409.84 MBytes/s which is less than the available bandwidth of
typical storage devices like a SSD (Solid State Drive) (up to 600 MBytes/s).
Depending on the final application, if a higher image quality is necessary, the
proposed MPCM hardware implementation could compress at 4 bpp rate with
a good quality and a throughput bandwidth of 1640 MBytes/s which will
extend the capturing time over the internal camera RAM module up to 1.4
times or will permit its transmission over an Ethernet 40 Gbit point-to-point
access.

3558

3500

4000

3000

3500

2501
2500

e
s
/s

1668

1500

2000

F
ra

m
e

800
1000

1500

195
49

500

0

1280x720 1280x1024 1920x1024 2560x1600 4096x4096 8192x8192

Image resolution

Fig. 6 Maximum encoded frames per second for different image resolutions

10 Estefańıa Alcocer et al.

The basic elements of a FPGA are CLBs (Configurable Logic Blocks).
CLBs architecture includes: 6-input LUTs, memory capability within the LUT
and register and shift register functionality. The LUTs in the Zynq-7000 AP
SoC can be configured as either one 6-input LUT (64-bit ROMs) with one out-
put, or as two 5-input LUTs (32-bit ROMs) with separate outputs but common
addresses or logic inputs. Each LUT output can optionally be registered in a
flip-flop. Four such LUTs and their eight flip-flops as well as multiplexers and
arithmetic carry logic form a slice, and two slices form a configurable logic
block (CLB). Four of the eight flip-flops per slice (one flip-flop per LUT) can
optionally be configured as latches. Between 25-50% of all slices can also use
their LUTs as distributed 64-bit RAM or as 32-bit shift registers. [20].

Used Available Utilization

Number of Slices 14 13300 1%
Number of Slice Registers(as Flip Flops) 17 106400 1%
Number of Slice LUTs 35 53200 1%
Number of RAMB36 52 140 37%
FMax(MHz) 204,96 - -
Power consumption (mW) 305 - -

Table 2 Area used in the FPGA encoder implementation

Table 2 presents the results of the encoder implementation in terms of
hardware resources used, indicating the number of used Slices, Flip-Flops,
LUTs and 36 KB block RAMs. In addition, it shows an estimation of the
power consumed using XPower of Xilinx ISE 14.3, being only 305 mW due
to the high segmentation in the encoder design. As shown, only 1% of all the
available area in the FPGA is used, so given the large amount of non used area
on the FPGA, we could use it to deploy multiple identical encoders that could
run concurrently. Thus, different frames could be encoded simultaneously so
as to increment the available recording time of a high speed camera. To take
advantage of this, we would only have to consider an external memory to
support the storage of several frames, considering the blocks RAMs used as
intermediate buffers.

4.2 Decoder evaluation

As far as the decoder is concerned, the maximum clock frequency has been
set at 100MHz, being the lower latency 713 cycles. This frequency is taken as
a compromise due to the use of other frequency 4 times higher provided by
the PLL module, since analyzing the implementation delay, higher frequencies
(around 160 MHz) would be achieved, as discussed in section 3.2. So, the
MPCM decoder is able to recover 400 Mpixels per second at that frequency. On
the other hand, the algorithm requires 66240 cycles to perform the decoding
process for an image resolution of 512x512 pixels, so 662 µs are needed to

MPCM: A hardware coder for super slow motion video sequences 11

decode any image for that resolution, being 70 times faster than the sequential
decoding algorithm on an Intel Core 2 CPU at 1.8 Ghz with 5 GBytes RAM.

Fig. 7 shows the maximum decoding frame rate achievable for the proposed
architecture. As shown, the hardware implementation of the MPCM decoder
is able to recover up to 434 frames per second for HD-Ready resolution or
up to 204 frames per second for Full-HD resolution, which corresponds to
a throughput of 50 MBytes/s, making available to reproduce high definition
cinema at high frame rates.

434
450

500

350

400

305

300

350

e
s
/s

204

200

250

F
ra

m
e

98
100

150

24
50

100

0

1280x720 1280x1024 1920x1024 2560x1600 4096x4096

Image resolution

Fig. 7 Maximum decoder frames per second for different image resolutions

Regarding to occupied board area, Table 3 shows a summary of the hard-
ware resources required by the decoder, which in a similar way than in the
encoder, is less than a 1%. The occupied board area could vary depending on
the l0, l1, m1 parameters, but in any case it will be greater than 1%. As indi-
cated in section 3.2, the buffers used have been modeled on single dual port
18 Kb block RAMs so as to take advantage of lower consumption compared
to distributed memories, besides being faster. Note that maximum frequency
shown in table 3 is 154.5 MHz, but in our design we have set this frequency
to 100 MHz as explained previously.

Used Available Utilization

Number of Slices 129 13300 1%
Number of Slice Registers(as Flip Flops) 415 106400 1%
Number of Slice LUTs 208 53200 1%
Number of RAMB18 5 140 4%
FMax(MHz) 154.5 - -
Power consumption (mW) 221 - -

Table 3 Area used in the FPGA decoder implementation for parameters l0 = 2, l1 = 1,
m1 = 1

12 Estefańıa Alcocer et al.

5 Conclusions

In this paper we have presented an efficient FPGA implementation of the
MPCM codec. We have show the quality of the reconstructed images in terms
of PSNR at different compression rates and for several images with different
textures. Regarding coding speed, the results show that our proposed imple-
mentation is able to compress a Full-HD resolution image at 1668 frames per
second. The maximum achievable throughput bandwidth of our proposed im-
plementation is 409.84 MBytes/s which permits the continuous grabbing of a
nowadays high speed camera at an image resolution of HD-Ready (1280x720p)
and a reasonable good quality. But, if the final application requires a higher
image quality, our encoder is able to give up to 1640 MBytes/s at a 2:1 com-
pression rate, incrementing the capturing time over the high speed camera
internal RAM memory. The occupied area of the FPGA used is less than 1%
of the total available area, which give us the posibility to replicate several
times the encoding system and thus, several frames can be compressed in a
parallel way.

We have also developed in hardware de MPCM decoder module. Our pro-
posed decoder design is able to recover images at 204 frames per second for
Full-HD resolution, whith an occupied board area of less than 1%.

References

1. J. Ahmad and M. Ebrahim. Fpga based implementation of baseline jpeg decoder.
International Journal of Electrical & Computer Sciences, 9(9):371–377.

2. L.H. Chen, W.L. Liu, O.T.C. Chen, and R.L. Ma. A reconfigurable digital signal pro-
cessor architecture for high-efficiency MPEG-4 video encoding. In IEEE Conference on
Multimedia and Expo, 2002.

3. Xi CHEN, Lin ZENG, Qinglin ZHANG, and Wenxuan SHI. A novel parallel JPEG
compression system based on FPGA. Journal of Computational Information Systems,
7(3):697–706, 2011.

4. A. Descampe, Devaux F., Rouvroy G., Macq B., and Legat J.D. An Efficient FPGA
Implementation of a Flexible JPEG2000 Decoder for Digital Cinema. PhD thesis,
Universit catholique de Louvain, 2002.

5. PHOTRON FASTCAM SA-X. http://www.photron.com/index.php.
6. P. Gemeiner, W. Ponweiser, P. Einramhof, , and M. Vincze. Real-time slam with high-

speed cmos camera. pages 297–302, September 2007.
7. i-SPEED 3. http://www.olympus-ims.com/es/ispeed-3/.
8. O. Ismailoglu, I. Benderli, M. Korkmaz, T. Durna, Y. Kolak, and A. Tekmen. real

time image processing subsystem: Gezgin. In 16th Annual/USU Conference on Small
Satellites, 2002.

9. N. S. Jayant and P. Noll. Prentice-Hall, Inc, 1974.
10. Dominique Martinez and Marc M. Van Hulle. Generalized boundary adaptation rule for

minimizing rth power law distortion in high resolution quantization. Neural Networks,
8(6):891 – 900, 1995.

11. Vision Research PHANTOM v641. http://www.visionresearch.com/Products/High-
Speed-Cameras/v641.

12. J. Prades-Nebot, A. Roca, and E. Delp. Modulo-pcm based encoding for high speed
video cameras. In Image Processing, 2008. ICIP 2008. 15th IEEE International Con-
ference on, pages 153 –156, oct. 2008.

13. J. Ritter, G. Fey, and P. Molitor. Spiht implemented in a XC4000 device. In IEEE 45th
Midwest Symposium on Circuits and Systems, 2002.

MPCM: A hardware coder for super slow motion video sequences 13

14. J. Rosenthal. JPEG image Compression using an FPGA. PhD thesis, University of
California, 2006.

15. Marleen Morbee Ph.D. Thesis. Optimized information processing in resource-
constrained vision systems, 2011.

16. Fastec Imaging TS3 100-S. http://www.fastecimaging.com/products/high-speed-
cameras/handheld-cameras/ts3-100-s.

17. I. Urriza, J.I. Artigas, J.I. Garcia, L.A. Barragan, and D. Navarro. Vlsi architecture for
lossless compression of medical images using discrete wavelet transform. In Conference
on Design Automation and Test in Europe, 1998.

18. B. Vanhoof, M. Peon, and M.G. Lafruit. A scalable architecture for mpeg-4 embedded
zero tree coding. In IEEE Conference on Custom Integrated Circuits, 1999.

19. Yan Wang, Shoushun Chen, and A. Bermak. Fpga implementation of image compression
using dpcm and fbar. In Integrated Circuits, 2007. ISIC ’07. International Symposium
on, pages 329 –332, sept. 2007.

20. Xilinx Zynq-7000. Zynq-7000 all programmable soc overview,
advance product specification - ds190 (v1.2) available on:
http://www.xilinx.com/support/documentation/data sheets/ds190-Zynq-7000-
Overview.pdf, August 2012.

