
Fast Integer-to-Integer Reversible Lifting Transform with Reduced Memory
Consumption

Jose Oliver, Elena Oliver, Manuel P. Malumbres
Department of Computer Engineering (DISCA)

Universidad Politécnica de Valencia
Camino de Vera 17, 46022 Valencia, Spain

Phone: +34 963877007, Fax: +34 963877579
e-mail: joliver@disca.upv.es

Abstract— This paper addresses the problem of reducing the
memory usage in the implementation of a reversible two-
dimensional wavelet transform for image processing. In
particular, we take a line-based approach by using a recursive
algorithm to ease the synchronization among different buffer
levels. In addition, since the reversible transform is non-linear,
to preserve reversibility, we have to consider the order of the
horizontal and vertical transforms in which the two-dimensional
forward and inverse wavelet transform are decomposed. The
proposed algorithm is suitable for integer-only devices (such as
many FPGAs), reducing in more than 250 times the memory
requirements, for a 5-Megapixel image with the well-known
B5/3 wavelet transform. Moreover, it is several times faster (up
to ten times) in cache-based systems, due to the better use of the
cache memory if compared with the regular wavelet transform.

I. INTRODUCTION
One of the new mathematical tools that has aroused great

interest in the field of signal processing is the discrete wavelet
transform (DWT). This interest is even greater in the field of
image processing due to its nice features, such as
multiresolution representation, space and frequency
interpretation (useful for image vision and segmentation) and
high compactness of energy in the lower frequency subbands,
which is extremely useful in image compression.

The wavelet transform was earlier defined and
implemented using a regular filtering operation following a
multiresolution analysis [7], but a more efficient algorithm to
compute it was introduced by Sweldens in [8]. This algorithm
is called the lifting scheme. The main advantage of this
approach is the reduction in the number of operations needed
to perform the wavelet transform. An additional advantage is
that it allows in-place computation, and hence no extra
memory is required to store the resulting coefficients as it
happens with any regular filtering method. The third benefit
that the lifting scheme introduces is the feasibility of a
reversible integer-to-integer wavelet transform with only a
slight modification of the usual floating-point implementation.
In this paper, we will deal with this type of integer wavelet
transform.

An integer implementation of a signal transform is needed
if the transform is implemented in hardware architectures that
only support integer arithmetic, such as some DSPs and many
FPGAs. In fact, doing floating-point on FPGAs is difficult due
to large amount of hardware required. In addition, some
specific applications, such as lossless compression, require
reversibility, which is not guaranteed with regular floating-
point operations due to the finite-precision of the operands. In

this case, a reversible integer-to-integer implementation is
needed, even if the hardware platform handles floating-point.

An additional restriction that is usually present in many
devices, such as digital cameras and PDAs, is the low amount
of RAM memory available in the system. This problem is not
very important in some transforms because they are applied in
small block sizes. Unfortunately, wavelet-based systems are
typically implemented by memory-intensive algorithms, with
higher execution time. In the usual DWT [7], the image is
transformed at every decomposition level first row by row and
then column by column, and hence it must be kept entirely in
memory. In [5], an interesting line-based approach to reduce
the amount of memory required to compute the wavelet
transform was introduced. However, In [5], the explanation of
a line-based strategy is given in an iterative way, and no
detailed algorithm is described. Some major problems arise
when the line-based DWT is implemented using an iterative
algorithm. In addition, the transform algorithm introduced in
[5] aims to provide a general-purpose wavelet transform.
Since an integer-to-integer implementation of the wavelet
transform is no longer linear, some new issues about the order
in which the DWT is computed need to be considered.

The rest of this paper is structured as follows. In Section 2,
there is a more detailed description of the lifting scheme,
focusing on a reversible implementation with integer data
types. Section 3 introduces the general line-based approach,
which is used as a starting point for Section 4, in which we
propose a recursive implementation of this approach for an
integer transform. Finally, in Section 5, some experimental
results are given.

II. THE REVERSIBLE INTEGER-TO-INTEGER
LIFTING SCHEME

A. Wavelet transform using the lifting scheme

As we mentioned in the previous section, the lifting scheme
implements an in-place DWT decomposition as an alternative
algorithm to the classical filtering algorithm. In the filtering
algorithm, in-place processing is not possible because each
input sample is required as incoming data for the computation
of its neighbor coefficients. Therefore, an extra array is needed
to store the resulting coefficients, doubling the memory
requirements. In addition, the lifting-scheme reduces the
number of operations needed to compute the DWT.

In Figure 1, we present a diagram to illustrate the general
lifting process. The whole process consists of a first lazy
transform, one or several prediction and update steps, and
coefficient normalization. In the lazy transform, the input

2890-7803-9314-7/05/$20.00©2005 IEEE

2005 IEEE International
Symposium on Signal Processing
and Information Technology

samples are split into two data sets, one with the even samples
and the other one with the odd ones. Thus, if we consider { }ix
the input samples, we define both coefficient sets as:

{ } { }ii xs 2
0 = { } { }12

0
+= ii xd

Then, in a prediction step (sometimes called dual lifting),
each sample in { }0

id is replaced by the error committed in the
prediction of that sample from the samples in { }0

is :
{ }()001

iii sPdd −=

while in an update step (also known as primal lifting), each
sample in the set { }0

is is updated by { }1
id as:

{ }()101
iii dUss +=

After m successive prediction and update steps, the final
low frequency coefficients (scaling { }iφ) and high frequency
coefficients (wavelet { }iψ) are achieved normalization:

{ } { }m
ii sK ×= 0φ { } { }m

ii dK ×= 1ψ

A nice feature of the lifting scheme is that it is formed by
very simple steps, and each of these steps is easily invertible,
which leads to an almost trivial inverse transform. For the
inverse transform, we only have to perform the inverse
operations in the reverse order. Hence, from the subsets { }iφ
and { }iψ , we can get { }m

is and { }m
id simply by dividing these

coefficients by the scaling factors:
{ } { } 0φ Ks i

m
i = { } { } 1ψ Kd i

m
i =

Then, an inverse update operation can be done from these
data sets as follows:

{ }()m
i

m
i

m
i dUss −=−1

and at this moment, we can apply the inverse prediction step:

{ }()11 −− += m
i

m
i

m
i sPdd

After m successive inverse update and prediction steps, we
get the initial sets of even and odd samples, we can interleave
these data sets to obtain the original set of samples { }ix .
B. Integer-to-integer transform

With the above scheme, floating-point arithmetic is needed
despite having integer input samples (e.g., image pixels), if the
weighting factors employed for the prediction/update
operations are floating-point and not integer or rational.

Actually, even if rational filters are employed, the precision
required to perform lossless operation with fixed-point
arithmetic grows with each mathematical operation if we do
not change the scheme described above.

Fortunately, the lifting scheme can be slightly modified to
achieve reversible integer-to-integer wavelet transform [3].
Since the lifting scheme is formed by several simple steps, the
whole process can be reversible if we perform each single step
in a reversible way.

For the forward transform, we have seen that each
prediction step has the form:

{ }()11 −− −= m
i

m
i

m
i sPdd

In a wavelet transform for integer implementation, the
prediction operation { }()1−m

isP involves rational weighting
factors (e.g., division by two), and hence the resulting data are
not integer. If a rounding operation is added after the
prediction operation, an integer variable can be used to store
the result of that operation, and hence each m

id can be
computed from 1−m

id and the { }1−m
is set using integer values as

follows:
{ }()⎣ ⎦11 −− −= m

i
m

i
m

i sPdd

In the inverse transform, the exact value of each 1−m
id can

be recovered from m
id and the { }1−m

is set as follows:
{ }()⎣ ⎦11 −− += m

i
m

i
m

i sPdd

Thereby, perfect reconstruction is guaranteed despite the
rounding operation. The same analysis can be performed for
an update operation with integer data type.

Although we have used the floor operator for rounding in
the above equations, any other rounding operation, such as
ceil or rounding to the nearest integer, can be used as long as
the same operator is employed in both the forward and inverse
transforms.

Finally, a reversible integer-to-integer transform can only
be obtained if the normalization factors K0 and K1 are integer
values.

A drawback of the use of rounding is that the new wavelet
transform is no longer linear. Hence, for a 2D wavelet
transform, the reverse column-row order of the forward
transform has to be used in the inverse transform to achieve
perfect reconstruction.
C. An implementation using the bi-orthogonal 5/3 transform

The 5/3 wavelet transform is a typical wavelet for integer-
to-integer transform, being part of the JPEG2000 standard for
lossless compression. In order to compute it in terms of the
lifting scheme, after the lazy transform, the dual lifting is
calculated as:

()⎥⎦
⎥

⎢⎣
⎢ +−= +

0
1

001

2
1

iiii ssdd

while the primal lifting is (notice the different rounding):
() ⎥⎦

⎥
⎢⎣
⎢ +++= − 2

1
4
1 1

1
101

iiii ddss

These operations can be easily performed with integer data
types and integer arithmetic. For example, in C language, the
two above equations can be efficiently computed as:

{si
0}

Lazy Transform

P1(z)
{xi}

{ }iφ

{ }iψ

U1(z) Pn(z) Un(z)

− −

+ +

× K1

× K0

{di
0}

{si
1} {si

m}

{di
1} {di

m}

Fig. 1: Diagram for a wavelet decomposition using the lifting scheme.

290

d1[i]=d0[i]-((s0[i]+s0[i+1])>>1);

s1[i]=s0[i]+((d1[i]+d1[i-1]+2)>>2);

Where d0, d1, s0 and s1 are arrays of integers, and
>> is the right shift operator in C (ba >> is equivalent to the
division of a by b2 with floor rounding).

For a lossless transform, the normalization factors K0 and
K1 are equal to 1, achieving (1,2) normalization in this case.
Thus, the set { }1

id is directly the final wavelet coefficient set,
and the set { }1

is is the scaling one.
The inverse transform to recover losslessly the original

samples is given by:
() ⎥⎦

⎥
⎢⎣
⎢ ++−= − 2

1
4
1 1

1
110

iiii ddss ()⎥⎦
⎥

⎢⎣
⎢ +−= +

0
1

010

2
1

iiii ssdd

Other reversible integer-to-integer wavelet transforms are
given in [2], including an integer version of the popular bi-
orthogonal 9/7 transform.

III. THE LINE-BASED APPROACH
For image wavelet transform (2D), the use of the lifting

scheme shows little benefit, since the entire image has to be
kept in memory. Therefore, it has to be applied along with
other strategies that allow us to avoid keeping the entire image
in memory. The line-based approach [5] can help us to
overcome this problem. In the line-based approach, for the
first decomposition level, we receive directly image lines, one
by one. On every input line, a one-level 1D DWT is applied.
Then, these lines are stored in a buffer associated to the first
decomposition level. When there are enough lines in the
buffer to calculate a line of each wavelet subband, we compute
them. Then, the wavelet subband lines can be processed and
released. However, the first line of the LL1 subband does not
belong to the final result, and is needed as incoming data for
the following decomposition level. In order to get more lines,
we have to update the buffer, filling it with more lines and
discarding those that are no longer needed. At the second
level, its buffer is filled with the LL1 lines that have been
computed in the first level. Once the buffer is completely
filled, it is processed as we have described for the first level.

As it is depicted in Figure 2, this process can be repeated until
the desired decomposition level (nlevel) is reached.

In [5], the description of a line-based strategy is given in an
iterative way, but no detailed algorithm is described. Some
major problems arise when the line-based DWT is
implemented using an iterative algorithm. The main drawback
is the synchronization among buffers. Before a buffer can
produce lines, it must be completely filled with lines from the
previous buffer, therefore they start working at different
moments, i.e., they have different delays. Moreover, all the
buffers exchange their result at different intervals, depending
on their level.

The time in which each line is passed to the following
buffer depends on several factors, such as the filter size, the
number of decomposition levels, the level and number of line
being computed and the image size. In a hardware
implementation, with a fixed image size and a constant
decomposition level, a pre-computed unit control can be
employed to establish the order of the computations in the
buffers for a given filter-bank. Thus, several hardware
implementations of this line-based strategy have been
proposed, and they can be found in the literature [1] [4] [6].
However, a general case of this algorithm cannot be easily
implemented in hardware or software due to the
synchronization problems exposed above.

In addition, the line-based algorithm described in [5] is
based on a filtering algorithm and not on the lifting scheme.
The advantage of the lifting scheme in a line-based algorithm
is not only the reduction in number of operations, but also the
reduction in number of lines that the buffers showed in Figure
2 need to keep.

Finally, another issue to consider for a reversible integer-to-
integer transform is the order of the inverse wavelet transform
with respect to the forward one. In the regular wavelet
transform, the entire image is available and then, it is easy to
compute the inverse transform in the reverse row-column
order that has been applied in the forward one. However, the
line-based approach changes the order of the wavelet
transform, and interleaves the horizontal and vertical DWT
computation.

In the next section, we propose a general recursive
algorithm that clearly specifies how to perform this
communication among buffers, solving the synchronization
problem in an automatic way by means of a recursive
definition. We will present this algorithm with a lifting-based
DWT, and we will tackle the problem of the correct order of
the horizontal and vertical DWT so as to preserve the
reversibility of the line-based approach.

IV. A RECURSIVE LINE-BASED IMPLEMENTATION FOR
INTEGER-TO-INTEGER DWT

In this section, we present a forward and inverse wavelet
transform algorithm (FWT and IWT) that solve the
synchronization problems that have been addressed in the
previous section. In order to overcome these drawbacks, both
algorithms are defined with a recursive function that obtains
the next low-frequency subband (LL) line from a contiguous
level. The wavelet transform is implemented with the lifting-

1st level buffer

2nd level
buffer

HL2

LH2

HH2

nlevel
buffer

LL1

LL2

LLnlevel …

width

width / 2

width / 2nlevel-1
width / 4

width / 2

input image lines (LL0)

HL1

LH1

HH1

Fig. 2: Overview of a line-based wavelet transform

291

scheme, which is faster and requires less memory than the
filtering algorithm. In addition, we will take the
considerations needed to allow a reversible integer-to-integer
decomposition. For the sake of simplicity, we will describe
this algorithm using the B5/3 wavelet transform, which is
probably the most widely used transform for integer
implementation; however, this algorithm is valid for any
integer wavelet transform.

A. Forward Wavelet Transform (FWT)
The main task of the FWT is carried out by a recursive

function that successively returns lines of a low frequency
(LLn) subband at a given level (n). Thus, the whole FWT is
computed by requesting LL lines at the last level (nlevel). As
seen in Figure 2, the nlevel buffer must be filled with lines
from the nlevel-1 level before it can generate lines. In order to
get them, the function calls itself in a backward recursion,
until the level zero is reached. At this point, it no longer needs
to call itself since it can return an image line, which can be
read directly from the input/output system. Notice that the

buffer must be able to keep the lines to be predicted and
updated in each step, and the lines from which these lines are
predicted/updated. In the case of a B5/3 DWT, there are two
prediction/update steps, and two additional lines are needed to
compute them (the contiguous lines), so the buffer height must
be four, as we will see later.

The function that implements this recursive algorithm is
called GetLLlineBwd() (see Algorithm 1). This function

function GetLLlineBwd(level L)
1) First base case:

If there are no more lines to return at this level
return EOL

2) Second base case:
If L = 0

return ReadImageLineIO()
3) Recursive case
3.1) If LB is empty

for 02K=i
=)(iBL 1DFWT(GetLLlineBwd(L−1))

3.2) else if no more lines can be read from L−1
SymmetricExtension(LB)

3.3) else
repeat twice

Shift(LB)

=)0(LB 1DFWT(GetLLlineBwd(L−1))

()⎥⎦
⎥

⎢⎣
⎢ +−=)2()0(
2
1)1()1(LLLL BBBB

() ⎥⎦
⎥

⎢⎣
⎢ +++=

2
1)3()1(

4
1)2()2(LLLL BBBB

{ }HLlineLLline, =)2(LB

{ }HHlineLHline, =)1(LB
Process the high freq. lines{ }HHlineLHlineHLline ,,
return LLline

end of fuction

Algorithm 1: Recursive B5/3 FWT computation

function LowMemUsageFWT_B53(nlevel)
set nlevelLemptyBL ∈∀=

repeat
LLline = GetLLlineBwd(nlevel)

if (LLline!=EOL) Process the low freq. line(LLline)
until LLline=EOL

end of function

function LowMemUsageIWT_B53(nlevel)
set nlevelLemptyBL ∈∀=
set nlevelLupdateBodd LL ∈∀== false
repeat
 imageLine = GetLLlineFwd(0)
 if (imageLine!=EOL) WriteImageLineIO(imageLine)
until imageLine =EOL

end of function

subfunction GetMergedLineFwd(L)

LL oddodd ¬=

if Lodd return { GetLLlineFwd(L) + DecodeHLline(L) }
else return { DecodeLHline(L) + DecodeHHline(L) }

end of subfunction

function GetLLlineFwd(level L)

LupdateB = LupdateB¬

1) First base case:
If there are no more lines to return at this level

return EOL
2) Second base case:

If L = nlevel
return DecodeLLline()

3) Recursive case
3.1) If LB is empty

for 01K=i
=)(iBL GetMergedLineFwd(L+1)

3.2) else if no more lines can be read from L+1 and LupdateB

SymmetricExtension(LB)

3.3) else if LupdateB

repeat twice
Shift(LB)

GetMergedLineFwd (L+1)
if LupdateB

() ⎥⎦
⎥

⎢⎣
⎢ ++−=

2
1)2()0(

4
1)1()1(LLLL BBBB

()⎥⎦
⎥

⎢⎣
⎢ ++=)3()1(
2
1)2()2(LLLL BBBB

return 1DIWT()2(LB)
else

return 1DIWT()1(LB)

end of function

Algorithm 2: Recursive B5/3 IWT computation

292

receives a decomposition level as a parameter, calculates a line
of each wavelet subband (LH, HL and HH) at that level, and
returns a line from the low-frequency (LL) subband at that
level. In order to get all the subband lines, the first time that
this function is called at a certain level, it computes the first
line of every subband at that level, the following time it
computes the second one, and so forth.

When this function is called for the first time at a level (L),
its buffer (represented by the variable LB in Algorithm 1) is
empty, and so it has to be recursively filled with lines from the
previous level (case 3.1). Once a line is input, it must be
transformed using a 1D DWT before inserting it into the
buffer. On the other hand, if the buffer is not empty, it simply
has to be updated by discarding two lines and introducing two
additional lines from the contiguous level. We do it by means
of a recursive call again (case 3.3). However, if there are no
more lines from the previous level, this recursive call returns
End Of Line (EOL) (case 3.2), in this case, if we need
additional lines we duplicate them from the lines in the buffer
using symmetric extension. In these three cases, once the
buffer is updated, we predict the line at the buffer position 1,
and then we update the line at the position 2. Notice that these
steps can only be computed if the lines at position 0 and 3 are
kept in the buffer. For this reason, the total buffer height must
be 4 and not 2. This way, we compute a subband line from LH
and HL (they are in the second line in the buffer), and from
HL and HH (the first line in the buffer). The wavelet lines are
processed and released depending on the application purpose
(e.g., compression), and the function returns an LL line.

Every recursive function needs at least one base case to
stop recursion. This function has two base cases. The first one
is reached when all the lines at this level have been read. In
this case, the function returns EOL. The second base case is
reached when the backward recursion gets the level zero, and
then no further recursive call is needed because an image line
is read and returned directly from the I/O system.

Once we have defined this recursive function, we can
compute the wavelet transform with nlevel decomposition
simply by using this function to compute the whole LLnlevel
subband, as the function LowMemUsageDWT_B53(nlevel)
does in Algorithm 1.

This algorithm can be implemented more easily because the
synchronization among buffers and the problem of different
buffer delays are solved directly with recursion, which
automatically sets the rhythm of the transformation steps.
B. Inverse Wavelet Transform (IWT)

The inverse DWT algorithm (IWT), which is described in
Algorithm 2, is similar to the forward one, but applied in
reverse order.

Since the recursive function goes forward, the second base
case is changed from the FWT to be reached when the
parameter level is equal to nlevel, and then a line from the
low-frequency subband LLnlevel is retrieved directly from I/O.

In the recursive case, there are mainly three changes with
respect to the FWT. The first modification is the introduction
of a new function, GetMergedLineFwd(level), which is used
to get buffer lines. This function alternatively returns the

concatenation of a line from the LL and HL subbands, or from
the LH and HH subbands, at a specified level. Contrary to the
lines from HL, LH and HH, which are retrieved directly from
I/O, the LL line is computed recursively from the following
level, and therefore this is the recursive point in the function.
The second difference is the introduction of a logical variable,

LupdateB , which defines whether the buffer needs to be
updated or not. In the IWT, two LL lines can be computed
once a buffer is full or updated. Therefore, this variable shows
if the buffer is updated, and if so, another line can be
computed without updating it. Finally, the third modification
aims to guarantee reversibility. Despite not having the whole
image in memory, we still can take a reversible approach. In
Algorithm 1, the forward transform is performed first
horizontally, when a line is input, and then vertically, by
applying one step of the wavelet transform. Thereby, for a
reversible transform, the order of the inverse transform has to
be changed. The horizontal 1-D IWT is not applied once a
compound line is read (in GetMergedLineFwd() function) and
introduced into the buffer, but it is delayed until the end of the
GetLLlineFwd() function (see Algorithm 2). This way, we
follow the correct order (i.e., horizontal FWT, vertical FWT,
vertical IWT, horizontal IWT) and the transform is fully
reversible.

A drawback that has not been considered yet is the need to
reverse the order of the subbands, from the FWT to the IWT.
The former starts generating lines from the first levels to the
last ones, while the latter needs to get lines from the last levels
before getting lines from the first ones. This problem can be
solved using some additional buffers at both ends to reverse
the coefficients order, so that data are supplied in the right
order [5]. Other simpler solutions are: to save every level in
secondary storage separately so that it can be read in a
different order and, if the WT is used for image compression,
to keep the compressed coefficients in memory.

V. EXPERIMENTAL RESULTS
In order to compare the regular wavelet transform and our

proposals, we have implemented them, using standard ANSI C
language on a regular PC computer with 256 KB L2 cache.
Moreover, the coefficients for the transform are implemented
as floating-point, integer and short integer values in order to
assess the effects of employing different data types.

Fig. 3: Execution time comparison (excluding I/O time) of various
implementations using float (with and without rounding), integer and short

integer coefficients, with the B5/3 transform and the lifting proposal.

0

50

100

150

200

250

300

350

400

450

500

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ex
ec

ut
io

n
tim

e
(M

illi
on

 o
f C

PU
 c

yc
le

s)

Megapixel

Float rounding
Float no rounding
Reversible integer

Reversible short integer

293

For these tests, we have used the standard Lena (512x512)
and Woman (2048x2560) images. With six decomposition
levels, the regular WT needs 1030 KB for Lena and 20510 KB
for Woman, while our proposal using 32-bit data types
requires 19 KB for Lena and 79 KB for Woman, i.e., it uses
54 and 260 times less memory. If short-integer data type is
employed, it requirements are reduced to 9 KB and 39 KB
respectively.

In addition, Table 1 shows that our proposal is much more
scalable than the usual DWT. In this table, we present the
amount of memory needed to apply the transform to images
ranging from low-resolution VGA to 20-Megapixel with
various data types.

TABLE I. MEMORY REQUIREMENT (KB) COMPARISON

Image size
(megapixel)

Regular WT
 (float and

integer)

Regular
WT (short

integer)

Proposed
lifting (float
and integer)

Proposed
lifting (short

integer)
20 (4096 x 5120) 81,980 40,990 158 79
16 (3712 x 4480) 65,013 32,506 143 71
12 (3200 x 3968) 49,647 24,823 123 62
8 (2560 x 3328) 33,319 16,659 98 49
5 (2048 x 2560) 20,510 10,255 79 39
4 (1856 x 2240) 16,266 8,133 71 36
3 (1600 x 1984) 12,423 6,211 61 31
2 (1280 x 1664) 8,340 4,170 49 24

1.2 (1024 x 1280) 5,125 2,562 39 19
VGA (512 x 640) 1,288 644 19 9

In Figure 4, we present an execution time comparison of

different data types using our proposal. The most noticeable
result in this graph is the high execution time of the floating-
point implementation that uses the floor operator, that is to
say, with rounding, due to the temporal complexity of this
operation. If we avoid using rounding (we can simply omit it
when the target variable of the operation is floating-point), the
execution time of the floating-point implementation is
significantly reduced, although being still above the
implementations with integer or short-integer coefficients.

Finally, in Figure 5, an execution time comparison between
the regular wavelet transform and our proposal is given for
different data types. Figure 5(b) (integer implementation) and
5(c) (floating-point without rounding) show that, while our
algorithms display linear behavior, the regular wavelet

transform approaches to an exponential curve. This behavior
is mainly due to the ability of our algorithms to fit in cache for
all the image sizes. On the contrary, the usual wavelet
transform rapidly exceeds the cache limits. In the short-integer
implementation, the lower memory usage of the regular
wavelet transform prevents the exponential behavior. In the
last graph, where floating-point arithmetic is used with floor
operations, the cost of rounding causes both the regular and
proposed transform to be highly complex.

VI. CONCLUSIONS
A new reversible integer-to-integer lifting algorithm has

been presented that solves the existing problems about
different delays and rhythm among buffers in the line-based
approach. It can be used as a part of compression algorithms,
like JPEG 2000, speeding up its execution time and reducing
its memory requirements compared with the usual DWT
algorithm.

REFERENCES
[1] T. Acharya, P. Tsai, JPEG 2000 Standard for Image Compression:
Concepts, Algorithms and VLSI Arquitectures, Chapter 5, Wiley, Oct 2005.

[2] M. Adams, F. Kossentini, Reversible Integer-to-Integer Wavelet
Transforms for Image Compression: Performance Evaluation and Analysis,
IEEE Transactions on Image Processing, vol. 9, pp. 1010-1024, June 2000.

[3] R. C. Calderbank, I. Daubechies, W. Sweldens, B. L. Yeo, Wavelet
transforms that map integers to integer, Journal of Applied Computational and
Harmonic Analysis, vol. 5, pp. 332-369, 1998.

[4] W. Chang, Y. Lee, W. Peng, C. Lee, A Line-Based, Memory Efficient and
Programmable Architecture for 2D DWT using Lifting Scheme, International
Symposium on Circuits and Systems (ISCAS), 2001.

[5] C. Chrysafis, A. Ortega, Line-based, reduced memory, wavelet image
compression, IEEE Trans. on Image Processing, vol. 9, March 2000.

 [6] G. Dillen, B. Georis, J. Legat, O. Cantineau, Combined Line-Based
Architecture for the 5-3 and 9-7 Wavelet Transform of JPEG 2000, IEEE
Trans. on Circuits and Systems for Video Technology, vol. 13, Sept 2003.

[7] S. Mallat, A Theory for Multiresolution Signal Decomposition, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 11, July 1989.

[8] W. Sweldens, The lifting scheme: a custom-design construction of
biorthogonal wavelets, Journal of Applied Computational and Harmonic
Analysis, vol. 3, pp. 186-200, 1996.

Fig. 4: Execution time comparison (excluding I/O time) of the regular wavelet transform and the lifting proposal, applying the B5/3 transform, with
(a) short-integer coefficients, (b) integer coefficients, (c) floating-point arithmetic without rounding, and (d) floating-point arithmetic with rounding.

0

500

1000

1500

2000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
x
e
c
u
ti
o
n
 t
im

e
 (

M
il
li
o
n
 o

f
C

P
U

 c
y
c
le

s
)

Megapixel

Regular reversible integer
Proposed reversible integer

0

500

1000

1500

2000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
x
e
c
u
ti
o
n
 t
im

e
 (

M
il
li
o
n
 o

f
C

P
U

 c
y
c
le

s
)

Megapixel

Regular float no rounding
Proposed float no rounding

(a) (b) (c) (d)
0

500

1000

1500

2000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
x
e
c
u
ti
o
n
 t
im

e
 (

M
il
li
o
n
 o

f
C

P
U

 c
y
c
le

s
)

Megapixel

Regular float rounding
Proposed float rounding

0

500

1000

1500

2000

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E
x
e
c
u
ti
o
n
 t
im

e
 (

M
il
li
o
n
 o

f
C

P
U

 c
y
c
le

s
)

Megapixel

Regular reversible short integer
Proposed reversible short integer

294

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

