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Abstract. The 3D-DWT is a mathematical tool of increasing impor-
tance in those applications that require an efficient processing of volu-
metric info. However, the huge memory requirement of the algorithms
that compute it is one of the main drawbacks in practical implemen-
tations. In this paper, we introduce a fast frame-based 3D-DWT video
encoder with low memory usage, based on lower-trees. In this scheme,
there is no need to divide the input video sequence into group of pic-
tures (GOP), and it can be applied in a continuous manner, so that no
boundary effects between GOPs appear.
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1 Introduction

In recent years, three-dimensional wavelet transform (3D-DWT) has focused
the attention of the research community, most of all in areas such as video
watermarking [1] and 3D coding (e.g., compression of volumetric data [2] or
multispectral images [3], 3D model coding [4], and especially, video coding).

In video compression, some early proposals were based on merely applying
the wavelet transform on the time axis after computing the 2D-DWT for each
frame [5]. Then, an adapted version of an image encoder can be used, taking into
account the new dimension. For instance, the two dimensional (2D) embedded
zero-tree (IEZW) method has been extended to 3D IEZW for video coding by
Chen and Pearlman[6], and showed promise of an effective and computationally
simple video coding system without motion compensation, and obtained excel-
lent numerical and visual results. A 3D zero-tree coding through modified EZW
has also been used with good results in compression of volumetric images[7]. In
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[5], instead of the typical quad-trees of image coding, a tree with eight descen-
dants per coefficient is used to extend the SPIHT image encoder to 3D video
coding. A more efficient strategy for video coding with time filtering is Motion
Compensated Temporal Filtering (MCTF) [8, 9]. In these techniques, in order to
compensate object (or pixel) misalignment between frames, and hence avoid the
significant amount of energy that appears in high-frequency subbands, a motion
compensation algorithm is introduced to align all the objects (or pixels) in the
frames before being temporally filtered.

In all these applications, the first problem that arises is the extremely high
memory consumption of the 3D wavelet transform if the regular algorithm is
used, since a group of frames must be kept in memory before applying temporal
filtering, and in the case of video coding, we know that the greater temporal
decorrelation, the greater number of frames are needed in memory. Another
drawback is the necessity of grouping images in small Group Of Pictures (GOP)
to prevent very high memory usage, because the 3D-DWT must be computed
along a set of images which are held in memory. This video sequence division into
GOPs containing only a few images hinders the decorrelation of the temporal
dimension and causes boundary effects between GOPs.

Even though several proposals have been made to avoid the aforementioned
problems, most of them are not general (for any wavelet transform) and/or
complete (the wavelet coefficients are not the same as those from the usual dyadic
wavelet transform). In addition, software implementation is not always easy. In
this paper, we propose a video encoder based on a frame-by-frame 3D-DWT
scheme which does not require a GOP division, significantly reduces the memory
usage and performs the 3D-DWT much faster than traditional algorithms.

2 3D-DWT with low memory usage

In this section we propose an extension to a three-dimensional wavelet transform
of the classical line-based approach [10], which computes the 2D-DWT with re-
duced memory consumption. In the new approach, frames are continuously input
with no need to divide the video sequence into GOPs. Moreover, the algorithm
yields slices of wavelet subbands (which we call subband frames) as soon as it
has enough frames to compute them. This approach works as follows:

The algorithm starts requesting LLL frames to the last level (nlevel). As seen
in Fig. 1, the nlevel buffer must be filled with subband frames from the nlevel -1
level before it can generate frames. In order to get them, this function recursively
calls itself until level 0 is reached. At this point, it no longer needs to call itself
since it can return a frame from the video sequence, which can be directly read
from the input/output system.

The first time that the recursive function is called at every level, it has its
buffer (bufferlevel) empty. Then, its upper half (from N to 2N) is recursively
filled with frames from the previous level. Recall that once a frame is received,
it must be transformed using a 2D-DWT before being stored. Once the upper
half is full, the lower half is filled by using symmetric extension. On the other



3D Lower Tree wavele encoder 3

LLL1

LLH1, LHL1, LHH1, HLL1,

HLH1, HHL1, HHH1,

LLL2

LLH2, LHL2,

LHH2, HLL2,

HLH2, HHL2,

HHH2

(a) (b) 

Fig. 1. Overview of the 3D-DWT computation in a two-level decomposition, (a) follow-
ing a frame-by-frame scheme as shown in Fig. 2; or, (b) the regular 3D-DWT algorithm

hand, if the buffer is not empty, it simply has to be updated. In order to update
it, it is shifted one position so that the frame contained in the first position is
discarded and a new frame can be introduced in the last position (2N) by using
a recursive call. This operation is repeated twice.

function LowMemUsage3D FWT(nlevel)
set FramesReadlevel = 0 ∀level ∈ nlevel

set FramesLineslevel = Nframes

2level
∀level ∈ nlevel

set bufferlevel = empty ∀level ∈ nlevel

repeat

LLL = GetLLLframe(nlevel)
if (LLL != EOF) ProcessLowFreqSubFrame(LLL)

until LLL = EOF
end of fuction

Fig. 2. Perform the 3DFWT by calling GetLLLFrame recursive function

However, if there are no more frames in the previous level, this recursive call
will return End Of Frame (EOF). That points out that we are about to finish
the computation at this level, but we still need to continue filling the buffer. We
fill it by using symmetric extension again.

Once the buffer is filled or updated, both high-pass and low-pass filter banks
are applied to the frames in the buffer. As a result of the convolution, we get a
frame of every wavelet subband at this level (HHLlevel, HLHlevel, HHHlevel,
HLLlevel, LHLlevel, LLHlevel and LHHlevel), and an LLL frame. The high-
frequency coefficients are compressed and this function returns the LLL frame
(see Fig. 3).

The inverse DWT algorithm is similar to the forward DWT, but applied in
reverse order. The decoding process begins immediately by filling up the highest-
level buffer (nlevel) with the information received from the bit-stream. During
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this process, other information from the bit-stream is ignored. Afterwards, once
this buffer is full, we also begin to accept information from the previous level,
and so forth, until all the buffers are full. At that moment, the video can be
sequentially decoded as usual. The latency of this process is deterministic and
depends on the filter length and the number of decomposition levels (the higher
they are, the higher latency). However, for the regular 3D algorithm, the latency
depends on the remaining number of frames in the current group when the
process begins, and the GOP size.

function GetLLLFrame (level)
1) First base case: No more frames to read at this level

if FramesReadlevel = MaxFrameslevel

return EOF
2) Second base case: The current level belongs
to the space domain and not to the wavelet domain

else if level = 0
return InputFrame()

else

3) Recursive case
3.1) Recursively fill or update the buffer for this level

if bufferlevel is empty
for i = N . . . 2N

bufferlevel(i) = 2DFWT (GetLLframe(level − 1))
FullSymmetricExtension(bufferlevel)

else

repeat twice
Shift(bufferlevel)
frame = GetLLLframe(level − 1)
if frame = EOF

bufferlevel(2N) = SymmetricExt(bufferlevel)
else

bufferlevel(2N) = 2DFWT(frame)
3.2) Calculate the WT for the time direction from the frames
in buffer, then process the resulting high frequency subband frames

{LLL, LLH, LHL, LHH} =Z-axis FWT LowPass(bufferlevel)
{HLL, HLH, HHL, HHH} =Z-axis FWT HighPass(bufferlevel)
ProcessSubFrames({LLH, LHL, LHH, HLL, HLH, HHL, HHH})
set FramesReadlevel=FramesReadlevel + 1
return LLL

end of fuction

Fig. 3. GetLLLFrame Recursive function

A drawback that has not been considered yet is the need to reverse the order
of the subbands, from the forward DWT to the inverse one. This problem can be
solved by using some buffers at both ends, so that data are supplied in the right
order [10]. Other simpler solutions are to save every level in secondary storage
separately so that it can be read in a different order or to keep the compressed
bit-stream in memory if the 3D-DWT is used for compression.

3 Lower Tree Wavelet Encoder (LTW)

Since the proposed video coder is based on the LTW image coding algorithm [11]
the basic principles of LTW will be described briefly in this section. In LTW,
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the quantization process is performed by two strategies: one coarser and another
finer. The finer one consists in applying a scalar uniform quantization, Q, to
wavelet coefficients. The coarser one is based on removing the least significant
bit planes, rplanes, from wavelet coefficients.

A tree structure (similar to that of [12]) is used not only to reduce data
redundancy among subbands, but also as a simple and fast way of grouping
coefficients. As a consequence, the total number of symbols needed to encode
the image is reduced, decreasing the overall execution time. This structure is
called lower tree, and it is a coefficient tree in which all its coefficients are lower
than 2rplanes.

The algorithm consists of two stages. In the first one, the significance map is
built after quantizing the wavelet coefficients (by means of both Q and rplanes

parameters). The symbol set employed in the LTW altorithm is the following one:
a LOWER symbol represents a coefficient that is the root of a lowertree, the rest
of coefficients in a lower-tree are labeled as LOWER COMPONENT, but they
are never encoded because they are already represented by the root coefficient. If
a coefficient is insignificant but it does not belong to a lower-tree because it has at
least one significant descendant, it is labeled as an ISOLATED LOWER symbol.
For a significant coefficient, we simply use a symbol indicating the number of
bits needed to represent it.

Let us describe the coding algorithm. In the first stage (symbol computation),
all wavelet subbands are scanned in 2x2 blocks of coefficients, from the first
decomposition level to the N th (to be able to build the lower-trees from leaves
to root). In the first level subband, if the four coefficients in each 2x2 block
are insignificant (i.e., lower than 2rplanes), they are considered to be part of
the same lower-tree, labeled as LOWER COMPONENT. Then, when scanning
upper level subbands, if a 2x2 block has four insignificant coefficients, and all
their direct descendants are LOWER COMPONENT, the coefficients in that
block are labeled as LOWER COMPONENT, increasing the lower-tree size.

However, when at least one coefficient in the block is significant, the lower-
tree cannot continue growing. In that case, a symbol for each coefficient is
computed one by one. Each insignificant coefficient in the block is assigned a
LOWER symbol if all its descendants are LOWER COMPONENT, otherwise it
is assigned an ISOLATED LOWER symbol. On the other hand, for each signifi-
cant coefficient, a symbol indicating the number of bits needed to represent that
coefficient is employed.

Finally, in the second stage, subbands are encoded from the LLN subband
to the first-level wavelet subbands. Observe that this is the order in which the
decoder needs to know the symbols, so that lower-tree roots are decoded before
its leaves. In each subband, for each 2x2 block, the symbols computed in the
first stage are entropy coded by means of an arithmetic encoder. Recall that no
LOWER COMPONENT is encoded. In addition, significant bits and sign are
needed for each significant coefficient and therefore binary encoded.
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4 3D LTW

This section introduces the extension of the concept of LTW still image coding
to 3D video coding. Our main concern is to keep the same simplicity of the 2D
LTW, still giving high performance and low memory requirements.

However, some changes must be done in the LTW algorithm so that it can
be incorporated in this efficient wavelet transform. The main changes are:

– Global knowledge of the video frame is no longer available, and therefore an
estimation of the highest coefficient that may appear should be made, mainly
depending on the type of wavelet normalization and the pixel resolution of
the source video (in bpp). Finally, to ensure the correctness of the encoder,
an escape code should be used for values outside the predicted range.

– Since coefficients from different subband levels are interleaved (due to the
computation order of the proposed wavelet transform), instead of a single
bitstream, we should generate a different bitstream for every subband level.
These bitstreams can be held in memory or saved in secondary storage, and
are employed to form the final ordered bitstream.

– Now, the root of a tree has eight descendants, instead of the four descendants
in the 2D-LTW.

N level
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Fig. 4. Overview of the proposed tree-based encoder with efficient use of memory

Fig. 4 shows our overall system. A binary significance map (that will be
described later) is needed at each level. In this scheme, when the 3D-DWT
releases subband frames, they are inserted into an encoder buffer, which is passed
to the tree-based encoder once it is full. The encoder buffer have to store two
subband frames for each subband type.

An important difference between this version and the LTW presented previ-
ously is that the new adapted encoder must process coefficients in only one-pass,
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and therefore symbols must be computed and output at once. However, in this
case, it is not an important drawback because the order of the wavelet coefficients
is later arranged for the decoder with an independent bitstream generation at
each level.

The adapted encoding algorithm is formally described in Fig. 5. Let us see it
with some detail. The encoder has to determine if each 2x2 block of coefficients
of both subband frames stored in the encoding buffer is part of a lower-tree. If
the eight coefficients in these blocks are lower than the quantization threshold
2rplanes, and their descendant offspring are also insignificant, they are part of a
lower-tree and do not need to be encoded. In order to know if their offspring are
significant, we need to hold a binary significance map of every encoder buffer (SL

in the figure) because the encoder buffer is overwritten by the wavelet transform
once it is encoded, and hence the significance for their ascendant coefficients
is not automatically held. Obviously, this significance map was not needed in
the original LTW because the whole image was available for the encoder. The
width of each significance map is sized eigth the size of the encoder buffer that it
represents, since the significance is held for both 2x2 block. The significance of
both 2x2 blocks can be held with a single bit. Therefore, the memory required
for these significance maps is almost negligible when compared with the rest of
buffers.

As in original LTW encoder, when there is a significant coefficient in both
2x2 block or in its descendant coefficients, we need to encode each coefficient
separately. Recall that in this case, if a coefficient and all its descendants are
insignificant, we use the LOWER symbol to encode the entire tree, but if it is
insignificant, and the significance map of its eight direct descendant coefficients
shows that it has a significant descendant, the coefficient is encoded as ISO-

LATED LOWER. Finally, when a coefficient is significant, it is encoded with a
numeric symbol along with its significant bits and sign.

At the last level (N), the tree cannot be propagated upward, and for this
reason, we always encode all the coefficients at this level. Moreover, we can keep
the compressed bit-stream in memory, which allows us to invert the order of the
bitstream for the inverse procedure.

5 Results

In this section we analyze the behavior of the proposed encoder (3D-LTW).
We will compare the 3D-LTW encoder versus the fast M-LTW Intra video en-
coder[13], 3D-SPIHT [14] and H.264 (JM16.1 version), in terms of R/D perfor-
mance, coding and decoding delay and memory requirements. All the evaluated
encoders have been tested on an Intel PentiumM Dual Core 3.0 GHz with 1
Gbyte RAM memory.

In Table 1, the memory requirements of different encoders under test are
shown. Obviously, the M-LTW encoder only uses the memory needed to store
one frame. The 3D-LTW encoder (using Daubechies 9/7F filter for both spatial
and temporal filtering) uses up to 3.4 times less memory than 3D-SPIHT for
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function SubbandCode( level , Buffer, Slevel−1, Slevel )
Scan Buffer in 2x2 blocks (Bx,y) in horizontal raster order
for each block Bx,y = {c2x,2y, c2x+1,2y, c2x,2y+1, c2x+1,2y+1}

if level 6= N ∧
(

ci,j < 2rplanes ∧ S
level−1
i,j

isInsignif.∀ci,j ∈ Bx,y

)

set Slevel
x,y = Insignif.

else

set Slevel
x,y = Signif.

for each ci,j ∈ Bx,y

if

∣

∣

∣
ci,j < 2rplanes

∣

∣

∣

if S
level−1
i,j

isInsignif.

arithmetic output LOWER
else

arithmetic output ISOLATED LOWER
else

nbitsi,j = ⌈log2 (|Ci,j |)⌉

if S
level−1
i,j

isInsignif.

arithmetic output nbitsLOW ER
i,j

else

arithmetic output nbitsi,j

output bitnbits(i,j)−1 (|Ci,j |). . . bitrplane+1 (|Ci,j |)

output sign(ci,j)
endif

endif

end of fuction

Note: bitn (C) is a function that returns the nth bit of C

Fig. 5. Lower tree wavelet coding with reduced memory usage
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Fig. 7. Execution time comparison of the encoding process
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Codec/Format H.264 3D-SPIHT 3D-LTW M-LTW
QCIF 35824 10152 4008 1104
CIF 86272 34504 10644 1540

Table 1. Memory requirements for evaluated encoders (KB) (results obtained with
Windows XP task manager, peak memory usage index)

CIF sequence size and up to 9 times less memory than H.264 for QCIF sequence
size.

Regarding R/D, in Fig. 6 we can see the R/D behavior of all evaluated
encoders. As shown, H.264 is the one that obtains the best results, mainly due
to the motion estimation/motion compensation (ME/MC) stage included in this
encoder, contrary to 3D-SPIHT and 3D-LTW that do not include any ME/MC
stage. It is interesting to see the improvement of 3D-SPIHT and 3D-LTW when
compared to an INTRA video encoder. As mentioned, no ME stage is included in
3D-SPIHT and 3D-LTW, so this improvement is accomplished by exploiting only
the temporal redundancy among video frames. The R/D behavior of 3D-SPIHT
and 3D-LTW is similar for images with moderate-high motion activity, with a
better behavior of 3D-LTW than 3D-SPIHT (up to 0.5 dB), but for sequences
with low movement, 3D-SPIHT outperforms 3D-LTW, mainly due to the further
dyadic decompositions applied in the temporal high frequency.

Regarding coding delay, in Fig. 7 we can see that the 3D-LTW encoder is the
fastest one, being up to 10 times faster than 3D-SPIHT for QCIF size sequences,
3.5 times faster than the M-LTW INTRA video encoder and up to 3800 times
faster than H.264. The decoding process is also faster in 3D-LTW than in the
other encoders.

6 Conclusions

In this paper a fast and very low memory demanding 3D-DWT encoder has been
presented. The new encoder reduces the memory requirements compared with
3D-SPIHT (3.5 times less memory) and H.264 (up to 10 times less memory). The
new 3D-DWT encoder is very fast (up to 10 times faster than 3D-SPIHT) and
it has better R/D behavior than the INTRA video coder M-LTW (up to 11 dB).
In order to improve the coding efficiency, an ME/MC stage could be added. In
this manner, the objects/pixels of the input video sequence will be aligned, and
so, fewer frequencies would appear at the higher frequency subbands, improving
the compression performance.
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