Noname manuscript No.
(will be inserted by the editor)

Multicore-based 3D-DWT Video Encoder

Vicente Galiano - Otoniel
Lépez-Granado - Manuel P. Malumbres -
Hector Migallén

Received: date / Accepted: date

Abstract Three-dimensional wavelet transform (3D-DWT) encoders are good
candidates for applications like professional video editing, video surveillance,
multi-spectral satellite imaging, etc., where a frame must be reconstructed as
quickly as possible. In this paper we present a new 3D-DWT video encoder
based on a fast run-length coding engine. Furthermore, we present several
multicore optimizations to speed-up the 3D-DWT computation. An exhaus-
tive evaluation of the proposed encoder (3D-GOP-RL) has been performed and
we have compared the evaluation results with other video encoders in terms
of Rate/Distortion (R/D), coding/decoding delay and memory consumption.
Results show that the proposed encoder obtains good R/D results for high
resolution video sequences with nearly in-place computation using only the
memory needed to store a group of pictures. After applying the multicore
optimization strategies over the 3D-DWT the proposed encoder is able to
compress a Full-HD video sequence in real-time.

Keywords 3D-DWT - video coding - multicore - wavelets - performance

1 Introduction

Currently, most of the popular video compression technologies operate in both
Intra and Inter coding modes. Intra mode compression operates in a frame-by-
frame basis, while Inter mode achieves compression applying motion estima-

This research was supported by the Spanish Ministry of Education and Science under grant
TIN2011-27543-C03-03 and the Spanish Ministry of Science and Innovation under grant
number TIN2011-26254 and TEC2010-11776-E.

V. Galiano, O. Lépez-Granado, M.P. Malumbres, H. Migall6n
Physics and Computer Architecture Department

Miguel Herndndez University. Elche, Spain 03202

Tel.: +34-966658392

E-mail: {vgaliano,otoniel,mels,hmigallon }@umbh.es

2 Vicente Galiano et al.

tion and compensation between frames, taking advantage of the temporal cor-
relation between frames. Inter mode compression is able to achieve increased
coding efficiency over Intra mode schemes. However, at video content produc-
tion stages, digital video processing applications require fast frame random
access to perform an undefined number of real-time decompressing-editing-
compressing interactive operations, without a significant loss of original video
content quality. Intra-frame coding is desirable as well in many other appli-
cations like video archiving, high-quality high-resolution medical and satellite
video sequences, applications requiring simple real-time encoding like video-
conference systems or even for professional or home video surveillance systems
[17] and Digital Video Recording systems (DVR), where the user equipment
is usually not as powerful as the head end equipment.

There is another video encoding approach that may be also considered as an
Inter coding approach but without the use of motion estimation/compensation.
In this approach, known as 3D coding, a video sequence is considered as a three
dimensional data set where each pixel has two spatial and one temporal co-
ordinates. Most of the 3D encoders proposed in the literature are based on
the 3D-DWT transform, mainly used in watermarking [4] and video coding
applications (e.g., compression of volumetric medical data [18], multispectral
images [6] or 3D model coding [3]). So, 3D-DWT based encoders could be an
intermediate approximation between Intra and Inter coding modes, because
it avoids motion estimation and compensation and the decoding latency will
depend on the GOP size.

For example, Taubman and Zakhor presented a full color video coder based
on 3-D subband coding with camera pan compensation [21]. Podilchuk, et
al., utilized 3-D spatio-temporal subband decomposition and geometric vector
quantization (GVQ) [16]. Chen and Pearlman [5] extended to 3D IEZW for
video coding the two dimensional (2D) embedded zero-tree (EZW) method [19]
and showed promise of an effective and computationally simple video coding
system without motion compensation, obtaining excellent numerical and visual
results. In [12], instead of the typical quad-trees of image coding, a tree with
eight descendants per coefficient is used to extend SPIHT image encoder to 3D
video coding. In [15] a fast SPTHT version is presented using a Huffman based
entropy encoder instead of a context-adaptive arithmetic encoder. However,
the proposed image encoder has not been extended to the 3D version. Also
in [22] an extension of the fast BCWT image encoder [8] is presented reporting
a coding speed of 32 frames per second for a CIF resolution video sequence.
The BCWT image encoder offers high coding speed, low memory usage and a
similar R/D performance than SPTHT encoder. The key of BCWT encoder is
its unique one-pass backward coding, which starts from the lowest level sub-
bands and travels backwards. MQD map calculation and coefficient encoding
are all carefully integrated inside this pass in such a way that there is as
little redundancy as possible for computation and memory usage. A 3D zero-
tree coding through modified EZW has also been used with good results in
compression of volumetric images [13].

Multicore-based 3D-DWT Video Encoder 3

In this work, we present a fast 3D-DWT based encoder with a run-length
core coding system. The proposed encoder requires less memory than 3D-
SPIHT [12] and has a good R/D behavior. Furthermore, we present an in-
depth analysis of the use of multicore strategies to accelerate the 3D-DWT
transform. Using these strategies, the proposed encoder is able to compress a
Full-HD video sequence in real time.

The rest of the paper is organized as follows. Section 2 presents the pro-
posed 3D-DWT based encoder. In Section 3 a performance evaluation in terms
of R/D, memory requirements and coding time is presented. Section 4 describes
several optimization proposals based on multicore processing strategies applied
to the 3D-DWT computation, while in Section 4.2 we analyze their perfor-
mance. Furthermore, in Section 4.3 we present a pipeline strategy to speed up
the proposed encoder. Finally, in Section 5 we show the performance of the
improved proposed encoder against other state-of-the-art encoders, while in
Section 6 some conclusions are drawn.

2 Encoding system

In this section we present a 3D-DWT based encoder with low complexity and
good R/D performance. As our main concern is fast encoding process, no R/D
optimization, motion estimation/motion compensation (ME/MC) or bitplane
processing is applied. This encoder is based on both 3D-DWT and run-length
encoding (3D-GOP-RL) and it is able to compress an ITU-D1 (576p30) video
sequence at 40 frames per second.

In Fig. 1 the whole encoding system scheme is shown. First of all, the 3D-
DWT is applied to a GOP in such a way that a combination of a 2D spatial
DWT and a 1D temporal DWT is applied and the temporal DWT absorbs
motion in the GOP. The temporal DWT is carried out on the pixel values
of the same location along the time axis. Our 3D-DWT implementation, as
3D-SPIHT and 3D-BCWT does, uses Daubechies 9/7F filter for both spatial
and temporal domain because this filter has shown good results for losssy
compression [20].

After that, all wavelet coefficients are quantized and then, subband frames
are passed from the lowest frequency subband LLL,, to the highest frequency
subband H H H; to the run-length encoding system which compresses the input
data and we obtain the final bit-stream corresponding to that GOP. As in 3D-
BCWT encoder [22] only one pass is applied over the GOP to encode the
coefficients, but contrary to 3D-BCWT encoder, the compressed bit-stream
generated by our encoder is ordered in such a way that the decoder obtains
the bit-stream in the correct order.

2.1 Fast run-length coding

In the proposed encoder, the quantization process is performed by two strate-
gies: one coarser and another finer. The finer one consists on applying a scalar

4 Vicente Galiano et al.

o
c
S
o
Q =4
9 a
- s
g g
o —> 3 3 Subband bitstream
o o > (from LLL, to HHH,)| ™)
w w
o c
g &
E QO
- 2
m
=]
a
o
%
©
=
Video Frames (GOP) Final Bitstream
(INPUT) (OUTPUT)

Fig. 1 Overview of the proposed Run Length-based encoder

uniform quantization to the wavelet coefficients using the @ parameter. The
coarser one is based on removing bit planes from the least significant part of
the wavelet coefficients. We define rplanes as the number of less significant
bits to be removed, and we call significant coefficient to those coeflicients c;_;
that are different to zero after discarding the least significant rplanes bits, in
other words, if ¢; ; > grplanes,

In the proposed coding algorithm, the wavelet coefficients are encoded as
follows. The quantized coefficients in the subband buffer are scanned row by
row (to exploit their locality). For each coefficient in that buffer, if it is not
significant, a run-length count of insignificant symbols at this level is increased
(run_lengthy,). However, if it is significant, we encode both the count of pre-
vious insignificant symbols and the significant coefficient, and run_lengthy, is
reset.

A significant coefficient is encoded by means of a symbol indicating the
number of bits required to represent that coefficient. An arithmetic encoder
with two contexts is used to efficiently store that symbol. As coefficients in
the same subband have similar magnitude, an adaptive arithmetic encoder
is able to represent this information in a very efficient way. After that, the
significant bits and sign of the wavelet coefficient are raw encoded to speed up
the execution time.

In order to encode the count of insignificant symbols, we use a RUN sym-
bol. After encoding this symbol, the run-length count (run_lengthy) is stored
in a similar way as in the case of significant coefficients. First, the number of
bits needed to encode the run value is arithmetically encoded (with a different
context), afterwards the bits are raw encoded.

Instead of using run-length count symbols, we could have used a single
symbol to encode each insignificant coefficient. However, we would need to en-

Multicore-based 3D-DWT Video Encoder 5

code a larger amount of symbols, and therefore the complexity of the algorithm
would increase (most of all in the case of large number of insignificant contigu-
ous symbols, which usually occurs in moderate to high compression ratios).
However, the compression performance is increased if a specific symbol is used
for every insignificant coefficient, since an arithmetic encoder processes more
efficiently many likely symbols than a lower amount of less likely symbols.
So, for short run-lengths, we encode a LOWER symbol for each insignificant
coefficient instead of coding a run-length count symbol for all the sequence.
The threshold to enter the run-length mode and start using run-length count
symbols is defined by the enter_run_mode parameter. The formal description
of the depicted algorithm can be found in Algorithm 1.

Algorithm 1 Run-length coding of the wavelet coefficients

function RLW_Code_Subband(Buffer, L)
Scan Buffer in horizontal raster order
for each C; ; in Buffer
nbits; ; = [loga (Ci ;)]
if nbits; ; < rplanes
increase run_lengthy,
else
if run_lengthy < enter_run_-mode
repeat run_lengthy, times
arithmetic_output LOWER
else
arithmetic_output RUN
rbits = [loga (run_lengthr,)]
arithmetic_output rbits
output bitnbitsud)fl (|CZ,J|) o bit'rplane«l»l (‘C’L,]|)
output sign(c; ;)
end of function
Note: bity, (C) is a function that returns the n' bit of C

3 Performance evaluation

In this section we will compare the performance of our proposed encoder (3D-
GOP-RL) using Daubechies 9/7F filter for both spatial and temporal domain
and a GOP size of 16 with the video encoders presented in Table 1.

Parameters/ GOP Sequence Profile
Codec size Type
3D-SPIHAT [11] 6 1 -
H.264 (JM16.1 version) [2] 15 IBBPBBP... high profile
H.263 [10] (ffmpeg-r25117) 15 IPPPPP... -

(No B frames supported in this version)
MPEG-2 (ffmpeg-r25117) 15 IBBPBBP... -
MPEG-4 Part 2 (ffmpeg-r25117) 15 IBBPBBP... -
x264 (mingw32-1libx264 r1713-1) [9] 15 IBBPBBP... high quality preset
x264 Intra (mingw32-1ibx264 r1713-1) [9] |- III1L. .. high quality preset

Table 1 Evaluated encoders. Configuration parameters

6 Vicente Galiano et al.

The performance metrics employed in the tests are R/D performance, cod-
ing and decoding delay and memory requirements. All the evaluated encoders
have been tested on an Intel PentiumM Dual Core 3.0 GHz with 2 Gbyte RAM
memory.

The test video sequences used in the evaluation are: Foreman (QCIF and
CIF) 300 frames, Container (QCIF and CIF) 300 frames, News (QCIF and
CIF) 300 frames, Hall (QCIF and CIF) 300 frames, Mobile (ITU D1 576p30)
40 frames, Station2 (HD 1024p25) 312 frames, Ducks (HD 1024p50) 130 frames
and Ducks (SHD 2048p50) 130 frames.

It is important to remark that the H.263, MPEG-2, MPEG-4 and x264
evaluated implementations are fully optimized, using CPU capabilities like
Multimedia Extensions (MMX2, SSE2Fast, SSSE3, etc.) and multithreading,
whereas 3D-SPIHT and 3D-GOP-RL are non optimized C++ implementa-
tions.

3.1 Memory requirements

In Table 2, the memory requirements of different encoders under test are
shown. Obviously, H.263 encoder only using P frames, requires to keep in mem-
ory just 2 frames to accomplish the ME/MC stage, whereas encoders based
on 3D-DWT like 3D-SPIHT and 3D-GOP-RL need to keep more frames in
memory to apply the time filter. The 3D-GOP-RL encoder running over a
GOP size of 16 frames uses up to 6 times less memory than 3D-SPIHT, up to
22 times less memory than H.264 for QCIF sequence resolution and up to 6
times less memory than x264 which is an optimized implementation of H.264,
for small sequence resolutions. It is important to remark that 3D-SPTHT keeps
the compressed bit-stream of a 16 GOP size in memory until the whole com-
pression is performed, while encoders like MPEG-2;, MPEG-4, H.263, H.264,
3D-GOP-RL and x264 output the bit-stream inline. Block based encoders like
MPEG-2 and MPEG-4 require less memory than the others encoders, specially
at high definition sequences. Also, the memory requirements in the proposed
encoder (3D-GOP-RL) are doubled as the GOP size is doubled.

Format/ QCIF CIF ITU-D1 Full-HD

Codec
H264 35824 86272 227620 489960
x264 10752 18076 36600 178940
MPEG-2 4696 6620 9164 32820
MPEG-4 5160 6868 9324 31192

3D-GOP-RL| 1611 6390 20576 123072
3D-SPIHT | 10152 34504 118460 645720

Table 2 Memory requirements for evaluated encoders (KB)

Multicore-based 3D-DWT Video Encoder 7

Codec/Bit-rate | H264 x264 x264 MPEG-2 MPEG-4 H.263 3D 3D
Kbps/dB Intra SPIHT GOP-RL
Foreman (CIF)
3040 45.46 45.32 39.95 40.74 41.38 40.41 40.32 41.05
1520 42.28 41.74 35.29 37.10 37.90 36.38 36.42 36.48
760 39.75 38.61 31.43 34.09 35.15 35.15 33.35 33.01
380 36.85 35.29 28.15 31.59 32.81 29.86 30.78 30.41
190 34.14 31.75 25.07 29.32 30.53 28.45 28.53 28.36
Container (CIF)
3040 47.64 47.16 37.97 43.59 42.70 40.41 47.82 45.88
1520 43.69 43.36 33.04 40.43 41.41 36.38 43.99 40.57
760 42.00 39.85 29.22 37.19 38.44 35.15 39.54 35.54
380 38.46 36.38 25.88 34.48 36.01 29.86 35.20 31.66
190 35.40 33.00 23.27 32.05 33.85 28.45 31.10 28.75
Hall (CIF)
3040 45.76 44.38 41.19 42.29 42.77 42.56 44.68 44.49
1520 42.68 41.17 36.60 39.89 40.71 40.24 42.27 41.03
760 40.05 39.09 31.89 37.95 38.92 37.58 40.11 37.51
380 38.55 37.12 27.32 35.95 37.21 32.62 37.39 33.57
190 35.84 34.38 23.88 33.59 35.43 30.04 33.56 30.22
Mobile (ITU-D1)
6400 41.86 40.26 35.56 37.82 38.66 38.05 38.24 36.32
3598 40.66 38.62 32.53 36.09 37.11 36.10 35.07 33.85
2100 38.71 37.26 30.12 34.37 35.84 34.55 32.53 32.22
1142 36.90 35.13 27.87 32.58 34.46 32.63 30.52 30.44
542 35.34 31.57 25.65 30.68 32.16 30.00 28.82 28.74
Ducks (Full-HD) 50fps
98304 37.77 36.82 36.26 38.49 35.67 35.49 37.77 38.08
49152 34.74 34.02 32.62 35.27 32.46 32.20 35.39 34.74
24576 33.00 32.01 29.16 32.28 30.55 29.04 33.68 32.69
12288 31.24 29.86 26.43 29.32 27.64 27.39 31.63 30.69
6144 29.00 27.71 24.19 27.82 27.11 27.10 28.99 29.09

Table 3 Average PSNR (dB) with different bit rate and coders

3.2 R/D performance

Regarding R/D, in Table 3 we can see the R/D behavior of all evaluated en-
coders for different sequences. As shown, both H264 and x264 are the ones that
obtain the best results for sequences with high movement, mainly due to the
exhaustive ME/MC stage included in these encoders, contrary to 3D-SPIHT
and 3D-GOP-RL that do not include any ME/MC stage. The R/D behav-
ior of 3D-SPIHT and 3D-GOP-RL is similar for images with moderate-high
motion activity, but for sequences with low movement, 3D-SPTHT outperform
3D-GOP-RL, showing the power of its tree encoding system. The proposed
encoder (3D-GOP-RL) have a similar behavior to H.263 and MPEG-2 and
slightly lower performance than MPEG-4. Also we can see the improvement of
3D-GOP-RL and 3D-SPIHT when compared to x264 in INTRA mode (up to
11 dB). This R/D improvement is accomplished by exploiting only the tem-
poral redundancy among video frames when applying the 3D-DWT. It is also
interesting the behavior of 3D-DWT based encoder for high frame rate video

8 Vicente Galiano et al.

sequences like Ducks. As it can be seen all 3D-DWT based encoders have a
similar behavior than the other encoders, even better than x264.

3.3 Encoding time

In Fig. 2 we present the total coding time (excluding I/O) of all evaluated
encoders and for different sequence resolutions. As it can be seen, MPEG-2
and MPEG-4 encoders are the fastest ones due to their block-based processing
algorithm. Regarding 3D-DWT based encoders, the proposed encoder 3D-
GOP-RL is up to 7 times as fast as 3D-SPIHT and up to 6 times as fast as
x264 encoder.

1,000.00

156.25 162.04

100.00 A

10.00 4

1.00 +

0.10 A

Frames per second

0.01 A

0.00 -
ITU-D1 Full-HD

W 3D-SPIHT m3D-GOP-RL mH264 mX264 mH263 = MPEG2 m MPEG4

Fig. 2 Coding time in frames per second for all evaluated encoders

Also, in Fig. 3(a) we present the total coding time of a frame for different
video sequence resolutions as a function of the GOP size. As it can be seen, for
low resolution sequences there are near no differences in the total coding time,
but for high resolution video sequences, the total coding time will increase up
to 40% as the GOP size increases. Furthermore, it is interesting to see that
the required time to perform the 3D-DWT stage ranges between 45% and 80%
of the total coding time depending on the GOP size, as seen in Fig. 3(b). So,
improvements in the 3D-DWT computation will drastically reduce the total
coding time of the proposed encoder.

4 3D-DWT optimizations

As 3D-DWT computation requires more than 45% and up to 80% of the total
coding time in the proposed encoder, in this section we present several parallel
strategies to improve the 3D-DWT computation time.

Multicore-based 3D-DWT Video Encoder 9

0.25
- 0.20
o
@
L
5 015
£
'—
2 o010
-]
o
o
0.05
0.00 e ool
QCIF CIF ITU-D1 Full-HD
EGOP: 16 0.002 0.007 0.027 0.167
GOP: 32 0.002 0.007 0.029 0.223
= GOP: 64 0.002 0.008 0.035 0.234
= GOP: 128 0.002 0.011 0.040 0.241
(a) Total coding time
0.25
S
@
) 0.20
o
£
=
I3 0.15
£
L
2
S 0.10
[
-
K-
% 0.05
=
0.00 e ool
QCIF CIF ITU-D1 Full-HD
HGOP: 16 0.001 0.004 0.017 0.136
GOP: 32 0.001 0.004 0.019 0.192
u GOP: 64 0.001 0.005 0.028 0.203
mGOP: 128 0.001 0.008 0.034 0.211

(b) Wavelet time

Fig. 3 Total coding time and wavelet transform time of the 3D-GOP-RL encoder for dif-
ferent video sequence resolutions

4.1 Multicore 3D wavelet transform

In the proposed encoder (3D-GOP-RL), the Daubechies 9/7 filter, proposed
in [14], has been used to perform the regular filter-bank convolution in order to
develop the parallel 3D-DWT algorithm. In [7] we proposed the convolution-
based parallel 2D-DWT using an extra memory space in order to perform a
nearly in-place computation, avoiding the requirement of twice the image size
to store the computed coefficients. This strategy has been also followed to
develop the parallel 3D-DWT algorithm.

We want to remark that we use four decomposition levels in order to com-
pute the 3D-DWT and the computation of each wavelet decomposition level is
divided into two main steps. In the first step the 2D-DWT is applied to each

10 Vicente Galiano et al.

Frame Size | Processes | Extra memory size | Increment (%)
Pixel size GOP: 32
1 360 0.0110
2 720 0.0221
352 x 288 4 1440 0.0443
6 2160 0.0665
10 3600 0.1109
1 1288 0.0024
2 2576 0.0049
1280 x 640 4 5152 0.0099
6 7728 0.0148
10 12880 0.0247
1 1928 0.0016
2 3856 0.0032
1920 x 1024 4 7712 0.0065
6 11568 0.0098
10 19280 0.0164

Table 4 Amount of extra memory size

frame of the current GOP, and in the second step the 1D-DWT is performed to
consider the temporal axis. We have used the symmetric extension technique
in order to avoid the border effects on both the frame borders and the GOP
borders.

If we consider the first step (i.e. the 2D-DWT applied to each video frame),
the extra memory size depends on both, the row size or column size (the larger
one), and the number of processes in the parallel algorithm. The extra memory
stores the frame row/column pixels plus the pixels required to perform the
symmetric extension. For Daubechies 9/7 filter we must extend row/column
with four elements on both borders.

Table 4 shows the extra memory size (in pixels) and the percentage of
memory increase for several video frame resolutions and number of processes
used in the parallel algorithm. Note that each process stores its own working
pixels which are not shared with other processes. The worst case in Table 4,
attending at memory increase, is a very small value equal to 0.1109%. If the
GOP size is larger than the row or column size, the amount of required extra
memory is fixed by the GOP length. Percentage values in Table 4 have been
obtained considering a GOP size equal to 32.

In the second step of the 3D-DWT (i.e. the temporal 1ID-DWT), we perform
the symmetric extension in order to avoid the border effects in the temporal
domain. In all performed experiments the maximum GOP size considered is
128, therefore the extra memory used in the first step is enough to be reused
in the second step.

We have used OpenMP [1] paradigm in order to develop the parallel 3D-
DWT algorithm. The multicore platforms used in our tests are:

— Intel Core 2 Quad Q6600 2.4 GHz, with 4 cores.
— HP Proliant SL390 G7 with two Intel Xeon X5660, each CPU with six
cores at 2.8 GHz.

Multicore-based 3D-DWT Video Encoder 11

8.0

6.0
5
o 40
£
=20
1 Proc. 2 Proc. 3 Proc. 4 Proc.
B GOP: 16 0.57 0.36 0.26 0.21
EGOP: 32 1.15 0.64 0.45 0.36
O GOP: 64 2.70 1.27 0.89 0.71
EGOP: 128 717 3.01 2.59 1.80

Number of Processes

Fig. 4 3D wavelet algorithm. Compiler: GCC. Compiler flags: -O3 -fopenmp. Frame size:
1280 x 640. Multicore Q6600

4.2 Performance evaluation of the multicore 3D-DWT

In this section we discuss the behavior of the parallel algorithm described in
previous section. Fig. 4 presents the 3D-DWT computational times for a video
frame resolution of 1280 x 640 varying the GOP size and the number of pro-
cesses. In the 3D-DWT there is an intensive use of the memory, therefore the
improvement in the use of the cache memory and data locality justifies the
efficiencies greater than 1. Values shown in Fig. 4 correspond to executions on
the multicore Q6600 platform. However, efficiencies greater than 1 are not ob-
served for the multicore HP Proliant SL390 due to the higher memory access
performance respect to the multicore Q6600. The HP Proliant SI.390 architec-
ture provides a high-bandwidth memory access, through the Intel QPI Speed
64GT /s, therefore, the global performance improvement is less significant than
in the Q6600 platform. In Fig. 5 we also present the computational times for
the multicore HP Proliant SL390. The efficiencies obtained on both platforms
are similar. However, comparing data obtained from video frames of different
resolutions we can conclude that the behavior on the multicore Q6600 becomes
worse than on the multicore HP Proliant SL390, as the GOP size increases,
i.e. when the global memory size increases.

The GOP size is an important parameter in the 3D-DWT computation,
when applied to video coding, because the average video quality increase as
we increase the GOP size due to the minor GOP boundary effect. However,
the computational load and memory requirements increase. Ideally, the GOP
size would be equal to the total number of video frames, since this is not
possible due to the device memory restrictions, we must to select the GOP
size attending to both the video quality and the computational time. As we
can see in Fig. 4 and 5 the computational time increases as the GOP size
increases. The minimum GOP size in our algorithm is 16 due to the four
wavelet decomposition levels performed in the 3D-DWT (24).

In Fig. 6 we present the computational time per frame. We can observe that
the parallel algorithm improves its behavior when both the number of processes

12 Vicente Galiano et al.

120
10.0
- 8.0
L
@ 6.0
E
(= 4.0
2.0
00 1 mi I] I | S
1 Proc. 2 Proc. 4 Proc. 8 Proc. 10 Proc. 12 Proc.
B GOP: 16 1.20 0.85 0.45 0.23 0.19 0.17
EGOP: 32 2.38 1.40 0.72 0.38 0.32 0.30
O GOP: 64 4.89 2.64 1.34 0.69 0.56 0.49
GOP: 128 10.71 5.20 2.65 1.38 1.14 1.03

Number of Processes

Fig. 5 3D wavelet algorithm. Compiler: ICC. Compiler flags: -fast -fopenmp. Frame size:
1920 x 1024. Multicore HP Proliant SL390

and the GOP size increase. We want to remark that setting the GOP size equal
to 256, for medium and high resolution video frames, the results obtained are
not good due to the global memory size requirement. The optimal GOP size
values are 64 and 128. Setting the GOP size to 128 reduces the border effects
while setting the GOP size to 64 reduces the memory requirements. Both GOP
size values obtain the best results in terms of computation times per frame,
as it can be seen in Fig. 6.

4.3 Overlapping the 3D-DWT stage and the coding stage

In Section 4 we have analyzed the behavior of the parallel 3D-DW'T for multi-
cores and we have presented a parallel algorithm that obtains good efficiencies
using up to the maximum number of available cores (12 cores in the HP Pro-
liant SL390). Furthermore, we have reduced the computational time of the
3D-DWT stage, but the eodingtime time of the coding stage has not been
considered at this time. So, in order to improve the global coding time, we
consider to implement a two-phase pipeline strategy considering both the 3D-
DWT and the coding stage. Note that there are no dependencies between these
two stages if the working frame of the GOP is not the same.

As we have said, in the pipeline strategy proposed, we overlap the 3D-
DWT computation and the coding stage, where both stages process different
GOPs. In Fig. 7 we show the pipeline strategy developed. At each step, we
compute simultaneously the 3D-DW'T of one GOP and we encode the GOP
transformed in the previous step. At the initial step we only perform the 3D-
DWT transform of the first GOP, and the last GOP is encoded at the final
step without overlapping task.

Firstly, in order to implement this pipeline procedure, we consider a mul-
ticore algorithm with two processes, the first one computes the 3D-DWT and
the second one computes the coding stage. There exists an inherent penalty in
this type of algorithms at both the initial step and the final step. This penalty
causes that the computational time reduction will be slightly lower than the
optimal value equal to 50%. Considering the optimal GOP size values (64 or

Multicore-based 3D-DWT Video Encoder 13

Time (s.)/frame

i 5= 1

1 Proc. 2 Proc. 4 Proc. 8 Proc. 10 Proc. 12 Proc.
B GOP: 16 0.0261 0.0193 0.0101 0.0055 0.0053 0.0055
EGOP: 32 0.0261 0.0160 0.0083 0.0046 0.0038 0.0042
O GOP: 64 0.0269 0.0148 0.0075 0.0040 0.0035 0.0030
GOP: 128 | 0.0274 0.0145 0.0074 0.0039 0.0034 0.0031
Number of Processes

(a) Frame size: 1280 x 640

0.1

0.1

0.1 7

0.0 7

Time (s.)/frame

0.0 1

00 | E e B

1 Proc. 2 Proc. 4 Proc. 8 Proc. 10 Proc. 12 Proc.
B GOP: 16 0.0748 0.0529 0.0283 0.0142 0.0120 0.0108
EGOP: 32 0.0743 0.0439 0.0226 0.0117 0.0099 0.0093
O GOP: 64 0.0764 0.0413 0.0209 0.0108 0.0088 0.0077
GOP: 128 | 0.0837 0.0407 0.0207 0.0108 0.0089 0.0080
Number of Processes

(b) Frame size: 1920 x 1024

Fig. 6 Computational time per frame. Compiler: ICC. Compiler flags: -fast -openmp. Mul-
ticore HP Proliant SL390

3D-DWT | 3D-DWT | 3D-DWT

Frame 1 Frame 2 Frame 3

3D-DWT

Frame n-1

3D-DWT

Frame n

Frame n-2 Frame n-1 Frame n

Fig. 7 Multicore pipeline strategy

128 frames), the ideal computational time reduction is 46.9% and 48.5% re-
spectively. We want to remark that our algorithm achieves these ideal values,
obtaining, therefore, efficiencies equal to 0.94 and 0.97 respectively.

The previous conclusions are drawn considering that the computational
time for both phases, the 3D-DWT stage and the coding stage, is similar.
In Fig. 8 we analyze the behavior of the computational time for both stages
for Container (CIF) video sequence. As we can observe, the assumption that
computational times for both stages are similar is only valid for very low
compression rates. We can extend the behavior showed in Fig. 8 to the rest of
video sequences. Therefore, it is necessary to apply the parallel optimizations
presented in Section 4, in order to achieve ideal efficiencies. We want to remark

14 Vicente Galiano et al.

that the improvements are focused in the 3D-DWT computation. To obtain
the ideal efficiencies (using more than two processes) we must achieve both
goals, reduce at maximum the 3D-DWT computational time in the first step
(at this step there is no overlapping), and reduce the 3D-DWT computational
time in the following steps in order to obtain a time lower or equal to the
coding time (the other overlapped task).

-
Los =
s |
= e
F 06 s
______ —Wavelet time (s.)
04 /.f ---Coding time (s.)
0.2
0 \ \ \ \ \ \ ,
0 500 1000 1500 2000 2500 3000 3500

Bit-rate

Fig. 8 Computational time for the 3D-DWT and coding stages

Therefore, there are four different conditions in the parallel computation
of the first GOP of a video sequence. In the initial step we only compute the
3D-DWT transform of the first frame of the GOP. In the following steps, in
which there are overlapped tasks, we must e adapt the 3D-DWT computation
in order to obtain the optimal number of processes used in the 3D-DWT
computation. In the third stage, we compute the 3D-DWT using the optimal
number of processes obtained and the coding stage using one process. As
we have said, the fourth step is the computation of the coding stage of the
last GOP. Both the fork-join model of parallelism and the nested parallelism,
offered by OpenMP, are used to implement these four discussed stages.

The fork-join parallelism refers to a method of specifying the parallel exe-
cution of a program whereby the program flow diverges into two or more flows
that can be executed concurrently and then, all flows come back together into a
single flow when all of the parallel work is completed. In the nested parallelism
each flow can diverge into a new flow with two or more processes. In Fig. 9 we
show the structure of the parallel model developed using the fork-join model
and the nested parallelism. In the first step we use the maximum number of
processes in order to accelerate at maximum the initial 3D-DWT computa-
tion. In following steps (see Fig. 7), the flow diverges into two processes where
the first one computes the 3D-DWT of the following GOP and the second one
computes the coding stage of the previous GOP. The flow that computes the
3D-DWT must adapt the number of processes in order to obtain a 3D-DWT

Multicore-based 3D-DWT Video Encoder 15

computational time lower than the computational time of the coding stage.
We set the number of processes to compute the 3D-DW'T of the second GOP
equal to half the maximum number of processes. In following steps the al-
gorithm varies the number of processes, depending on the measured time for
both 3D-DWT and coding tasks, until the optimal value is found. Once we
have obtained the optimal value of processes to compute the 3D-DWT, this
value remains unchanged for the rest of the GOPs. The maximum number
of processes used to compute the 3D-DWT is equal to the number of cores
available minus one, since this core (or process) is used to compute the coding
stage. As we can see in Figure 8, the coding stage time is between 2 and 4
times lower, depending the bitrate. Therefore the optimal number of processes
to compute the 3D-DWT depends on the bitrate, varying between 2 and 6.

3D-DWT varying processes 3D-DWT with
up to obtain the optimal the optimal number
number of processes of processes
< > 4—>
3D-DWT 3D-DWT 3D-DWT
3D-DWT frame 2 frame 3 frame n
frame 1 ’ \
w
Coding
Coding Coding Coding frame n
frame 1 frame 2 frame n-1

Fig. 9 Fork join with nested parallelism strategy

Using the proposed strategy, we increase the efficiency of the pipeline struc-
ture up to 0.97 and up to 0.98 for GOP sizes 64 and 128 respectively. Moreover,
the optimal value of processes is lower than the number of available processes,
specially for the HP Proliant SL390 platform. The developed pipeline structure
allows us to have idle cores, depending on the compression rate, and therefore
we can analyze the parallelization of the coding stage to improve the results
in future work.

Also, it is important to remark that joining the presented parallel strategies
of sections 4 and 4.3, we reached nearly the ideal speed-ups, where the bound
of the speed-up is determined by the computational time of the coding stage.
Typical values of the speed-up achievable are between 3 and 5.

5 Global performance evaluation

After analyzing both the performance of the multicore approach for the 3D-
DWT computation and the aforementioned pipeline structure, we will present
a comparison of the proposed encoder against the other test encoders in terms
of coding delay.

In Fig. 10 we present the total coding time (excluding I/O) in frames per
second of all evaluated encoders and for different sequence resolutions. Now,

16 Vicente Galiano et al.

our proposal uses the previously presented multicore optimization to perform
the 3D-DWT in Section 4. As it can be seen, MPEG-2 and MPEG-4 encoders
still are the fastest ones. But, now the 3D-GOP-RL encoder is up to 4 times
as fast as the non-multicore version of the proposed encoder, being able to
compress a Full-HD sequence in real time.

1,000.00

156.25 162.04

100.00

10.00

1.00

0.10

Frames per second

0.01

0.00
ITU-D1 Full-HD

M 3D-SPIHT ®3D-GOP-RL B H264 mX264 MH263 = MPEG2 m MPEG4

Fig. 10 Coding time in frames per second for all evaluated encoders after multicore opti-
mization of the proposed encoder

1,000.00
144.25 156.25 162.04
100.00 72.04

31.72 29.79

10.00

1.00

0.10

Frames per second

0.01

0.00

ITU-D1 Full-HD

M 3D-SPIHT ®3D-GOP-RL W H264 mX264 EMH263 MPEG2 ® MPEG4

Fig. 11 Coding time in frames per second for all evaluated encoders after mutithreading
approach

Although, the multicore version of the 3D-GOP-RL encoder has been
speeded up to 4 times, now, the bottleneck in the encoder is the coding stage
after computing the 3D-DW'T transform, specially at low compression rates,
where there are lots of significant coefficients to encode. Considering the over-

Multicore-based 3D-DWT Video Encoder 17

lapping strategy presented in Section 4.3, the 3D-DWT computation is hidden
and the total coding time will be due only to the coding stage, except for the
first GOP. Of course that extra memory for the second GOP is required in
this approach. As it can be seen in Fig. 11, using this technique, the proposed
encoder is the fastest one for Full-HD video resolutions. Remark, that the opti-
mizations performed are due only to multicore strategies while other encoders
like x264, H263, MPEG-2 and MPEG-4 are fully optimized implementations,
using CPU capabilities like Multimedia Extensions (MMX2, SSE2Fast, SSSE3,
etc.) and multithreading.

6 Conclusions

In this paper we have presented the 3D-GOP-RL, a fast video encoder based
on 3D Wavelet transform and efficient Run-Length coding. We have compared
our algorithm against 3D-SPIHT, H.264, x264, H.263, MPEG-2 and MPEG-4
encoders in terms of R/D, coding delay and memory requirements.

Regarding R/D, our proposal has a similar behavior to MPEG-2 and
H.263 and slightly lower performance than MPEG-4. When compared with
3D-SPIHT, our proposal has a similar behavior for sequences with medium
and high movement, but lower performance for sequences with low movement
like Container. However, our proposal requires 6 times less memory than 3D-
SPIHT. Both 3D-DWT based encoders (3D-SPIHT and 3D-GOP-RL) outper-
forms x264 in Intra mode (up to 11 dB) exploiting only the temporal redun-
dancy among video frames when applying the 3D-DWT. It is also important
to see the behavior of 3D-DWT based encoders when applied to high frame
rate video sequences obtaining even better PSNR than x264 in Inter mode.

In order to speed up our encoder, we have presented an exhaustive analysis
of the parallel strategies to compute the 3D-DWT transform. As we have seen,
the parallel algorithm obtains good efficiencies, with the proper parameters
setting, using the available cores, up to 12 in the multicore HP Proliant SL390
and up to 4 in the multicore Q6600. Even more, we have applied multithreading
strategies to hide the 3D-DWT computational time. Using these strategies,
the proposed encoder (3D-GOP-RL) is the fastest encoder for Full-HD video
resolutions, being able to compress a Full-HD video sequence in real time.

The fast coding/decoding process and the fact of avoiding the use of motion
estimation/motion compensation algorithms, makes the 3D-GOP-RL encoder
a good candidate for applications where the coding/decoding delay are critical
for proper operation or for applications where a frame must be reconstructed
as soon as possible. 3D-DWT based encoders could be an intermediate solution
between pure Intra encoders and complex Inter encoders.

As future work, we pretend to apply parallel strategies to speed up even
more the encoder, but this time, focusing on the coding stage.

18

Vicente Galiano et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Openmp application program interface, version 3.1. OpenMP Architecture Review

Board. http://www.openmp.org, 2011.

ISO/IEC 14496-10 and ITU Rec. H.264. Advanced video coding, 2003.

M. Aviles, F. Moran, and N. Garcia. Progressive lower trees of wavelet coefficients:
Efficient spatial and SNR scalable coding of 3D models. Lecture Notes in Computer
Science, 3767:61-72, 2005.

P. Campisi and A. Neri. Video watermarking in the 3D-DWT domain using perceptual
masking. In IEEFE International Conference on Image Processing, pages 997—1000,
September 2005.

Y. Chen and W.A. Pearlman. Three-dimensional subband coding of video using the
zero-tree method. In Visual Communications and Image Processing, volume Proc. SPIE
2727, pages 1302-1309, March 1996.

P.L. Dragotti and G. Poggi. Compression of multispectral images by three-dimensional
SPITH algorithm. [EEE Transactions on Geoscience and Remote Sensing, 38(1):416—
428, January 2000.

V. Galiano, O. Lépez, M.P. Malumbres, and H. Migallén. Improving the discrete wavelet
transform computation from multicore to gpu-based algorithms. In In proceedings of
International Conference on Computational and Mathematical Methods in Science and
Engineering, 2011.

Jiangling Guo, Sunanda Mitra, Brian Nutter, and Tanja Karp. A fast and low com-
plexity image codec based on backward coding of wavelet trees. In In proceedings of the
Data Compression Conference, 2006.
http://ffmpeg.arrozcru.org/autobuilds/blog/2010/09/14 /ffmpeg-r25117-swscale-
r32222-0k/. ffmpeg, September 2010.

ITU-T Recommendation H.263. Video coding for low bit rate communication, January
2005.

B.J. Kim, Z. Xiong, and W.A. Pearlman. Very low bit-rate embedded video coding with
3D set partitioning in hierarchical trees (3D SPIHT), 1997.

B.J. Kim, Z. Xiong, and W.A. Pearlman. Low bit-rate scalable video coding with 3D
set partitioning in hierarchical trees (3D SPIHT). IEEE Transactions on Circuits and
Systems for Video Technology, 10:1374—1387, December 2000.

J. Luo, X. Wang, C.W. Chen, and K.J. Parker. Volumetric medical image compression
with three-dimensional wavelet transform and octave zerotree coding. In Visual Com-
munications and Image Processing, volume Proc. SPIE 2727, pages 579-590, March
1996.

S. G. Mallat. A theory for multi-resolution signal decomposition: The wavelet represen-
tation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674—
693, July 1989.

Bibhuprasad Mohanty, Abhishek Singh, and Sudipta Mahapatra. A high performance
modified SPTHT for scalable image compression. International Journal of Image pro-
cessing, 5(4):390-402, 2011.

C.I Podilchuk, N.S. Jayant, and N. Farvardin. Three dimensional subband coding of
video. IEEE Tran. on Image Processing, 4(2):125-135, February 1995.

Jang-Seon Ryu and Eung-Tea Kim. Fast intra coding method of h.264 for video
surveillance system. International Journal of Computer Science and Network Secu-
rity, 7(10):76-81, 2007.

P. Schelkens, A. Munteanu, J. Barbariend, M. Galca, X. Giro-Nieto, and J. Cornelis.
Wavelet coding of volumetric medical datasets. IEEE Transactions on Medical Imaging,
22(3):441-458, March 2003.

J.M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE
Transactions on Signal Processing, 41(12), December 1993.

B.M. Sunil and C.P. Raj. Analysis of wavelet for 3d-dwt volumetric image compression.
In Emerging Trends in Engineering and Technology (ICETET), 2010 3rd International
Conference on, pages 180—185, nov. 2010.

D. Taubman and A. Zakhor. Multirate 3-D subband coding of video. IEEE Tran. on
Image Processing, 3(5):572-588, September 1994.

Multicore-based 3D-DWT Video Encoder 19

22. Linning Ye, T. Karp, B. Nutter, S. Mitra, and Jiangling Guo. Three-dimensional sub-
band coding of video with 3-D BCWT. In Signals, Systems and Computers, 2006.
ACSSC °06. Fortieth Asilomar Conference on, pages 401-405, november 2006.

