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Abstract. In this work we propose several parallel algorithms to computethe two-
dimensional discrete wavelet transform (2D-DWT), exploiting the available hard-
ware resources. In particular, we will explore OpenMP optimized versions of 2D-
DWT over a multicore platform and we will also develop CUDA-based 2D-DWT
algorithms which are able to run on GPUs (Graphics ProcessingUnit). The pro-
posed algorithms are based on several 2D-DWT computation approaches as (1)
filter-bank convolution, (2) lifting transform and (3) matrix convolution, so we can
determine which of them better adapts to our parallel versions. All proposed algo-
rithms are based on the Daubechies 9/7 filter which is widely used in image/video
compression.
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Introduction

The discrete wavelet transform (DWT) is a mathematical tool that has aroused great in-
terest in the field of image processing due to its nice features. Some of these charac-
teristics are: 1) it allows image multi resolution representation in a natural way because
more wavelet subbands are used to progressively enlarge thelow frequency subbands;
2) it supports wavelet coefficients analysis in both space and frequency domains, thus
the interpretation of the coefficients is not constrained toits frequency behavior and we
can perform better analysis for image vision and segmentation; and 3) for natural im-
ages, the DWT achieves high compactness of energy in the lowerfrequency subbands,
which is extremely useful in applications such as image compression. The introduction
of the DWT made it possible to improve some specific applications of image processing
by replacing the existing tools with this new mathematical transform. The JPEG 2000
standard [1] proposes a wavelet transform stage since it offers better rate/distortion (R/D)
performance than the traditional discrete cosine transform (DCT).

Unfortunately, despite the benefits that the wavelet transform entails, some other
problems are introduced. Wavelet-based image processing systems are typically imple-
mented by memory-intensive algorithms with higher execution time than other trans-
forms. In the usual DWT implementation [2], the image decomposition is computed by



means of a convolution filtering process and so its complexity rises as the filter length
increases. Moreover, in the regular DWT computation, the image is transformed at every
decomposition level first row by row and then column by column, and hence it must be
kept entirely in memory.

The lifting scheme [3,4] is probably the best-known algorithm to calculate the
wavelet transform in a more efficient way. Since it uses less filter coefficients than the
equivalent convolution filter, it provides a faster implementation of the DWT.

Other fast wavelet transform algorithms have been proposedin order to reduce both
memory requirements and complexity, like line-based [5] and block-based [6] wavelet
transform approaches that performs wavelet transformation at image line or block level.
These approaches increase flexibility when applying wavelet transform and significantly
reduce the memory requirements. On the other hand, in [7], authors present a novel way
of computing the wavelet transform which they call Symmetric Mask-based Discrete
Wavelet Transform (SMDWT). This new wavelet transform algorithm is computed as a
matrix convolution, using four matrix masks, one for each subband type, that are built in
order to reduce the repetitive computations found in the classical lifting approach. In this
scheme, the 2D-DWT is performed in only one pass, avoiding multiple-layer transpose
decomposition operations. One of the most interesting advantages of this method is that
the computation of each wavelet subband is completely independent.

When designing fast wavelet-based image/video encoders, one of the most compu-
tational intensive tasks is the 2D-DWT, which in some cases may take up between 30%
and 50% of the overall encoding time (depending on the image size and the number of
decompositions levels). In this paper, we analyze and develop several optimized parallel
algorithms based on some 2D-DWT computation approaches suchas (1) filter-bank con-
volution, (2) lifting transform and (3) matrix convolution, so we can determine which of
them better adapts to our parallel versions. The main goals of the proposed optimizations
are to obtain low memory requirements similar to the ones of lifting scheme as well as
good computational behavior by exploiting multicore architectures, i.e. shared memory
platform, and GPUs co-processing units.

1. Discrete Wavelet Transform (DWT)

DWT is a multi resolution decomposition scheme for input signals, see detailed descrip-
tion in [2]. The original signals are firs decomposed into twosubspaces, low-frequency
(low-pass) subband and high-frequency (high-pass) subband. For the classical DWT, the
forward decomposition of a signal is implemented by a low-pass digital filterH and a
high-pass digital filterG. Both digital filters are derived using the scaling functionΦ(t)
and the corresponding waveletsΨ(t). The system downsamples the signal to half of the
filtered results in the decomposition process. If the four-tap and non-recursive FIR filters
with lengthL are considered, the transfer functions ofH andG can be represented as
follows:

H(z) = h0 + h1z
−1 + h2z

−2 + h3z
−3 (1)

G(z) = g0 + g1z
−1 + g2z

−2 + g3z
−3 (2)



1.1. Lifting-based Wavelet Transform (LDWT)

One of the main drawbacks of the DWT is that it doubles the memory requirements be-
cause it is implemented as a filter. A proposal that reduces the amount of memory needed
for the computation of the 1D DWT is the lifting scheme [3]. Despite this disadvantage,
the main benefit of this scheme is the reduction in the number of operations needed to
perform the wavelet transform if compared with the usual filtering algorithm (also known
as convolution algorithm). The order of this reduction depends on the type of wavelet
transform, as shown in [8].

In Figure 1, we present a diagram to illustrate the general lifting process. The whole
process consists of a first lazy transform, one or several prediction and update steps, and
coefficient normalization. In the lazy transform, the inputsamples are split into two data
sets, one with the even samples and the other with the odd ones. Thus, if we consider
{Xi} = {Φn,p} the input samples at a leveln, we define:

{

s0i
}

= {X2i} (3)
{

d0i
}

= {X2i+1} (4)

Then, in a prediction step (sometimes called dual lifting),each sample in
{

d0i
}

is re-
placed by the error committed in the prediction of that sample from the samples in

{

s0i
}

:

d1i = d0i − P
({

s0i
})

(5)

while in an update step (also known as primal lifting), each sample in the set
{

s0i
}

is
updated by

{

d1i
}

as:

s1i = s0i + U
({

d1i
})

(6)

After msuccessive prediction and update steps, the final scaling and wavelet coefficients
are achieved as follows:

{Φn+1,p} = K0 × {smi } (7)

{Ψn+1,p} = K1 × {dmi } (8)

A special case of wavelet filter is the Daubechies 9/7 filter. This filter has been widely
used in image compression [9,10], and it has been included inthe JPEG2000 standard
[1]. In this paper, all the DWT algorithms will be focused on this filter because of its
good behavior. The coefficients of the Daubechies 9/7 decomposition filters,h[n] and
g[n] are:

h [n] = 0.026749,−0.016864,−0.078223, 0.266864, 0.602949,

0.266864,−0.078223,−0.016864, 0.026749

g [n] = 0.091272,−0.057544,−0.591272, 1.115087,

− 0.591272,−0.057544, 0.091272
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Figure 1. Overview of a wavelet decomposition of an input signal using the lifting scheme for the B9/7 FWT.

while the result of the lifting-based decomposition is:

P (z) =

(

1 α
(

1 + z−1
)

0 1

)(

1 0
β (1 + z) 1

)(

1 γ
(

1 + z−1
)

0 1

)(

1 0
δ (1 + z) 1

)(

ζ 0
0 1/ζ

)

(9)

whereα = −1.586134342, β = −0.052980118, γ = 0.882911075, δ = 0.443506852 and
ζ = 1.230174105.

1.2. Symmetric Mask-based Wavelet Transform (SMDWT)

In [7], the authors present a novel way of computing the wavelet transform trying to reduce the
computational complexity for the wavelet filtering process. The SymmetricMask-based Discrete
Wavelet Transform (SMDWT) is performed as a matrix convolution, using four matrix derived
from the 2D DWT of Daubechies 9/7 floating point lifting-based coefficients. The 2D LDWT
lifting scheme requires vertical and horizontal 1D LDWT calculations, andeach of the 1D LDWT
requires four steps: splitting, prediction, updating, and scaling. Conversely, the four subband 2D
SMDWT can be yielded using four independent matrices of size7× 7, 7× 9, 9× 7 and9× 9 for
the 9/7 filter.

2. Multicore Wavelet Transform Algorithm

We have used the regular filter-bank convolution based on the Daubechies 9/7 filter, in order to
develop the optimized parallel 2D discrete wavelet transform (DWT), proposed in [2]. On the other
hand, we have used the lifting scheme proposed by Sweldens in [3] in order to develop the opti-
mized parallel 2D lifting wavelet transform (LDWT). We have optimized the proposed sequential
algorithms in order to optimize both the computational behavior and the memory requirements.
The optimizations performed are based on both the well-known characteristics of the Daubechies
9/7 filter, and a temporary buffer in order to store the computed coefficients in the image memory
space. Therefore, the temporary storage buffer should contain either the working row or column.

As we have previously mentioned, we require the image size memory space to store the
computed wavelet coefficients. In the wavelet transform based on convolution, an extra memory
space to store the current image row/column is required. Moreover, weuse the symmetric extension
technique to minimize the edge effect in the 2D discrete wavelet transform computation, in which
the length of the symmetric extensions depends on the filter lenght. Therefore, for the Daubechies
9/7 filter, a four elements extension and a three elements extension are required for rows and



Image Size Cores Extra memory size Image Size Cores Extra memory size

Conv. Lifting Conv. Lifting

1 520 1024 1 2568 4608

512 x 512 2 1040 2048 2048 x 2560 2 5136 9216

4 2080 4096 4 10272 18432

1 2056 4096 1 4104 8192

2048 x 2048 2 4112 8192 4096 x 4096 2 8208 16384

4 8224 16384 4 16416 32768

Table 1. Amount of extra memory size using four-tap filter.
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(a) Convolution

0.00


0.20


0.40


0.60


0.80


1.00


T
im

e 
(s

.)



CPU
 0.0039
 0.2052
 0.2432
 0.8802


CPU-1Core
 0.0037
 0.2066
 0.2434
 0.8870


CPU-2Core
 0.0020
 0.1055
 0.1245
 0.4626


CPU-4Core
 0.0033
 0.0871
 0.1007
 0.2865


512 x 512 
 2048 x 2048
 2048 x 2560
 4096 x 4096


(b) Lifting

Figure 2. Computational times for multicore fast wavelet transform algorithms.

columns, respectively. On the other hand, in lifting wavelet based transform, we need the extra
memory space to store a copy of both one row and one column. Note that, inorder to analyze
our proposed algorithms, we will compare the computational results obtained by our algorithm
against those obtained by recent proposals; one of them is the SMDWT algorithm. It should be
noted, regarding the memory requirements, that the SMDWT algorithm requires twice the image
size space to perform the four mask filtering.

We have used the OpenMP [11] paradigm in order to develop the parallel algorithms. The
multicore platform used is an Intel Core 2 Quad Q66002.4 GHz with 4 cores, where a block of
rows and a block of columns has been assigned to one process in each core to compute the wavelet
transform, therefore each process (or core) requires the aforementioned amount of extra memory.
Note that the objective of this buffer is to store the image pixels to compute the wavelet transform,
so we could store the final wavelet coefficients in the same memory spaceoccupied by the image,
avoiding in this manner to double the memory requirements. Table 1 shows the amount of extra
memory in pixels (i.e. floats in grayscale images) used by each algorithm depending on the number
of cores used.

We have tuned the algorithms to obtain the best performance on multicore architectures, tak-
ing into account that these algorithms are characterized by an intensive use of memory. In Figure 2
we show the computational times obtained for both convolution-based and lifting-based wavelet
transform for different images sizes:512 × 512, 2048 × 2048, 2048 × 2560 and4096 × 4096
pixels. Although the memory access bottleneck is the major obstacle to obtain ideal efficiencies,
in Figure 2 we can observe that the computational time decreases, except for small images, as we
increase the number of processes. Note that each core executes onlyone process. Working with
small images does not achieve good performance because the relationship between computational
load and memory accesses, degrading the inherent parallelism.

Figure 3 shows the efficiency obtained for both convolution and lifting methods as we increase
the number of cores. We obtain a closely ideal efficiency using2 cores, while we obtain a good
efficiency using4 cores. Note that the memory access bottleneck gets worse as the numberof cores
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(b) Lifting

Figure 3. Efficiency for parallel tuned wavelet transform algorithms.
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(a) 2 Cores

0.00


0.10


0.20


0.30


0.40


0.50


T
im

e 
(s

.)



Convolution 9/7
 0.0039
 0.0508
 0.0567
 0.1839


Lifting 9/7
 0.0033
 0.0871
 0.1007
 0.2865


SMDWT
 0.0136
 0.1227
 0.1478
 0.4554


512 x 512 
 2048 x 2048
 2048 x 2560
 4096 x 4096


(b) 4 Cores

Figure 4. Comparison between Convolution, Lifting and SMDWT algorithms.

increase because the number of entities that use the memory is greater.
Finally, we have compared our algorithms with a recent and not classicalimplementation of

the DWT called “symmetric mask-based DWT” (SMDWT) [7]. We have developed the method
introduced in [7] and also, we have parallelized this reference algorithm.In Figure 4 we present
a comparison between convolution, lifting and the SMDWT algorithm using two and four cores,
respectively. As it can be seen, our convolution and lifting implementationsare 2.5 times as fast as
the SMDWT algorithm. Note that the authors in [7] propose the SMDWT algorithm to improve the
computational complexity of the lifting scheme and also for the ability of the SMDWT algorithm
to compute the four subbands (LL, LH, HL and HH) independently. It is important to remark that
the behavior of our algorithms computing the four subbands is similar to the SMDWT behavior
only computing the LL subband. On the other hand, in [12], the computational time to compute
the DWT for a4 megapixel size image (2048 × 2048) is around 9 seconds, while when our con-
volution algorithm is applied the computational time is0.07 seconds using2 cores and0.05 using
4 cores. Note that the shared memory platform used in [12] is an Intel Core i7 that presents higher
computing behavior than the Intel Core 2 Quad Q6600 used in our experiments.

3. CUDA GPU-based Wavelet Transform Algorithm

In the previous section, we confirmed that our shared memory parallelalgorithm for computing
the 2D DWT presents a good behavior. Moreover, we question in this section if the best behaviour
can be achieved with Graphical Processor Units (GPUs). We have usedthe GPU GTX280 that
contains 30 multiprocessors with 8 cores in each multiprocessor, and it can work with a maximum
of 30K threads. The GTX280 has 1GB of global memory and 16KB of shared memory.

In order to implement a GPU-based algorithm with the same convolution scheme as the one
presented in Section 2, the key element is the use of shared memory to store the buffer that contains
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Figure 5. CUDA-based fast wavelet transform.

a copy of the working data row, and the constant memory to store the filter tapsh[n] andg[n].
As there are no global synchronization mechanisms in the GPU, but only between threads of one
block of threads, and, moreover, the shared memory is owned by a block, each block of threads
computes a single row or a single column, using the shared memory for thetemporary buffer that
stores the copy of the working row or the working column. In our proposal we call each CUDA
kernel with a one-dimensional number of blocks NBLOCKS and a one-dimensional number of
threads NTHREADS. The number of blocks (NBLOCKS) must be equalto or greater than the
maximum of the number of rows or the number of columns because eachblock computes a single
row or a single column.

The shared memory of a GPU is visible by the threads of one block, therefore, as we men-
tioned, each block computes a single row or a single column. The maximum number of threads
in one block is512. So, if the row or the column size is greater than the number of threads, each
thread must compute a set of pixels. It is important to remark that each thread copies their working
pixels in the shared memory and we perform a synchronization processto start the computation
after the data copy is finished. At the end of a block computation we need to perform another
synchronization process to start the next block computation.

Figure 5(a) shows the results for the CUDA-based algorithm following a regular filter-bank
convolution. In this figure we analyze the behavior when we decrease thenumber of threads of each
block. As it was expected, when the number of threads by block decreases the efficiency decreases,
therefore the number of threads to use should be the maximum allowed number of threads or a
value close to it. Note that the efficiency loss occurs in the GPU computation step, and not in the
GPU-CPU or in the CPU-GPU transfer.

In Figure 5(b) we present the speed-up achieved by the CUDA-basedalgorithm over the GPU
GTX 280 with respect to the sequential convolution algorithm presented in Section 2. Note that we
compare the CUDA-based algorithm with respect to an optimized CPU multicore-based algorithm.
The speed-up includes both CPU-GPU transfer and GPU-CPU transfer(GPU option), and we
present the speed-up only considering the GPU computational time (Comp. GPU). We must remark
that the reference algorithm in CPU has quite good performance. For example, in another work
related to 2D wavelet transform [13], the CPU reference algorithm is four times slower than ours
and, in this case, the speed-up achieved using GPU instead of a GPU for an image of size2048 is
46 while our speed-up is20. In conclusion, the speed-up achieved should be analyzed taking into
account the reference algorithm performance. Moreover, in [13],the authors use a multicore with
similar characteristics, but they use the Intel compiler. However, we cannot draw any conclusion
because of the different GPUs used. Regarding the results presentedin [12], they are obtained
using the same GPU, the GTX280. In this work, for a4 megapixel image size (2048× 2048), the
computational time to obtain the DWT is around 0.8 seconds, while our algorithm requires only
0.025 seconds, the speed-up being32.



4. Conclusions

We have presented both multicore-based algorithms (convolution and lifting) and a CUDA-based
algorithm (convolution) that performs the two dimensional discrete wavelet transform. We have
analyzed the behavior of the proposed algorithms over a shared-memory multiprocessor and over
GPU architecture. Furthermore, we have compared our proposals against a recent algorithm called
SMDWT. The multicore-based algorithms obtain a speed-up above1.9 when using two processors
and above2.4 and up to3.4 when using four processors. Since the best results have been obtained
by the convolution algorithm in a multicore platform and also requires a smallerbuffer size than
the other algorithms, we have developed the corresponding GPU-basedalgorithm using CUDA
and implemented the row/column buffer in the GPU shared memory. The speed-up achieved by
the GPU-based algorithm is up to20. In conclusion, we would like to point out that the use of the
multicore platform obtains a good performance, and we obtain a good speed-up in a GPU with
respect to the good results obtained in the multicore platform. In future work we will analyze the
behavior of the proposed algorithms when using the texture memory of theGPU.
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