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Abstract. In this work we propose several parallel algorithms to compheaegwo-
dimensional discrete wavelet transform (2D-DWT), explgjtthe available hard-
ware resources. In particular, we will explore OpenMP opadiversions of 2D-
DWT over a multicore platform and we will also develop CUDA-ed2D-DWT
algorithms which are able to run on GPUs (Graphics Procedsmf. The pro-
posed algorithms are based on several 2D-DWT computation agipes as (1)
filter-bank convolution, (2) lifting transform and (3) matgonvolution, so we can
determine which of them better adapts to our parallel vessiéfi proposed algo-
rithms are based on the Daubechies 9/7 filter which is widedyl iis image/video
compression.
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Introduction

The discrete wavelet transform (DWT) is a mathematical toat has aroused great in-
terest in the field of image processing due to its nice featUs@eme of these charac-
teristics are: 1) it allows image multi resolution repres#ion in a natural way because
more wavelet subbands are used to progressively enlargewtieequency subbands;
2) it supports wavelet coefficients analysis in both spackfeeguency domains, thus
the interpretation of the coefficients is not constrainedstdérequency behavior and we
can perform better analysis for image vision and segmemtasind 3) for natural im-
ages, the DWT achieves high compactness of energy in the foegrency subbands,
which is extremely useful in applications such as image aesgon. The introduction
of the DWT made it possible to improve some specific applicatiof image processing
by replacing the existing tools with this new mathematicahsform. The JPEG 2000
standard [1] proposes a wavelet transform stage sinceeitdfietter rate/distortion (R/D)
performance than the traditional discrete cosine trans{@CT).

Unfortunately, despite the benefits that the wavelet t@nsfentails, some other
problems are introduced. Wavelet-based image procesgstgnss are typically imple-
mented by memory-intensive algorithms with higher exegutime than other trans-
forms. In the usual DWT implementation [2], the image decositpmn is computed by



means of a convolution filtering process and so its complaiges as the filter length
increases. Moreover, in the regular DWT computation, theyeria transformed at every
decomposition level first row by row and then column by colusamd hence it must be
kept entirely in memory.

The lifting scheme [3,4] is probably the best-known aldoritto calculate the
wavelet transform in a more efficient way. Since it uses ldts oefficients than the
equivalent convolution filter, it provides a faster implartation of the DWT.

Other fast wavelet transform algorithms have been propwserdier to reduce both
memory requirements and complexity, like line-based [45] block-based [6] wavelet
transform approaches that performs wavelet transformatiémage line or block level.
These approaches increase flexibility when applying wawelasform and significantly
reduce the memory requirements. On the other hand, in [#jpeasipresent a novel way
of computing the wavelet transform which they call SymneeiMask-based Discrete
Wavelet Transform (SMDWT). This new wavelet transform alidon is computed as a
matrix convolution, using four matrix masks, one for eachbtmnd type, that are built in
order to reduce the repetitive computations found in thesital lifting approach. In this
scheme, the 2D-DWT is performed in only one pass, avoidindiphedlayer transpose
decomposition operations. One of the most interestingradgas of this method is that
the computation of each wavelet subband is completely imidgnt.

When designing fast wavelet-based image/video encodeespfothe most compu-
tational intensive tasks is the 2D-DWT, which in some caseg tadee up between 30%
and 50% of the overall encoding time (depending on the imagead the number of
decompositions levels). In this paper, we analyze and dpwagveral optimized parallel
algorithms based on some 2D-DWT computation approachesasud) filter-bank con-
volution, (2) lifting transform and (3) matrix convolutipeo we can determine which of
them better adapts to our parallel versions. The main gddteg@roposed optimizations
are to obtain low memory requirements similar to the onedftirig scheme as well as
good computational behavior by exploiting multicore atettures, i.e. shared memory
platform, and GPUs co-processing units.

1. Discrete Wavelet Transform (DWT)

DWT is a multi resolution decomposition scheme for input algnsee detailed descrip-
tion in [2]. The original signals are firs decomposed into subspaces, low-frequency
(low-pass) subband and high-frequency (high-pass) subltam the classical DWT, the
forward decomposition of a signal is implemented by a lowspdigital filter # and a
high-pass digital filtez. Both digital filters are derived using the scaling functibft)

and the corresponding wavelekgt). The system downsamples the signal to half of the
filtered results in the decomposition process. If the fayrand non-recursive FIR filters
with length L are considered, the transfer functionsfbfand G can be represented as
follows:

H(z) =ho+ hlz_l + h22_2 + h32_3 Q)
G(z) =go+ g1z +g22 2+ g327° e



1.1. Lifting-based Wavelet Transform (LDWT)

One of the main drawbacks of the DWT is that it doubles the mgmemuirements be-
cause it is implemented as a filter. A proposal that redueeaniount of memory needed
for the computation of the 1D DWT is the lifting scheme [3]. Pis this disadvantage,
the main benefit of this scheme is the reduction in the numbeperations needed to
perform the wavelet transform if compared with the usuadfittg algorithm (also known
as convolution algorithm). The order of this reduction dejgeon the type of wavelet
transform, as shown in [8].

In Figure 1, we present a diagram to illustrate the gendtaddiprocess. The whole
process consists of a first lazy transform, one or severdigiren and update steps, and
coefficient normalization. In the lazy transform, the inpamnples are split into two data
sets, one with the even samples and the other with the odd ©has, if we consider
{X;} = {®.,,} the input samples at a leve] we define:

{S?} = {le} (3)
{d}} = {Xoit1} 4)

Then, in a prediction step (sometimes called dual liftirggch sample ir{d?} is re-
placed by the error committed in the prediction of that sanfigm the samples i{w?}:

dj = d = P ({s}}) (5

while in an update step (also known as primal lifting), eaatmple in the se{s?} is
updated by{d} } as:

si=s)+U({d}}) (6)

After msuccessive prediction and update steps, the final scalthg/avelet coefficients
are achieved as follows:

{Prnt1p} = Ko x {si"} @)
{Wni1p} = Ko x {dj"} ®)

A special case of wavelet filter is the Daubechies 9/7 filtbis Tilter has been widely
used in image compression [9,10], and it has been includ¢teidPEG2000 standard
[1]. In this paper, all the DWT algorithms will be focused oristfilter because of its
good behavior. The coefficients of the Daubechies 9/7 deositipn filters,h[n] and
g[n] are:

h [n] = 0.026749, —0.016864, —0.078223, 0.266864, 0.602949,
0.266864, —0.078223, —0.016864, 0.026749
g [n] = 0.091272, —0.057544, —0.591272, 1.115087,

—0.591272, —0.057544, 0.091272
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Figure 1. Overview of a wavelet decomposition of an input signal ushmglifting scheme for the B9/7 FWT.

while the result of the lifting-based decomposition is:

PO=G N Ga o) 0T ) Gl D) () @

wherea = —1.586134342, 5 = —0.052980118, v = 0.882911075, § = 0.443506852 and
¢ =1.230174105.

1.2. Symmetric Mask-based Wavelet Transform (SMDWT)

In [7], the authors present a novel way of computing the waveletfsamstrying to reduce the
computational complexity for the wavelet filtering process. The Symmigtaisk-based Discrete
Wavelet Transform (SMDWT) is performed as a matrix convolution, gigour matrix derived
from the 2D DWT of Daubechies 9/7 floating point lifting-based coefficiefitsee 2D LDWT
lifting scheme requires vertical and horizontal 1D LDWT calculations,eath of the 1D LDWT
requires four steps: splitting, prediction, updating, and scaling. Cselgithe four subband 2D
SMDWT can be yielded using four independent matrices of Bizer, 7 x 9,9 x 7 and9 x 9 for
the 9/7 filter.

2. Multicore Wavelet Transform Algorithm

We have used the regular filter-bank convolution based on the Daubedfidilter, in order to
develop the optimized parallel 2D discrete wavelet transform (DWTpgsed in [2]. On the other
hand, we have used the lifting scheme proposed by Sweldens in [3]én wrdlevelop the opti-
mized parallel 2D lifting wavelet transform (LDWT). We have optimized theppsed sequential
algorithms in order to optimize both the computational behavior and the nyeraquirements.
The optimizations performed are based on both the well-known chasticteof the Daubechies
9/7 filter, and a temporary buffer in order to store the computed coefficia the image memory
space. Therefore, the temporary storage buffer should contaim githesorking row or column.
As we have previously mentioned, we require the image size memorg s$pastore the
computed wavelet coefficients. In the wavelet transform based orokedion, an extra memory
space to store the currentimage row/column is required. Moreovers@the symmetric extension
technique to minimize the edge effect in the 2D discrete wavelet transfmmpuatation, in which
the length of the symmetric extensions depends on the filter lenght. Thesrifothe Daubechies
9/7 filter, a four elements extension and a three elements extension aieedefpr rows and



Image Size| Cores | Extra memory size|| Image Size| Cores | Extra memory size
Conv. Lifting Conv. Lifting
1 520 1024 1 2568 4608
512 x 512 2 1040 2048|| 2048 x 2560 2 5136 9216
4 2080 4096 4 10272 18432
1 2056 4096 1 4104 8192
2048 x 2048 2 4112 8192 || 4096 x 4096 2 8208 16384
4 8224 16384 4 16416 32768
Table 1. Amount of extra memory size using four-tap filter.
1.00 1.00
0.80 0.80
E 0.60 ’L? 0.60
E 0.40 E 0.40
0.20 0.20
0% 512 x SE 2048 x 2(;8 2048 x 2560 |4096 x 4096 0% 512 x512 | 2048 x 2048 | 2048 x 2560 | 4096 x 4096
CPU 0.0051 0.1387 0.1699 0.6278 CPU 0.0039 0.2052 0.2432 0.8802
CPU-1Core 0.0050 0.1384 0.1714 0.6205 CPU-1Core 0.0037 0.2066 0.2434 0.8870
CPU-2Core 0.0029 0.0696 0.0898 0.3240 CPU-2Core 0.0020 0.1055 0.1245 0.4626
W CPU-4Core | 0.0039 0.0508 0.0567 0.1839 mCPU-4Core | 0.0033 0.0871 0.1007 0.2865
(a) Convolution (b) Lifting

Figure 2. Computational times for multicore fast wavelet transform gthms.

columns, respectively. On the other hand, in lifting wavelet based transfwve need the extra
memory space to store a copy of both one row and one column. Note th@tjento analyze

our proposed algorithms, we will compare the computational results ebokdiy our algorithm

against those obtained by recent proposals; one of them is the SMDW/itlafg. It should be

noted, regarding the memory requirements, that the SMDWT algorithoiresgtwice the image
size space to perform the four mask filtering.

We have used the OpenMP [11] paradigm in order to develop the parigteithms. The
multicore platform used is an Intel Core 2 Quad Q6&00GHz with 4 cores, where a block of
rows and a block of columns has been assigned to one process inoeat¢h compute the wavelet
transform, therefore each process (or core) requires the adot@ned amount of extra memory.
Note that the objective of this buffer is to store the image pixels to computedtelet transform,
so we could store the final wavelet coefficients in the same memory spauapied by the image,
avoiding in this manner to double the memory requirements. Table 1 shewsthunt of extra
memory in pixels (i.e. floats in grayscale images) used by each algorégpending on the number
of cores used.

We have tuned the algorithms to obtain the best performance on multiabigeatures, tak-
ing into account that these algorithms are characterized by an interssivad memory. In Figure 2
we show the computational times obtained for both convolution-based &nd-lifased wavelet
transform for different images size$12 x 512, 2048 x 2048, 2048 x 2560 and4096 x 4096
pixels. Although the memory access bottleneck is the major obstacle to obtaireificiencies,
in Figure 2 we can observe that the computational time decreasest é&xcemall images, as we
increase the number of processes. Note that each core executamernyocess. Working with
small images does not achieve good performance because the sHatibatween computational
load and memory accesses, degrading the inherent parallelism.

Figure 3 shows the efficiency obtained for both convolution and lifting ndtias we increase
the number of cores. We obtain a closely ideal efficiency u8iegres, while we obtain a good
efficiency usingt cores. Note that the memory access bottleneck gets worse as the rofmires



Efficiency
Efficiency

0
512 x 512 |2048 x 2048 | 2048 x 2560 4096 x 4096 512 x 512 |2048 x 2048 | 2048 x 2560 4096 x 4096

CPU-2Core 88.0 99.4 95.4 95.8 CPU-2Core 93.6 98.0 97.8 95.9
CPU-4Core 32.4 68.2 75.6 84.3 CPU-4Core 28.4 59.3 60.4 77.4
(a) Convolution (b) Lifting

Figure 3. Efficiency for parallel tuned wavelet transform algorithms.

Time (s.)
Time (s.)

0.0 0.00
512 x 512 | 2048 x 2048 | 2048 x 2560 | 4096 x 4096 512 x 512 | 2048 x 2048 | 2048 x 2560 | 4096 x 4096
Convolution 9/7 0.0029 0.0696 0.0898 0.3240 Convolution 9/7 0.0039 0.0508 0.0567 0.1839
Lifting 9/7 0.0020 0.1055 0.1245 0.4626 Lifting 9/7 0.0033 0.0871 0.1007 0.2865
SMDWT 0.0126 0.2083 0.2582 0.8443 SMDWT 0.0136 0.1227 0.1478 0.4554
(a) 2 Cores (b) 4 Cores

Figure4. Comparison between Convolution, Lifting and SMDWT algorithms

increase because the number of entities that use the memory is greater.

Finally, we have compared our algorithms with a recent and not classip@@mentation of
the DWT called “symmetric mask-based DWT” (SMDWT) [7]. We haveealeped the method
introduced in [7] and also, we have parallelized this reference algorithifigure 4 we present
a comparison between convolution, lifting and the SMDWT algorithm using twebfaur cores,
respectively. As it can be seen, our convolution and lifting implementationg.5 times as fast as
the SMDWT algorithm. Note that the authors in [7] propose the SMDWT algartthimprove the
computational complexity of the lifting scheme and also for the ability of the 8MTalgorithm
to compute the four subbands (LL, LH, HL and HH) independently. It jgartant to remark that
the behavior of our algorithms computing the four subbands is similar toMaV&T behavior
only computing the LL subband. On the other hand, in [12], the computitione to compute
the DWT for a4 megapixel size image2(48 x 2048) is around 9 seconds, while when our con-
volution algorithm is applied the computational timé)i§7 seconds using cores and).05 using
4 cores. Note that the shared memory platform used in [12] is an Intel iCdhat presents higher
computing behavior than the Intel Core 2 Quad Q6600 used in our exgr&sm

3. CUDA GPU-based Wavelet Transform Algorithm

In the previous section, we confirmed that our shared memory paaddietithm for computing
the 2D DWT presents a good behavior. Moreover, we question in this sétctie best behaviour
can be achieved with Graphical Processor Units (GPUs). We havetlhisedPU GTX280 that
contains 30 multiprocessors with 8 cores in each multiprocessor, anthitar& with a maximum
of 30K threads. The GTX280 has 1GB of global memory and 16KB afethmemory.

In order to implement a GPU-based algorithm with the same convolutiomechse the one
presented in Section 2, the key element is the use of shared memonetthetbuffer that contains



Time (s.)
°
5

Speed-up

0.00 =
512 x 512 2048 x 2048 2048 x 2560 5

NTHREADS=512 0.0027 0.0247 0.0304 0
NTHREADS=256 0.0026 0.0249 0.0306 512 x 512 2048 x 2048 2048 x 2560
NTHREADS=128 0.0027 0.0253 0.0311 GPU 1.9 5.6 5.6

B NTHREADS=64 0.0029 0.0279 0.0342 Comp. GPU 6.2 20.3 20.2

(a) Computational Times (b) Speed-up

Figure5. CUDA-based fast wavelet transform.

a copy of the working data row, and the constant memory to store the fitefa] and g[n].
As there are no global synchronization mechanisms in the GPU, but etiebn threads of one
block of threads, and, moreover, the shared memory is owned byck, dach block of threads
computes a single row or a single column, using the shared memory ftarttporary buffer that
stores the copy of the working row or the working column. In our prapes call each CUDA
kernel with a one-dimensional number of blocks NBLOCKS and a omeialsional number of
threads NTHREADS. The number of blocks (NBLOCKS) must be etmalr greater than the
maximum of the number of rows or the number of columns becausebdadhcomputes a single
row or a single column.

The shared memory of a GPU is visible by the threads of one block, trerefs we men-
tioned, each block computes a single row or a single column. The maxiriamber of threads
in one block is512. So, if the row or the column size is greater than the number of threads, ea
thread must compute a set of pixels. It is important to remark that easddicopies their working
pixels in the shared memory and we perform a synchronization précesart the computation
after the data copy is finished. At the end of a block computation we needrtorm another
synchronization process to start the next block computation.

Figure 5(a) shows the results for the CUDA-based algorithm followingyalae filter-bank
convolution. In this figure we analyze the behavior when we decreasethier of threads of each
block. As it was expected, when the number of threads by block dezséhe efficiency decreases,
therefore the number of threads to use should be the maximum alloweldenwhthreads or a
value close to it. Note that the efficiency loss occurs in the GPU computatipnestd not in the
GPU-CPU or in the CPU-GPU transfer.

In Figure 5(b) we present the speed-up achieved by the CUDA-lzdgedthm over the GPU
GTX 280 with respect to the sequential convolution algorithm presentectiio8&. Note that we
compare the CUDA-based algorithm with respect to an optimized CPU multlmased algorithm.
The speed-up includes both CPU-GPU transfer and GPU-CPU tra(&R option), and we
present the speed-up only considering the GPU computational time (GPly). We must remark
that the reference algorithm in CPU has quite good performance. Bon@®, in another work
related to 2D wavelet transform [13], the CPU reference algorithm istfimes slower than ours
and, in this case, the speed-up achieved using GPU instead of a GPwifieage of siz&048 is
46 while our speed-up i20. In conclusion, the speed-up achieved should be analyzed taking into
account the reference algorithm performance. Moreover, in fhi8]authors use a multicore with
similar characteristics, but they use the Intel compiler. However, wenoadraw any conclusion
because of the different GPUs used. Regarding the results presents], they are obtained
using the same GPU, the GTX280. In this work, fot mmegapixel image siz(48 x 2048), the
computational time to obtain the DWT is around 0.8 seconds, while our algorgluires only
0.025 seconds, the speed-up be®)



4, Conclusions

We have presented both multicore-based algorithms (convolution and)ligtimha CUDA-based
algorithm (convolution) that performs the two dimensional discrete wauelasform. We have
analyzed the behavior of the proposed algorithms over a shared#yemittiprocessor and over
GPU architecture. Furthermore, we have compared our proposaisag recent algorithm called
SMDWT. The multicore-based algorithms obtain a speed-up ab&wehen using two processors
and above2.4 and up ta3.4 when using four processors. Since the best results have been dbtaine
by the convolution algorithm in a multicore platform and also requires a snialféer size than
the other algorithms, we have developed the corresponding GPU-blsmithm using CUDA
and implemented the row/column buffer in the GPU shared memory. Téedsyp achieved by
the GPU-based algorithm is up 20. In conclusion, we would like to point out that the use of the
multicore platform obtains a good performance, and we obtain a goatispein a GPU with
respect to the good results obtained in the multicore platform. In futurk wemwill analyze the
behavior of the proposed algorithms when using the texture memory GRfue
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