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Abstract

In this work we analyze the behavior of some parallel algorithms when comput-
ing the two dimensional discrete wavelet transform (2D-DWT) using both OpenMP
over a multicore platform and CUDA (Compute Unified Device Architecture) over
a GPU (Graphics Processing Unit). The proposed algorithms are based on both
regular filter-bank convolution and lifting transform. Finally we will also compare
our algorithms against other recently proposed algorithms.
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Introduction

During the last decade, several image compression schemes emerged in order to over-
come the known limitations of block-based algorithms that use the Discrete Cosine
Transform (DCT) [1], the most widely used compression technique at that moment.
Some of these alternative proposals were based on more complex techniques, like vec-
tor quantization and fractal image coding, while others simply proposed the use of a
different and more suitable mathematical transform, the Discrete Wavelet Transform
(DWT). Wavelet transforms have proven to be very powerful tools for image compres-
sion and many state-of-the-art image codecs, including the JPEG2000 image coding
standard, employ a wavelet transform in their algorithms (see for example |2, 3|)
Unfortunately, despite the benefits that the wavelet transform entails, some other
problems are introduced. Wavelet-based image processing systems are typically imple-
mented by memory-intensive algorithms, with higher execution time than other trans-
forms. In the usual DWT implementation [4], the image decomposition is computed by
means of convolution filtering process and so, its complexity rises as the filter length
increases. Moreover, in the regular DWT computation, the image is transformed at
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every decomposition level first row by row and then column by column, and hence it
must be kept entirely in memory. These problems are not as noticeable in other image
transforms as in the DWT. For example, when the DCT is used for image compression,
it is applied in small block sizes, and thus a large amount of memory is not specifically
needed for the transformation process.

The lifting scheme |5, 6] is probably the best-known algorithm to calculate the
wavelet transform in a more efficient way. Since it uses less filter coefficients than the
equivalent convolution filter, it provides a faster implementation of the DWT. This
scheme also provides memory reduction through in-place computation of wavelet co-
efficients. However, if in-place computation is applied, the low-frequency coefficients
are interleaved with the wavelet coefficients, and the subsequent wavelet processing can
be non-optimal (specially in cache-based systems), requiring a more careful process.
We can overcomme this problem with coefficient reordering, at the cost of increasing the
complexity of the algorithm.

Other fast wavelet transform algorithms has been proposed in order to reduce both
memory requirements and complexity, like line-based [7] and block-based [8] wavelet
transform approaches that performs wavelet transformation at image line or block level.
These approaches increases flexibility when applying wavelet transform and significantly
reduce the memory requirements. At the other hand, in |9], authors present a novel
way of computing the wavelet transform called Symmetric Mask-based Discrete Wavelet
Transform (SMDWT). This new wavelet transform is computed as a matrix convolu-
tion, using four matrix masks, one for each subband type, that are built in order to
reduce the repetitive computations found in the classical convolution approach. In this
scheme, the 2D-DWT is performed in only one pass, avoiding multiple-layer transpose
decomposition operations. One of the most interesting advantages of this method is
that the computation of each wavelet subband is completely independent.

When designing fast wavelet-based image/video encoders, one of the most com-
putational intensive tasks is the 2D-DWT, which in some cases may take up between
30% and 50% of the overall encoding time (depending of image size and the number
of decompositions levels). So, it is very important to reduce 2D-DWT computation
time to develope fast real-time image/video encoders. To do that, we will take profit of
the available hardware resources that are present in current off-the-shelf computers, in
particular multicore processing and GPU co-processing units.

In this paper, we perform optimized parallel algorithms based on the methods
introduced in [4] and [5]. The main goals of the performed optimizations are to obtain
low memory requirements as well as good computational behavior, exploiting multicore
architectures, i.e. shared memory platform. After that, we will apply the same scheme
introduced in the multicore algorithm to develop CUDA-based DWT algorithms on
GPU. Algorithms developed on Graphics Processing Units (GPU) require an efficient
use of memory to exploit the GPU architecture in an efficient way. The developed
algorithms are focused in the use of the GPU shared memory. We have also compared
the CUDA based algorithms developed with the algorithms proposed in [10], in both
computation performance and memory requirements.
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1 Discrete Wavelet Transform (DWT)

DWT is a multiresolution decomposition scheme for input signals, see detailed descrip-
tion in [4]. The original signals are firstly decomposed into two frecuency subbands,
low-frequency (low-pass) subband and high-frequency (high-pass) subband. For the
classical DWT, the forward decomposition of a signal is implemented by a low-pass dig-
ital filter H and a high-pass digital filter G. Both of digital filters are derived using the
scaling function ®(t) and the corresponding wavelets ¥(¢). The system downsamples
the signal to half of the filtered results in decomposition process. If the four-tap and
non-recursive FIR filters with length L are considered, the transfer functions of H and
G can be represented as follows:

H(z) = hg+hyz7' + hgz™2 + hgz™3 (1)
G(z) =go+g127" + goz™% + gz273 ()

1.1 Lifting-based Wavelet Transform (LDWT)

One of the drawbacks of the DWT is that it doubles the memory requirements because
it is implemented as a filter. A proposal that reduces the amount of memory needed for
the computation of the 1D DWT is the lifting scheme |5]. Despite this disadvantage,
the main benefit of this scheme is the reduction in the number of operations needed
to perform the wavelet transform if compared with the usual filtering algorithm (also
known as convolution algorithm). The order of this reduction depends on the type of
wavelet transform, as shown in [11].

The lifting scheme implements the DWT decomposition as an alternative algorithm
to the classical filtering algorithm introduced in the previous section. In the filtering
algorithm, in-place processing is not possible because each input sample is required
as incoming data for the computation of its neighbor coefficients. Therefore, an extra
array is needed to store the resulting coefficients, doubling the memory requirements.
On the other hand, the lifting scheme provides in-place computation of the wavelet
coefficients and hence, it does not need extra memory to store the resulting coefficients.
In addition, the lifting scheme can be computed on an odd set of samples, while the
regular transform requires the number of input samples to be even.

The Euclidean algorithm can be used to factorize the poly-phase matrix of a DWT
filter into a sequence of alternating upper and lower triangular matrices. In 3, the
variables h(z) and g(z) denote the low-pass and high-pass inverse filters, respectively,
which can be divided into even and odd parts to form a poly-phase matrix P(z) as in
4.

9(2) = ge (2%) + 2729, (2%), h(2) = he (2?) + z71g, (z%) (3)
_ he (2) Ge (Z)
= () 20 @

Using the Euclidean algorithm, it recursively finds the greatest common divisors of
the even and odd parts of the original filters. Since h(z) and g(z) form a complementary
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Figure 1: General diagram for a wavelet decomposition using the lifting scheme.

filter pair, P(z) can be factorized into three lifting steps as below.

ro-11G )0 D6 ) ®

i=1

where s;(2) and t;(2) denote the Laurent polynomials corresponding to prediction and
update steps, respectively, and k is a nonzero constant.

The whole process consists of a first lazy transform, one or several prediction and
update steps, and coefficient normalization. In the lazy transform, the input samples
are split into two data sets, one with the even samples and the other one with the odd
ones. Thus, if we consider {X;} = {®,,} the input samples at a level n, we define:

{s?} = {Xai} (6)
{d} = {Xai1} (7)

Then, in a prediction step (sometimes called dual lifting), each sample in {d?} is re-
placed by the error committed in the prediction of that sample from the samples in

{sf}:

dj =d} - P({s]}) (8)
while in an update step (also known as primal lifting), each sample in the set { s?} is
updated by {d}} as:

si=s] +U ({di}) (9)

After m successive prediction and update steps, the final scaling and wavelet coefficients
are achieved as follows:

{®@a+1p} = Ko x {s7"} (10)
{Ynt1,p} = K1 x {d]"} (11)

A special case of wavelet filter is the Daubechies 9/7 filter. This filter has been
widely used in image compression (3, 12|, and it has been included in the JPEG2000
standard [2]. In this paper, all the DWT algorithms will be focused on this filter because
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Figure 2: 2D SMDWT structure.

of its goodness behavior. The coefficients of the Daubechies 9/7 decomposition filters,
h[n] and g[n| are:

h[n] = 0.026749, —0.016864, —0.078223, 0.266864, 0.602949,
0.266864, —0.078223, —0.016864, 0.026749

g [n] = 0.091272, —0.057544, —0.591272, 1.115087,
—0.591272, —0.057544,0.091272

while the result of the lifting-based decomposition is:

P = ((1) a(l-il-z‘1)> (ﬂ(11+z) (;) (é ’7(1-%1-2_1)> (6(11+z) ‘D (g 1(/’5)

(12)
where o = —1.586134342,34 = —0.052980118,y = 0.882911075,6 = 0.443506852 and
¢ = 1.230174105.

1.2 Symmetric Mask-based Wavelet Transform (SMDWT)

In [9], authors present a novel way of computing the wavelet transform trying to re-
duce the computational complexity for the wavelet filtering process. The Symmetric
Mask-based Discrete Wavelet Transform (SMDWT) is performed as a matrix convolu-
tion, using four matrix derived from the 2D DWT of 9/7 floating point lifting-based
coefficients (see Figure 2). The 2D LDWT lifting scheme require vertical and horizon-
tal 1D LDWT calculations, and each of the 1D LDWT requires four steps: splitting,
prediction, updating, and scaling. Conversely, the four subband 2D SMDWT can be
yielded using four independent matrices of size 7 x 7, 7% 9, 9 x 7 and 9 x 9 for the 9/7
filter.

2 Multicore Wavelet Transform

We have used the regular filter-bank convolution based on Daubechies 9/7 filter, in order
to develop the optimized parallel 2D discrete wavelet transform (DWT), proposed in
[4]. On the other hand, we have used the lifting scheme proposed by Sweldens in [5], in
order to develop the optimized parallel 2D lifting wavelet transform (LWT). As we have
previously mentioned, we require the image size memory space to store the computed
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Image Size | Cores | Extra memory size Image Size | Cores | Extra memory size
Conv. Lifting Conv. Lifting

1 520 1024 1 2568 4608

512 x 512 2 1040 2048 || 2048 x 2560 2 5136 9216

4 2080 4096 4 10272 18432

1 2056 4096 1 4104 8192

2048 x 2048 2 4112 8192 || 4096 x 4096 2 8208 16384
4 8224 16384 4 16416 32768

Table 1: Amount of extra memory size using four-tap filter (pixel size).

wavelet coefficients. In the convolution based wavelet transform, an extra memory space
to store the current image row/column is required. On the other hand, in lifting wavelet
based transform, we need the memory space to store a copy of both one row and one
column. Remark that, the SMDWT algorithm requires twice the image size space to
perform the four mask filtering.

We have used OpenMP |13| paradigm in order to develop the parallel algorithms.
The multicore platform used is an Intel Core 2 Quad Q6600 2.4 GHz, with 4 cores,
where a block of rows and a block of columns has been assigned to one process in each
core to compute the wavelet transform, therefore each process (or core) requires the
above mentioned amount of extra memory. Remark that the objective of this buffer
is to compute the wavelet transform, so we could store the final wavelet coefficients in
the same memory space occupied by the image, avoiding in this manner to double the
memory requirements. Table 1 shows the amount of extra memory in pixels (i.e. floats)
used by each algorithm depending on the number of cores used. As it can be seen, the
worst case is for the smallest image, requiring less than 2% of extra memory overhead,
being for the rest of the images less than 1%. As mentioned, the extra memory size
needed by the SMDWT algorithm is the size of the image. Note that we work with
grayscale images where a pixel is represented by a float, therefore the data shown in
Table 1 are pixels or floats.

The operating system used by the multicore platform is Ubuntu 9.04 (Jaunty Jack-
alope) for 64 bit systems. We have used the GNU compiler gcc included in gcc 4.3.3.
Compiler flags used to exploit the multicore architecture are: “-O3 -m64 -fopenmp”,
while the ones used to avoid multicore architecture are: “-O3 -m64”.

We have considered two scenarios for the parallel algorithms. In the first one,
we assign a set of consecutive rows/columns to each processor, while in the second
scenario the compiler perform the distribution of computational load. We will not
present different results for both scenarios because the computational times obtained
are quite similar.

We have tuned the algorithms to obtain the best performance on multicore archi-
tectures, taking into account that these algorithms are characterized by an intensive use
of memory. In figure 3 we show the computational times obtained for both convolution-
based and lifting wavelet transform, for different images sizes: 512 x 512, 2048 x 2048,
and 4096 x 4096 pixels. Although the memory access bottleneck is the major obstacle
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Figure 3: Computational times for multicore fast wavelet transform algorithms.

to obtain ideal efficiencies, in Figure 3 we can observe that the computational time
decreases, except for small images, as we increase the number of processes. Note that
each core executes only one process. Working with small pictures do not achieve good
performance due to the relationship between the computational load and the memory
accesses degrading the inherent parallelism. Note that each column and/or row has
few elements, hence the work performed over each row or column stored in the buffer
is not significant. If we calculate efficiency between multicores algorithms, we obtain
an efficiency closely ideal one using 2 cores, while we obtain a good efficiency using 4
cores. Note that the memory access bottleneck get worse as the number of cores increase
because the number of entities that use the memory is greater.

Finally, we have compared our algorithms with a recent and not classical imple-
mentation of the fast DWT called “symmetric mask-based DWT” (SMDWT) [9]. We
have developed the method introduced in |9] and also, we have parallelized its reference
algorithm. In Figure 4 we present a comparison between convolution, lifting and the
SMDWT algorithm, using two and four cores. As it can be seen, our convolution and
lifting implementations are 2.5 times as fast as the SMDWT algorithm. Note that the
authors in [9] propose the SMDWT algorithm to improve the computational complexity
of the lifting scheme and also for the ability of the SMDW'T algorithm to compute the
four subbands (LL, LH, HL and HH) independently.

Some applications only require computing the LL subband, in Figure 5 we present
the same comparison as the one in Figure 4, only computing the LL subband when
SMDWT algorithm is used, and computing all subbands in our algorithms. Note that
the behavior of our algorithms computing the four subbands is similar to the SMDWT
behavior only computing the LL subband.

3 CUDA GPU-based Wavelet Transform Algorithm

In the previous section, we have confirmed that our shared memory parallel algorithm for
computing the 2D DWT presents a good behavior. Moreover, we question in this section
if better performance can be achieved with other architecture. The Graphical Processor
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Figure 4: Comparison between Convolution, Lifting and SMDWT algorithms.
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Figure 5: Comparison between Convolution, Lifting and LL subband computation using
SMDWT algorithm.

Unit (GPU) architecture is based on a set of multiprocessor units called streaming
multiprocessors (SM), containing each one a set of processor cores called streaming
processors (SP). CUDA is a heterogeneous computing model that involves both the
CPU and the GPU. In the CUDA parallel programming model |14, 15|, an application
consists of a sequential host program, that may execute parallel programs known as
kernels on a parallel device, i.e. a GPU. Note that the CPU could be a multicore
processor running an OpenMP model program, but in this case only one of the available
cores can call a kernel, i.e. kernel calls must be serialized, therefore we do not use both
models in an single algorithm. A kernel is an Single Program Multiple Data (SPMD)
computation that is executed using a potentially large number of parallel threads. Each
thread runs the same scalar sequential program. The programmer organizes the threads
of a kernel into a grid of thread blocks. The threads of a given block can cooperate
among themselves using a barrier synchronization. The main kind of memory units
available in GPUs are: the global memory, which has the highest latency; the constant
and the texture memory units, which are read only units and, the shared memory and
the registers, which both are on-chip memory units. The shared memory is owned by a
block while the registers are owned by a thread.

So, in order to implement a GPU-based algorithm with the same scheme that the
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one presented in Section 2, the key element is the use of shared memory to store the
buffer that contains a copy of the working data row, and the constant memory to
store the filter taps h[n| and g[n]. We call each CUDA kernel with a one-dimensional
number of blocks NBLOCKS and a one-dimensional number of threads NTHREADS.
The number of blocks (NBLOCKS) must be equal to or greater than the maximum size
of a row or a column. Each block computes a single row or a single column, the copy of
the row or column to be computed is stored in the GPU shared memory. Remark that
the available size of shared memory in a GTX 280 is 16KB.

Note that, one of the main goals, in the proposed CUDA based methods is to
minimize memory requirements, so we will store the resulting wavelet coefficients in the
image memory space. On the other hand, the methods included in the CUDA SDK
[10] use three times the image size. These methods perform two steps; in the first
step, compute and store, the convolution of rows in GPU global memory, and, in the
second step, compute and store the convolution of columns. Remark that, the memory
requirements of these methods can be easily reduced using the image memory space to
store the wavelet coefficients of the second step. Nevertheless, the memory requirements,
using this improvement, is twice the size of the image. We have developed two methods
based on the naive implementation described in the SDK (see [10, 16]), the first one
using global memory (CUDA-Mem 9/7), and the second one using texture memory
(CUDA-Text 9/7).

As proposed in |10}, the behavior of these methods computed over a GPU can be
improved optimizing the memory coalescence. In order to optimize the memory coa-
lescence, separable filters must be used. Using a separable filter allows the convolution
of rows and convolution of columns to be computed separately. Based on the proper-
ties of separable filters, we have developed the method CUDA-Sep 9/7, which uses the
Daubechies 9/7 filter. The expected improvement should be based on (a) the reduction
of the times the pixels are read, (2) on coalescing access to memory, (3) high memory
throughput, and (4) the reduction of the number of idle threads (see [10]). As we have
said, the convolution is separated in two stages, 1) the rows stage and 2) the columns
stage; each stage is separated into two sub-stages, a) the first sub-stage loads the data
from global memory into shared memory, and b) the second sub-stage processes the
data and stores the results in the global memory. In the computation stage, as it can
be seen in Figure 6, each thread loops over a width of twice the filter radius plus 1
(8 in rows and 6 in columns for Daubechies 9/7 filter), multiplying cach pixel by the
corresponding filter tap stored in the constant memory. Each thread in a half-warp (a
warp is composed by 32 CUDA threads) accesses to the same constant memory address
and hence there is no penalty due to constant memory bank conflicts. Also, consecutive
threads always access consecutive shared memory addresses so no shared memory bank
conflicts occur as well, see [10| for a detailed description.

In Figure 7, we compare execution times to obtain the 2D DWT using the four
proposed CUDA based algorithms. The four algorithms considered are: the algorithm
based on convolution described in Section 1 (labeled CUDA-Conwv 9/7); the naive afore-
mentioned algorithms described in the SDK, the first one using global memory (labeled
as CUDA-Mem 9/7) and the second one using texture memory (labeled as CUDA-
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Figure 7: 2D DWT computation over GPUs with CUDA

Text 9/7); and the algorithm developed to exploit the characteristics of the convolution
based on a separable filter (labeled as CUDA-Sep 9/7). Daubechies 9/7 filter is used
in all experiments performed. In Figure 7 we can observe that the results obtained by
the proposed algorithm CUDA-Conv 9/7 are similar to results obtained by algorithms
CUDA-Mem 9/7 and CUDA-Text 9/7, note that the memory requirement of algorithm
CUDA-Conv 9/7 is the lowest one, because the image is overwritten with wavelet coeffi-
cients. On the other hand, the best results are obtained using the algorithm CUDA-Sep
9/7, note that in this algorithm we optimize the memory coalescence using a separable
filter. We want to point out that the speed-up obtained is up to 2.7 for 4096 x 4096
image size.

In algorithm CUDA-Sep 9/7 the shared memory stores a block of pixels of one row
or a block of one column, the block data stored in shared memory will be computed
by a CUDA block. Due to each block of threads computes a block data, the number of
threads by block must be selected according the row block size and column block size.
Figure 6 shows this structure for both rows and columns. In Figure 8 we present results
varying the row block size and column block size for 4096 x 4096 image size. The best
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Figure 8: Algorithm CUDA-Sep 9/7 varying column and row block size

results are obtained with the row block size equal to 16 or 32 and with the column block
size equal to 4, 8 or 16. Since shared memory is limited (16 Kbytes in GTX 280), the
smaller optimal values of row block size and column block size must be used.

4 Conclusions

We have presented both multicore-based (convolution and lifting) and CUDA-based
algorithms (convolution) that perform the two dimensional discrete wavelet transform.
We have analyzed the behavior of the proposed algorithms over a shared-memory multi-
processor and a GPU architecture. Furthermore, we have compared our multicore-based
proposals against a recent algorithm called SMDWT. The multicore-based algorithms
obtain a speed-up above 1.9 using two processors and above 2.4 and up to 3.4 using four
processors. Since the best results over a multicore platform have been obtained by the
convolution algorithm which also requires a smaller buffer size, we have developed the
corresponding GPU-based algorithm using CUDA and implemented the row/column
buffer in the GPU shared memory. The speed-up achieved by the GPU-based algo-
rithm is up to 20. We have also compared several CUDA-based algorithms, based on
both the proposed multicore-based algorithms and the CUDA SDK proposals. In con-
clusion, we would like to point out that (1) the use of a multicore platform obtains good
performance, and (2) we obtain a good speed-up in a GPU respect to the results ob-
tained in the multicore platform. The CUDA based algorithm to be chosen depends on
the parameters to optimize, which can be either the computation time or the memory
requirements.
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