
Abstract

In this paper we describe some parallel algorithms for solving nonlinear systems us-

ing CUDA (Compute Unified Device Architecture) over a GPU (Graphics Processing

Unit). The proposed algorithms are based on both the Fletcher-Reeves version of the

nonlinear conjugate gradient method and a polynomial preconditioner type based on

block two-stage methods. Several strategies of parallelization and different storage

formats for sparse matrices are discussed. The reported numerical experiments an-

alyze the behavior of these algorithms working in a fine grain parallel environment

compared with a thread-based environment.

Keywords: GPGPU, GPU libraries, multicore, nonlinear conjugate gradient algo-

rithms, parallel preconditioners, ILU factorizations, two-stage methods, Bratu prob-

lem.

1 Introduction

Consider the problem of solving the mildly nonlinear system

Ax = Φ(x), (1)

where A ∈ <n×n is a symmetric positive definite matrix and Φ : <n → <n is a nonlin-

ear function with certain local smoothness properties. Let Ψ : <n → < be a nonlinear

mapping and consider 〈x, y〉 = xT y the inner product in <n. The minimization prob-

lem of finding x ∈ <n such that

J(x) = min
y∈<n

J(y), (2)

where J(x) = 1
2
〈Ax, x〉 − Ψ(x), is equivalent to find x ∈ <n such that F (x) =

Ax − Φ(x) = 0, where Φ(x) = Ψ′(x).
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An effective approach for solving nonlinear system (1), by considering the connection

with the minimization problem (2), is the Fletcher-Reeves version [1] of the nonlinear

conjugate gradient method (NLCG), which takes the following form:

Algorithm 1 (Fletcher-Reeves Nonlinear Conjugate Gradient)

Given an initial vector x(0)

r(0) = Φ(x(0)) − Ax(0)

p(0) = r(0)

For i = 0, 1, . . . , until convergence

αi =→ see below

x(i+1) = x(i) + αip
(i)

r(i+1) = r(i) − Φ(x(i)) + Φ(x(i+1)) − αiAp(i)

Convergence test

βi+1 = −
〈r(i+1),r(i+1)〉
〈r(i),r(i)〉

p(i+1) = r(i+1) − βi+1p
(i)

Note that, in Algorithm 1, αi is chosen to minimize the associated functional J in

the direction p(i). This is equivalent to solve the one dimensional zero-point problem
dJ(x(i)+αip

(i))
dαi

= 0. From the definition of J it follows that

J(x(i) + αp(i)) =
1

2

〈

A(x(i) + αip
(i)), x(i) + αip

(i)
〉

− Ψ(x(i) + αip
(i)).

Then a simple differentiation with respect to αi yields

dJ(x(i) + αip
(i))

dαi

= αi

〈

Ap(i), p(i)
〉

−
〈

r(i), p(i)
〉

+
〈

Φ(x(i)) − Φ(x(i) + αip
(i)), p(i)

〉

,

where r(i) = Φ(x(i)) − Ax(i) is the nonlinear residual.

On the other hand, it is easy to see that the second derivative with respect to αi

takes the form

d2J(x(i) + αip
(i))

dα2
i

=
〈

Ap(i), p(i)
〉

−
〈

Φ′(x(i) + αip
(i))p(i), p(i)

〉

.

Then, using the Newton method for solving the zero-point problem for αi, we obtain

α
(k+1)
i = α

(k)
i − δ(k), where

δ(k) =
dJ(x(i) + α

(k)
i p(i))/dαi

d2J(x(i) + α
(k)
i p(i))/dα2

i

=

α
(k)
i

〈

Ap(i), p(i)
〉

−
〈

r(i), p(i)
〉

+
〈

Φ(x(i)) − Φ(x(i) + α
(k)
i p(i)), p(i)

〉

〈Ap(i), p(i)〉 −
〈

Φ′(x(i) + α
(k)
i p(i))p(i), p(i)

〉 .
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Note that in order to obtain δ(k), the inner products 〈Ap(i), p(i)〉 and 〈r(i), p(i)〉 can be

computed once at the first Newton iteration. Moreover Ap(i) is available from the

conjugate gradient iteration.

In order to generate efficient algorithms to solve the nonlinear system (1), we have

designed a parallel version of Algorithm 1 and a parallel nonlinear preconditioned

conjugate gradient algorithm, based on both Algorithm 1 and a polynomial precondi-

tioner type based on the block two-stage methods [2]. The Fletcher-Reeves version

of the developed nonlinear conjugate gradient algorithm is based on a set of routines;

the most important of which are sparse matrix vector product (SpMV) and inner (or

dot) product, in addition to other vector computations. We discuss several strategies to

compute these operations and we consider different storage formats for sparse matri-

ces. In the preconditioned method, incomplete LU factorizations are used in order to

obtain the inner splittings of the block two-stage method, therefore we analyze several

strategies taking into account that there is no fine grain inherent parallelism in the LU

solver.

The algorithms described here have been implemented on an Intel Core 2 Quad

Q6600 and an NVIDIA GTX 280 GPU. In order to analyze the behavior of these

algorithms we have considered a nonlinear elliptic partial differential equation known

as the Bratu problem [3].

In Section 2 we describe the preconditioned conjugate gradient algorithm and the

constructed preconditioners. Some concepts about GPU architecture and its parallel

programming are given in Section 3. In Section 4 we will review the sparse matrix

storage formats used in this work and in Section 5 we will explain how we have im-

plemented the basic operations used in order to perform the algorithms described in

Sections 1 and 2. Finally, in Section 6, we display the numerical results obtained

using CUDA over a GPU and we compare these results with those obtained on the

shared memory platform using an OpenMP model. Furthermore, a mixed model is

considered in order to exploit the characteristics of both parallel systems.

2 Nonlinear Preconditioned CG Method

Preconditioning is a technique for improving the condition number (cond) of a matrix.

Suppose that M is a symmetric, positive definite matrix that approximates A, but is

easier to invert. We can solve Ax = Φ(x) indirectly by solving M−1Ax = M−1Φ(x).
If cond(M−1A) << cond(A) we can iteratively solve M−1Ax = M−1Φ(x) more

quickly than the original problem. In this case we obtain the following nonlinear

preconditioned conjugate gradient algorithm (NLPCG).

Algorithm 2 (Nonlinear Preconditioned Conjugate Gradient)

Given an initial vector x(0)

r(0) = Φ(x(0)) − Ax(0)

Solve Ms(0) = r(0)

p(0) = s(0)
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For i = 0, 1, . . . , until convergence

αi =→ see Algorithm 1

x(i+1) = x(i) + αip
(i)

r(i+1) = r(i) − Φ(x(i)) + Φ(x(i+1)) − αiAp(i)

Solve Ms(i+1) = r(i+1)

Convergence test

βi+1 = −
〈s(i+1),r(i+1)〉
〈s(i),r(i)〉

p(i+1) = r(i+1) − βi+1p
(i)

Since the auxiliary system Ms = r must be solved at each conjugate gradient itera-

tion, this system needs to be easily solved. Moreover, in order to obtain an effective

preconditioner, it wants M to be a good approximation to A. One of the general pre-

conditioning techniques for solving linear systems is the use of the truncated series

preconditioning [4]. These preconditioners consist of considering a splitting of the

matrix A as

A = P − Q (3)

and performing m steps of the iterative procedure defined by this splitting toward the

solution of As = r, choosing s(0) = 0. It is well known that the solution of the

auxiliary system Ms = r is effected by s = (I + R + R2 + . . . + Rm−1)P−1r, where

R = P−1Q and the preconditioning matrix is Mm = P (I +R +R2 + . . .+Rm−1)−1,

cf. [4].

In order to obtain the preconditioners we use m steps of block two-stage methods

toward the solution of As = r, choosing s(0) = 0. More specifically, suppose that A

is partitioned into p × p blocks, with square diagonal blocks of order nj,

p
∑

j=1

nj = n,

such that system (1) can be written as











A11 A12 · · · A1p

A21 A22 · · · A2p

...
...

...

Ap1 Ap2 · · · App





















x1

x2
...

xp











=











Φ1(x)
Φ2(x)

...

Φp(x)











, (4)

where x and Φ(x) are partitioned according to the size of the blocks of A. Let us

consider the splitting (3) such that P consists of the diagonal blocks of A in (4), that

is

P = diag(A11, . . . , App). (5)

Note that in this case, performing m steps of the iterative procedure defined by the

splitting (3) to approximate the solution of As = r, corresponds to perform m steps

of the Block Jacobi method. Thus, at each step l, l = 1, 2, . . . , of a Block Jacobi

method, p independent linear systems of the form

Ajjs
(l)
j = (Qs(l−1) + r)j, 1 ≤ j ≤ p, (6)
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need to be solved; therefore each linear system (6) can be solved by a different pro-

cessor. However, when the order of the diagonal blocks Ajj , 1 ≤ j ≤ p, is large, it

is natural to approximate their solutions by using an iterative method, and thus we are

in the presence of a two-stage iterative method; see e.g., [2]. In a formal way, let us

consider the splittings

Ajj = Bj − Cj, 1 ≤ j ≤ p, (7)

and at each lth step perform, for each j, 1 ≤ j ≤ p, q(j) iterations of the iterative

procedure defined by the splittings (7) to approximate the solution of (6). That is, to

solve the auxiliary system Ms = r of Algorithm 2, we use m steps of the iteration

s(l) = Ts(l−1) + W−1r, l = 1, 2, . . . ,m, choosing s(0) = 0, where

T = H + (I − H)P−1Q, W = P (I − H)−1, (8)

with P defined in (5) and H = diag((B−1
1 C1)

q(1), . . . , (B−1
p Cp)

q(p)); see e.g., [5].

This linear method is established in the following algorithm [2].

Algorithm 3 (Parallel Block Two-Stage)

Given an initial vector s(0) =
(

(s
(0)
1 )T , (s

(0)
2 )T , . . . , (s

(0)
p )T

)T

, and a sequence of num-

bers of inner iterations q(j), 1 ≤ j ≤ p
For l = 1, 2, . . ., until convergence

In processor j, j = 1, 2, . . . , p

y
(0)
j = s

(l)
j

For k = 1 to q(j)

Bjy
(k)
j = Cjy

(k−1)
j + (Qs(l−1) + r)j

s(l) =
(

(y
(q(1))
1 )T , (y

(q(2))
2 )T , . . . , (y

(q(p))
p )T

)T

We note that the updated vector from m steps of Algorithm 3 with s(0) = 0 is given

by s(m) = (I + T + T 2 + . . . + Tm−1)W−1r where T and W are defined in (8).

Therefore, the preconditioner related to the block two-stage method is given by Mm =
W (I + T + T 2 + . . . + Tm−1)−1.

3 GPU Architecture - CUDA Parallel Programming

The GPU architecture is based on a set of multiprocessor units called streaming mul-

tiprocessors (SM), each one containing a set of processor cores called streaming pro-

cessors (SP). CUDA is a heterogeneous computing model that involves both the CPU

and the GPU. In the CUDA parallel programming model [6, 7], an application consists

of a sequential host program, that may execute parallel programs known as kernels on

a parallel device, i.e. GPU. Note the CPU could be a multicore processor running an

OpenMP model program; in this case only one core can call a kernel, i.e. kernel calls

must be serialized. A kernel is an SPMD (Single Program Multiple Data) computa-

tion that is executed using a potentially large number of parallel threads. Each thread

5



runs the same scalar sequential program. The programmer organizes the threads of a

kernel into a grid of thread blocks. The threads of a given block can cooperate among

themselves using barrier synchronization. The main memories available in GPUs are:

the global memory, which has the highest latency; the constant and the texture mem-

ories, which are read only memories; shared memory and registers, both are on-chip

memories, shared memory is owned by a block and registers owned by a thread. The

constant and the texture memories have on-chip cache, none of them will be used due

to the characteristics of our problem.

Thread creation, scheduling, and management are performed entirely in hardware.

For example, the GTX 280 GPU contains 30 multiprocessors, and it can work with a

maximum of 30K threads. In order to manage efficiently this large number of threads,

the GPU employs an SIMT (Single Instruction Multiple Thread) architecture [6, 8]

in which the threads of a block are executed in groups of 32 called warps. A warp

executes a single instruction at a time across all its threads. The threads of a warp are

free to follow their own execution. The thread execution may diverge, however, it is

substantially more efficient for threads to follow the same execution path for the bulk

of the computation.

4 Sparse Matrix Storage Formats

In this section, we describe the sparse matrix formats used in order to optimize the

sparse matrix vector product. Concretely, we have used the Compressed Row Storage

(CSR) format, the ELLPACK (or ITPACK) format [9], and the ELLPACK-R format

proposed in [10]. There are a multitude of sparse matrix representations, each one

with different storage requirements, computational characteristics, and methods of

accessing and manipulating entries of the matrix. In the context of sparse matrix vector

product on GPU, we have only considered common sparse matrix formats suitable to

obtain a good behavior for computing on the GPU.

The compressed row storage (CRS) format is a popular, general-purpose sparse

matrix representation, it makes absolutely no assumptions about the sparsity structure

of the matrix, and it does not store any unnecessary element. The CRS format puts

the subsequent nonzero elements of the matrix rows in contiguous memory locations.

Assuming we have a nonsymmetric sparse matrix A, we create three vectors: one for

floating point numbers and other two for integers. The floating point vector stores the

values of the nonzero row elements of the matrix A, following a row-wise method.

One of the integer vectors stores the column indexes of the elements in the values

vector. The other integer vector stores the locations in the values vector that start a

row, therefore the last entry corresponds to NNZ (NNZ+1 if the first element is equal

to 1 instead of 0), the number of nonzero elements in the matrix.

ELLPACK [9] was introduced as a format to compress a sparse matrix with the pur-

pose of solving large sparse linear systems on vector computers. Note that there are

some similarities between a vector architecture and the GPU architecture. This for-
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mat stores the sparse matrix on two arrays, one for floating point numbers, to store the

nonzero elements, and one for integers, to store the columns of every nonzero element.

Both arrays are of dimension at least N ∗MaxEntriesbyRows, where N is the num-

ber of rows and MaxEntriesbyRows is the maximum number of nonzero elements

per row in the matrix. Note that the size of all rows in these compressed arrays is the

same, for this purpose every row is padded with zeros. Therefore, ELLPACK can be

considered as an approach to fit a sparse matrix in a regular data structure similar to a

dense matrix. Consequently, this format, as we said above, is appropriate to compute

operations with sparse matrices on vector architectures. However, if the percentage

of zeros is high and there is a very irregular location of entries in different rows, then

the performance of the ELLPACK data structure decreases and storage requirements

increase.

ELLPACK-R is a variant of the ELLPACK format introduced in [10] with the pur-

pose to optimize the sparse matrix vector product in GPUs. ELLPACK-R consists of

two arrays of dimension N ∗ MaxEntriesbyRows, following original ELLPACK;

moreover, an additional integer array of dimension N is included with the purpose of

storing the actual length of every row, regardless of the number of the zero elements

padded. Note that the arrays must store their elements in column-major order. The ad-

vantage of ELLPACK-R (see [10]) are: the coalesced global memory access, thanks to

the column-major ordering used to store the matrix elements into the data structures;

as the two previous formats, it is well-suited for computing sparse matrix vector prod-

uct on GPU because it allows non-synchronized execution between different blocks of

threads; the reduction of the waiting time or unbalance between threads of one warp;

and homogeneous computing within the threads in the warps.

5 Basic Operations

Following Algorithm 1 and Algorithm 2, the basic operations to implement the meth-

ods proposed are:

• Sparse matrix vector product.

• Vector operations (included in level 1 BLAS [11]).

• Inner product.

• LU solver (included in SPARSKIT [12] only for NLPCG method; see Sec-

tion 6).

In the rest of this section, we describe the different ways of computing these basic

operations and we analyze them in the context of our work, that is, in the context of

solving nonlinear systems using the NLCG and NLPCG methods. Some optimiza-

tions will be considered in Section 6 from a global perspective with respect to the

algorithms.
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5.1 Sparse Matrix Vector Product

In order to compute the sparse matrix vector product (SpMV), we must consider the

different sparse matrix formats described in Section 4. Particularly, the kernel code

to compute the SpMV, using CSR format is not optimized. In order to optimize the

code there are two ways, the first one is to use a storage format to optimize subsequent

computation and the second one is to optimize the access to GPU global memory mod-

ifying the thread mapping. However, in the second case the optimizations performed

are focused on matrices with higher sparsity pattern than the matrices of the test exam-

ple used in our work (see Section 6). Note that, in our test example the typical number

of nonzero elements by row is 7, and, for example, the optimizations presented in [13]

need more than 32 nonzero elements per row. Consequently, in order to optimize the

SpMV operation, we will consider the use of ELLPACK and ELLPACK-R storage

formats. Note that in both formats the memory access pattern is improved.

On the other hand, in order to compute the SpMV we use CUSPARSE [14]. CUS-

PARSE is a new library of GPU-accelerated sparse matrix routines for sparse/sparse

and dense/sparse operations. Currently, the sparse matrix vector product is only sup-

ported in CSR format.

5.2 Vector Operations

As we can see in Algorithm 1 and Algorithm 2, the common vector operations, without

reduction process, are the vector copy, the scalar vector product, the axpy operation

and the nonlinear function computation of the nonlinear system. In order to opti-

mize these operations, we try to group several operations into a single kernel. On the

other hand, CUBLAS[15] has been used to compute the basic operations with vectors.

CUBLAS is an implementation of BLAS (Basic Linear Algebra Subprograms) using

CUDA. Note that, the use of CUBLAS does not allow to group several operations into

a single kernel, however in our code we perform the axpy function and the vector copy

function in the same kernel.

5.3 Inner Product

The inner (or dot) product of a vector is a special operation in CUDA because it im-

plies a reduction process. It is necessary to be able to use multiple thread blocks in

order to process large vectors and keep busy all streaming multiprocessors (SM) of the

GPU. For this purpose each thread block makes a reduction of a portion of the vec-

tor, but CUDA has no global synchronization to communicate partial results between

thread blocks. To perform inner products we follow the proposal of NVIDIA CUDA

C SDK, i.e., we compute VectorN vectors of ElementN elements. ElementN must be

a multiple of the warp size to meet alignment constraints of memory coalescing. One

block computes the reduction of one or more portions of vector. In order to avoid

synchronization processes, we work with a shared memory array of size ACCUM N
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which acts as accumulator. ACCUM N must be a power of two and preferably multiple

of the warp size. Each thread computes an accumulator element through vectors with

stride equal to ACCUM N. To finish the kernel we perform a tree-like reduction of

the results stored in the accumulator array, where synchronization processes between

threads are necessary. Note that CPU must complete the operation by computing the

VectorN partial results. The kernel code for computing a single inner product is the

following, but in our code we group several inner products in only one kernel.

CUDA Inner Product
1 g l o b a l void I n n e r P r o d c u t ( double∗ r e s p r o d , double∗ x ,

2 double∗ y , i n t vectorN , i n t elementN ){
3 s h a r e d double accumResu l t [ACCUM N ] ;

4 f o r ( i n t vec= b l o c k I d x . x ; vec<vec to rN ; vec += gridDim . x ){
5 i n t v e c t o r B a s e = IMUL( elementN , vec ) ;

6 i n t v e c t o r E n d = v e c t o r B a s e +elementN ;

7 f o r ( i n t iAccum= t h r e a d I d x . x ; iAccum<ACCUM N; iAccum+=blockDim . x ){
8 double sum = 0 ;

9 f o r ( i n t pos= v e c t o r B a s e +iAccum ; pos<v e c t o r E n d ; pos +=ACCUM\ N ){
10 sum += x [ pos ] ∗ y [ pos ] ; }
11 accumResu l t [ iAccum ] = sum ;}
12 f o r ( i n t s t r i d e = ACCUM\ N / 2 ; s t r i d e > 0 ; s t r i d e >>= 1){
13 s y n c t h r e a d s ( ) ;

14 f o r ( i n t iAccum= t h r e a d I d x . x ; iAccum<s t r i d e ; iAccum+=blockDim . x ){
15 accumResu l t [ iAccum ]+= accumResu l t [ s t r i d e +iAccum ] ;}}
16 i f ( t h r e a d I d x . x ==0) {
17 r e s p r o d [ vec ] = accumResu l t [ 0 ] ;}}
18 }

On the other hand, CUBLAS also provides inner product, and taking into account

that we work with the optimized version included in CUDA Toolkit 3.2 RC, we will

not consider other optimizations.

5.4 LU Solver

In the LU solver each computed element of the solution vector is needed to compute

the next element. There is no fine grain inherent parallelism. We have tried various

strategies to compute the LU solver on the GPU but efficiency has not been achieved.

Moreover the technique used in order to exploit multicore CPU architectures becomes

ineffective due to CPU-GPU communications. Due to the structure of (4) and assum-

ing that p is the number of cores, the speed of convergence of the NLPCG method

in a multicore decreases when the number of cores increases; therefore the amount

of communications between CPU and GPU increases. In Section 6 we will show re-

sults using CUDA and OpenMP in multicore CPU. Note that in the NLCG method

the communications between CPU and GPU are reduced to some scalars and arrays

to complete reduction operations.

6 Numerical Experiments

In order to illustrate the behavior of the NLCG and NLPCG methods, we have run

both algorithms on a multicore computer Intel Core 2 Quad Q6600, 2.4 GHz, with 4

9



GB of RAM and 8 MB of L2 Cache Memory, called SULLI. The operating system in

SULLI is Ubuntu 9.04 (Jaunty Jackalope) for 64 bit systems. The GPU is an NVIDIA

GeForce GTX 280 connected to SULLI. The CUDA kernels were compiled using the

NVIDIA CUDA compiler (nvcc) from CUDA Toolkit 3.2 RC.

As our illustrative example we have considered a nonlinear elliptic partial differen-

tial equation, known as the Bratu problem. In this problem, heat generation from

a combustion process is balanced by heat transfer due to conduction. The three-

dimensional model problem is given as

∇2u − λeu = 0, (9)

where u is the temperature and λ is a constant known as the Frank-Kamenetskii pa-

rameter; see e.g., [3]. There are two possible steady-state solutions to this problem for

a given value of λ. One solution is close to u = 0 and it is easy to obtain. A starting

point near to the other solution is needed to converge to it. For our model case, we

consider a 3D cube domain Ω of unit length and λ = 6. To solve equation (9) using

the finite difference method, we consider a grid in Ω of d3 nodes. This discretization

yields a nonlinear system of the form Ax = Φ(x), where Φ : <n → <n is a nonlinear

diagonal mapping, i.e., the ith component Φi of Φ is a function only of the ith compo-

nent of x. The matrix A is a sparse matrix of order n = d3 and the typical number of

nonzero elements per row of this matrix is seven, with fewer in rows corresponding to

boundary points of the physical domain.

The analysis performed are based on the run-times measured on a GeForce GTX

280 compared with the parallel run-times measured on SULLI using OpenMP. First

we present results for the NLCG method with problems of various sizes. In Figure 1

we show the speed-up using OpenMP and different number of cores in SULLI, and

the speed-up when the NLCG method is computed in the NVIDIA GeForce GTX 280

GPU, managed from one core of SULLI. We obtain a good speed-up with OpenMP

using the available cores, but not comparable with the speed-up obtained with GPU,

greater than 25. These results confirm a good interaction between the NLCG algorithm

and a GPU computing platform.

In Figure 2 we analyze the behavior of the NLCG algorithm with respect to the

number of threads in each block. Note that, in order to call a CUDA kernel, we set the

number of threads of each block and the maximum number of threads is 512. There-

fore, the number of blocks in each grid depends on the number of threads required.

For example, if each block has 512 threads, for calling the axpy kernel working with

a system of size n = 373248, it is required a grid with 729 blocks. On the other

hand, for calling the inner product kernel, the number of blocks and the number of

threads in each block should be selected in order to obtain the best performance. In

Figure 2 we present results varying the block size, with ACCUM N equal to 128; note

that we work grouping operations and therefore we work with several arrays in the

GPU shared memory. The best performance is obtained using 256 or 128 threads in

each block. These results can be extended to all experiments performed.

In Figure 3 we analyze the influence of ACCUM N, that is, the size of the shared

memory arrays that act as accumulators. Remark that we can not work with high sizes
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Figure 1: Speed-up NLCG method.

Figure 2: NLCG method, ACCUM N= 128.
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Figure 3: NLCG method, BLOCK = 128.

because we declare more than one array in each kernel that implements reduction

operation. Figure 3 presents results calling kernels with 128 threads per block and for

different system sizes. As it can be seen, though the best value to be selected is 128,

the influence of ACCUM N is not critical. In this case, it is also possible to extend this

conclusion to all experiments performed.

In Figure 4 we analyze the performance of the different storage formats explained

in Section 4. The sparse matrix storage format used changes the code to compute the

SpMV operation (see Section 5.1). The best results are obtained using ELLPACK-

R format. The algorithm for computing SpMV using ELLPACK-R does not include

flow control instructions that serialize the execution of a warp of 32 threads and it al-

lows coalesced matrix data access. Note that ELLPACK-R format is the sparse matrix

storage format with highest memory requirement from among the formats discussed.

This is due to using a vector for integers in order to store the number of nonzero ele-

ments of each row and to avoid the flow control inside the iterative loop for computing

each element. In [10] it is confirmed that the performance improvement for matrices

with high sparsity pattern is not significant. The results shown in Figure 4 have been

obtained using optimal values for the rest of parameters.

To conclude the analysis of the NLCG method , we present in Figure 5 results us-

ing the CUBLAS and CUSPARSE libraries, included in the CUDA Toolkit 3.2 RC.

We analyze the use of CUBLAS and the use of CUSPARSE separately, and the use of

both together. First, when we only use CUBLAS library the results are worse than the

best results using only the CUDA API. This is due to the optimizations performed by

grouping operations, which can not be performed using CUBLAS. In addition, reduc-

tion operations may be affected by the parameters. In contrast, the use of CUSPARSE

leads to a slight improvement. Remark that, CUBLAS and CUSPARSE libraries hide

to the user the setting of parameters, both for calling kernels as in the reduction oper-

ations.

In order to analyze the NLPCG method (see Section 2), we consider the outer

splitting A = P − Q determined by P = diag(A11, . . . , App). Note that, as we have

mentioned in Section 5.4, the LU solver is computed in the multicore, therefore p
is the number of cores. Let us further consider an incomplete LU factorization of
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Figure 4: NLCG method vs sparse matrix storage format.

Figure 5: NLCG method using CUBLAS and/or CUSPARSE.

(a) ILU(0) (b) ILU(1)

Figure 6: NLPCG, 1 core + GPU, n = 373248.
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Figure 7: NLPCG, 2 cores + GPU, n = 884736, ILU(0).

each matrix Ajj , j = 1, 2, . . . , p, that is Ajj = LjUj − Rj , and at each lth step

perform, for each j, q(j) inner iterations of the iterative procedure defined by this

splitting. Let us denote by ILU(S) the incomplete LU factorization associated with

the zero pattern subset S of Sn = {(i, j) : i 6= j, 1 ≤ i, j ≤ n}. In particular,

when S = {(i, j) : aij = 0}, the incomplete factorization with zero fill-in, known as

ILU(0), is obtained. To improve the quality of the factorization, many strategies for

altering the pattern have been proposed. In the “level of fill-in” factorizations [16],

ILU(κ), κ ≥ 0, a level of fill-in is recursively attributed to each fill-in position from

the levels of its parents. Then, the positions of level lower than κ are removed from

S. In the experiments reported here, we have used these ILU(κ) factorizations for the

matrices Ajj, j = 1, 2, . . . , p, defined above.

First, we present results showing the behavior of the characteristic parameters of

the NLPCG method, which are the number of outer iterations, the number of inner

iterations of the block two-stage method and the level of fill-in of the incomplete LU

factorizations. Initially, we consider only one block, thus the method uses one core

and the GPU. In Figure 6 we present results varying the number of inner iterations q
and the number of outer iterations m, for a system of size equal to 373248 and level of

fill-in equal to 0 and equal to 1. Figure 6 shows that the best results are obtained using

q = 1 and m = 1. The experiments performed show analogous results to the results

obtained in a multicore architecture, where the best results were obtained with small

values of q and m (see [17]).

We present results using 2 cores and the GPU to solve a system of size 884736 in

Figure 7. The results correspond to a level of fill-in equal to 0. In this case the optimal

value of the number of outer iterations is m = 2. Since the LU solver is performed at

the CPU, using more than one core can benefit the algorithm; however, it is important

to remark that using the optimal values it should not be used more than one core,

because the increase in the number of global iterations required does not allow an

improvement. This performance using optimal values is presented in Figure 8.
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(a) n = 373248 (b) n = 884736

Figure 8: NLPCG, m = 1, q = 1.

Figure 9: NLPCG, 1 core + GPU, m = 1, q = 1, ILU(0).

The conclusions about the optimal value of the number of threads in each block

have been analogous to those obtained in the NLCG method. That is, the optimal

block size is 128 or 256, but the choice of a non-optimal block size is not critical. On

the other hand, the behavior of the NLPCG algorithm is not affected by the value of

ACUMM N.

Figure 9 shows that the use of CUBLAS in the NLPCG method slightly increases

the computational times, as we have also seen in the NLCG method. Moreover, the

NLPCG method is not affected by using CUSPARSE. It is due to the small number

of iterations of the NLPCG method, which is nearly 10 times lower than the iterations

needed by the NLCG method .

Finally, from the analysis of Figure 10 it deduces that the speed-up using GPU is

greater than the speed-up using four cores of the CPU. Nevertheless the speed-up is

not comparable with the value obtained by the NLCG method, which was above 25.

This is due to the need to run the LU solver on the CPU, and the decrease of the work

performed on the GPU. In addition, the communications between CPU and GPU are

increased. Clearly, as we have explained, both methods present very different inherent

parallelism, therefore their performance on two different parallel architectures is also
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(a) n = 373248 (b) n = 884736

Figure 10: Comparison NLCG and NLPCG on CPU and GPU.

different.

7 Conclusion

We have developed the Fletcher-Reeves version of the nonlinear conjugate gradient

method and we have applied a polynomial preconditioner type based on the two-stage

methods, using the GPGPU technique (General-purpose computing on graphics pro-

cessing units). We have analyzed both methods using a multicore OpenMP model,

a GPGPU model and a mixed model in order to exploit both parallel systems. We

have analyzed the proposed algorithms in order to identify the main operations, and

we have implemented some optimizations and tested some libraries in order to per-

form these operations optimally. CUBLAS and CUSPARSE libraries offer a good

performance, and the sparse matrix format should be chosen according to the paral-

lel architecture, being ELLPACK-R the most efficient format. On the other hand, we

have shown differences in adaptation of both methods to fine grain GPU architecture.

We would like to point out that the use of the GPU improves the results obtained using

any of the proposed methods and on the other hand the NLCG method exploits better

the parallelism offered by the GPU than the NLPCG method.
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