
J. Parallel Distrib. Comput. () –

Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

GPU-based parallel algorithms for sparse nonlinear systems✩

V. Galiano a, H. Migallón a, V. Migallón b,∗, J. Penadés b

a Department of Physics and Computer Architectures, University Miguel Hernández, E-03202, Elche, Alicante, Spain
b Department of Computer Science and Artificial Intelligence, University of Alicante, E-03071, Alicante, Spain

a r t i c l e i n f o

Article history:
Received 1 March 2011
Received in revised form
5 September 2011
Accepted 28 October 2011
Available online xxxx

Keywords:
GPGPU
GPU libraries
Multicore architectures
Nonlinear conjugate gradient algorithms
Parallel preconditioners
Bratu problem

a b s t r a c t

In this work we describe some parallel algorithms for solving nonlinear systems using CUDA (Compute
Unified Device Architecture) over a GPU (Graphics Processing Unit). The proposed algorithms are based
on both the Fletcher–Reeves version of the nonlinear conjugate gradient method and a polynomial
preconditioner type based on block two-stage methods. Several strategies of parallelization and different
storage formats for sparse matrices are discussed. The reported numerical experiments analyze the
behavior of these algorithms working in a fine grain parallel environment compared with a thread-based
environment.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Graphics Processing Units (GPUs) have become a powerful
many-core processor and useful tool within the computational
science community. Themassively parallel architecture offers high
performance inmany computing applicationswhen the algorithms
map well to the characteristics of the GPU.

The conjugate gradient (CG) algorithm [10] is an efficient
method for solving linear systemswith symmetric positive definite
matrices. The performance of this algorithm can be improved by
considering the preconditioned conjugate gradient (PCG) method.
Its efficiency and robustness have been proved for a wide range
of applications. There are several works about this kind of linear
algorithms for GPUs. In [16] a sparse matrix solver for the
conjugate gradient method on GPUs is described. On the other
hand, in [5] an efficient implementation of a Jacobi preconditioned
conjugate gradient algorithm on GPUs is developed. Recently,
an SSOR preconditioned conjugate gradient algorithm on GPUs
is analyzed in [9]. The authors focus on the numerical solution
of the generalized Poisson equation and they notice that the
proposed parallel implementation is significantly better than the

✩ This research has been supported by the Spanish Ministry of Science and
Innovation under grant number TIN2011-26254.
∗ Corresponding author.

E-mail addresses: vgaliano@umh.es (V. Galiano), hmigallon@umh.es
(H. Migallón), violeta@dccia.ua.es (V. Migallón), jpenades@dccia.ua.es (J. Penadés).

Jacobi preconditioner implemented in [5]. Moreover, as compared
to the CPU implementation of the CG algorithm, their GPU
preconditioned conjugate gradient implementation is up to 10
times faster; other related works can be found e.g., in [3,8,18].

Focused on the problem of solving nonlinear systems, there
are some works that deal with parallel solvers on GPU. At
present, techniques for solving nonlinear systems on GPUs using
wavelet analysis are developed. Moreover, parallel solvers for
nonlinear systems in Bernstein form based on subdivision and
the Newton–Raphson methods are proposed; see e.g., [6,27]
and the references cited therein. In this work we develop
parallel algorithms for solving nonlinear systems based on the CG
method.

The CG method for linear systems can be extended for
nonlinear systems following the Fletcher–Reeves version [7]. For
this purpose, consider the problem of solving the mildly nonlinear
system

Ax = Φ(x), (1)

where A ∈ ℜ
n×n is a symmetric positive definite matrix and

Φ : ℜ
n

→ ℜ
n is a nonlinear diagonal mapping, i.e., the ith

componentφi ofφ is a function only of the ith component xi of x. Let
Ψ : ℜ

n
→ ℜ be a nonlinearmapping and consider ⟨x, y⟩ = xTy the

inner product in ℜ
n. The minimization problem of finding x ∈ ℜ

n

such that J(x) = miny∈ℜn J(y), where J(x) =
1
2 ⟨Ax, x⟩ − Ψ (x), is

equivalent to find x ∈ ℜ
n such that F(x) = Ax − Φ(x) = 0, where

Φ(x) = Ψ ′(x). The Fletcher–Reeves version [7] of the nonlinear
conjugate gradient method (NLCG) is an effective approach for

0743-7315/$ – see front matter© 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2011.10.016

http://dx.doi.org/10.1016/j.jpdc.2011.10.016
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:vgaliano@umh.es
mailto:hmigallon@umh.es
mailto:violeta@dccia.ua.es
mailto:jpenades@dccia.ua.es
http://dx.doi.org/10.1016/j.jpdc.2011.10.016

2 V. Galiano et al. / J. Parallel Distrib. Comput. () –

solving the nonlinear system (1), by considering the connection
with this minimization problem:

Algorithm 1 (Fletcher–Reeves Nonlinear Conjugate Gradient).

Given an initial vector x(0)

r (0)
= Φ(x(0)) − Ax(0)

p(0)
= r (0)

For i = 0, 1, . . . , until convergence
αi =→ see below
x(i+1)

= x(i)
+ αip(i)

r (i+1)
= r (i)

− Φ(x(i)) + Φ(x(i+1)) − αiAp(i)

Convergence test

βi+1 = −


r(i+1),r(i+1)


⟨r(i),r(i)⟩

p(i+1)
= r (i+1)

− βi+1p(i)

Note that, in Algorithm 1, αi is chosen to minimize the associated
functional J in the direction p(i). This is equivalent to solve the
one dimensional zero-point problem dJ(x(i)+αip(i))

dαi
= 0. Using

the Newton method for solving the zero-point problem for αi, it
obtains α

(k+1)
i = α

(k)
i − δ(k), where

δ(k)
=

α
(k)
i


Ap(i), p(i)


−


r (i), p(i)


+


Φ(x(i)) − Φ(x(i)

+ α
(k)
i p(i)), p(i)



Ap(i), p(i)


−


Φ ′(x(i) + α

(k)
i p(i))p(i), p(i)

 .

Note that in order to obtain δ(k), the inner products ⟨Ap(i), p(i)
⟩

and ⟨r (i), p(i)
⟩ can be computed once at the first Newton iteration.

Moreover Ap(i) is available from the conjugate gradient iteration.
In order to generate efficient algorithms to solve the non-

linear system (1), in [17] we designed a parallel version of
Algorithm 1and aparallel nonlinear preconditioned conjugate gra-
dient algorithm, based on both Algorithm 1 and a polynomial pre-
conditioner type based on the block two-stage methods [4]. The
proposed parallel algorithmswere analyzed onmulticore architec-
tures using an OpenMP model [23]. In this paper we have devel-
oped the implementation of these nonlinear algorithms on GPUs.
The Fletcher–Reeves version of the nonlinear conjugate gradient
algorithm and its preconditioned method are based on a set of op-
erations; the most important of which are the sparse matrix vec-
tor product (SpMV) and the inner (or dot) product, in addition to
other vector computations. We discuss several strategies to com-
pute these operations and we consider different storage formats
for sparse matrices. Furthermore, in the preconditioned method,
incomplete LU factorizations are used in order to obtain the inner
splittings of the block two-stagemethod, thereforewe analyze sev-
eral strategies taking into account that there is no fine grain inher-
ent parallelism in the LU solver.

The algorithms described here have been implemented on an
Intel Core 2 Quad Q6600 and an NVIDIA GTX 280 GPU. In order
to analyze the behavior of these algorithms we have considered a
nonlinear elliptic partial differential equation known as the Bratu
problem [2]. In Section 2we describe the preconditioned conjugate
gradient algorithm and the constructed preconditioners. Some
concepts about GPU architecture and its parallel programming
are given in Section 3. In Section 4 we review the sparse matrix
storage formats used in this work and in Section 5 we explain
how the basic operations have been implemented in order to
perform the algorithms described in Sections 1 and 2. In Section 6,
we display the numerical results obtained using CUDA on a GPU
and we compare these results with those obtained on the shared
memory platform using OpenMP. Furthermore, a mixed model
(using OpenMP and CUDA) is considered in order to exploit
the characteristics of both parallel systems. Finally, concluding
remarks are presented in Section 7.

2. Nonlinear preconditioned conjugate gradient method

Preconditioning is a technique for improving the condition
number (cond) of a matrix. Suppose thatM is a symmetric positive
definite matrix that approximates A, but is easier to invert. We
can solve Ax = Φ(x) indirectly by solving M−1Ax = M−1Φ(x).
If cond(M−1A) ≪ cond(A) we can iteratively solve M−1Ax =

M−1Φ(x) more quickly than the original problem. In this case we
obtain the following nonlinear preconditioned conjugate gradient
algorithm (NLPCG).

Algorithm 2 (Nonlinear Preconditioned Conjugate Gradient).

Given an initial vector x(0)

r (0)
= Φ(x(0)) − Ax(0)

SolveMs(0) = r (0)

p(0)
= s(0)

For i = 0, 1, . . . , until convergence
αi =→ see Algorithm 1
x(i+1)

= x(i)
+ αip(i)

r (i+1)
= r (i)

− Φ(x(i)) + Φ(x(i+1)) − αiAp(i)

SolveMs(i+1)
= r (i+1)

Convergence test

βi+1 = −


s(i+1),r(i+1)


⟨s(i),r(i)⟩

p(i+1)
= r (i+1)

− βi+1p(i)

Since the auxiliary systemMs = r must be solved at each conju-
gate gradient iteration, this systemneeds to be easily solved.More-
over, in order to obtain an effective preconditioner, it wants M to
be a good approximation to A. One of the general preconditioning
techniques for solving linear systems is the use of the truncated
series preconditioning [1]. These preconditioners consist of con-
sidering a splitting of the matrix A as

A = P − Q (2)

and performing m steps of the iterative procedure defined by this
splitting toward the solution of As = r , choosing s(0) = 0. It is well
known that the solution of the auxiliary systemMs = r is effected
by s = (I + R + R2

+ · · · + Rm−1)P−1r , where R = P−1Q and the
preconditioning matrix is Mm = P(I + R + R2

+ · · · + Rm−1)−1,
cf. [1]. In order to obtain the preconditioners we use m steps of
block two-stage methods toward the solution of As = r , choosing
s(0) = 0. More specifically, suppose that A is partitioned into p × p
blocks, with square diagonal blocks of order nj,

p
j=1 nj = n, such

that system (1) can be written as
A11 A12 · · · A1p
A21 A22 · · · A2p
...

...
...

Ap1 Ap2 · · · App



x1
x2
...
xp

 =


Φ1(x)
Φ2(x)

...
Φp(x)

 , (3)

where x andΦ(x) are partitioned according to the size of the blocks
of A. Let us consider the splitting (2) such that P consists of the di-
agonal blocks of A in (3), that is P = diag(A11, . . . , App). Let us con-
sider the splittings Ajj = Bj − Cj, 1 ≤ j ≤ p, then, to solve the
auxiliary systemMs = r of Algorithm 2, the following algorithm is
established.

Algorithm 3 (Block Two-Stage). Given an initial vector s(0) =

((s(0)1)T , (s(0)2)T , . . . , (s(0)p)T)T and a sequence of numbers of inner
iterations q(j), 1 ≤ j ≤ p

V. Galiano et al. / J. Parallel Distrib. Comput. () – 3

For l = 1, 2, . . . , until convergence
For j = 1, 2, . . . , p

y(0)
j = s(l)j

For k = 1 to q(j)
Bjy

(k)
j = Cjy

(k−1)
j + (Qs(l−1)

+ r)j

s(l) =


(y(q(1))

1)T , (y(q(2))
2)T , . . . , (y(q(p))

p)T
T

In order to analyze the NLPCG method, we have considered in
Algorithm 3 an incomplete LU factorization of each matrix Ajj,
j = 1, 2, . . . , p, that is, the splittingsAjj = Bj−Cj are constructed by
setting Bj = LjUj and Cj = Rj, and at each lth step perform, for each
j, q(j) inner iterations of the iterative procedure defined by this
splitting. Let us denote by ILU(S) the incomplete LU factorization
associated with the zero pattern subset S of Sn = {(i, j) : i ≠

j, 1 ≤ i, j ≤ n}. In particular, when S = {(i, j) : aij = 0},
the incomplete factorization with zero fill-in, known as ILU(0),
is obtained. To improve the quality of the factorization, many
strategies for altering the pattern have been proposed. In the ‘‘level
of fill-in’’ factorizations [12], ILU(κ), κ ≥ 0, a level of fill-in is
recursively attributed to each fill-in position from the levels of its
parents. Then, the positions of level lower than κ are removed from
S. In the experiments reported here we have used these ILU(κ)
factorizations for the matrices Ajj, j = 1, 2, . . . , p, previously
defined; see [17] for a more detailed explanation of the algorithms
treated here and their OpenMP implementations.

3. GPU architecture — CUDA parallel programming

The GPU architecture is based on a set of multiprocessor units
called streaming multiprocessors (SM), each one containing a set
of processor cores called streaming processors (SP). CUDA is a
heterogeneous computing model that involves both the CPU and
the GPU. In the CUDA parallel programming model [19,22], an
application consists of a sequential host program, thatmay execute
parallel programs known as kernels on a parallel device, i.e., on a
GPU. Note that the CPU could be a multicore processor running
an OpenMP model program; in this case only one core can call a
kernel, i.e., kernel calls must be serialized. A kernel is an SPMD
(Single ProgramMultiple Data) computation that is executed using
a potentially large number of parallel threads. Each thread runs
the same scalar sequential program. The programmer organizes
the threads of a kernel into a grid of thread blocks. The threads
of a given block can cooperate among themselves using barrier
synchronization. The main memories available in GPUs are: the
global memory, which has the highest latency; the constant and
the texture memories, which are read only memories; shared
memory and registers, both are on-chipmemories, sharedmemory
is owned by a block and registers are owned by a thread. The
constant and the texture memories have on-chip cache. In this
work the global and shared memories have been used.

Thread creation, scheduling, and management are performed
entirely in hardware. For example, the GTX 280 GPU contains
30 multiprocessors, and it can work with a maximum of 30 K
concurrent threads. In order to manage efficiently this large
number of threads, the GPU employs an SIMT (Single Instruction
Multiple Thread) architecture [14,19] in which the threads of a
block are executed in groups of 32 called warps. A warp executes
a single instruction at a time across all its threads. The threads of a
warp are free to follow their own execution. The thread execution
may diverge, however, it is substantially more efficient for threads
to follow the same execution path for the bulk of the computation.

4. Sparse matrix storage formats

There are a multitude of sparse matrix representations,
each one with different storage requirements, computational

characteristics, andmethods of accessing andmanipulatingmatrix
entries. In the context of sparse matrix vector product on GPU,
we have only considered common sparse matrix storage formats
suitable to obtain a good behavior for computing on GPU.
Concretely, we have used the Compressed Row Storage (CRS)
format, the ELLPACK (or ITPACK) format [11], and the ELLPACK-R
format proposed in [25]. A discussion of these storage formats for
the sparse matrix vector product (SpMV) on GPUs can be found
in [26,25].

The Compressed Row Storage (CRS) format is a popular,
general-purpose sparse matrix representation. Assuming we have
a nonsymmetric sparse matrix A, the CRS format stores the matrix
on three vectors: one for floating point numbers and other two for
integers. The floating point vector stores the values of the nonzero
elements of thematrix A, following a row-wise method. One of the
integer vectors stores the column indexes of the elements in the
values vector. The other integer vector stores the locations in the
values vector that start a row.

ELLPACK [11] was introduced as a format to compress a sparse
matrix with the purpose of solving large sparse linear systems on
vector computers. Note that there are some similarities between
a vector architecture and the GPU architecture. This format stores
the sparse matrix on two arrays, one for floating point numbers,
to store the nonzero elements, and one for integers, to store
the columns of every nonzero element. This format, as we have
previously mentioned, is appropriate to compute operations with
sparse matrices on vector architectures. However, as ELLPACK
uses the same number of elements per row padding with zero
elements, if the percentage of zeros is high and there is a very
irregular location of entries in different rows, then the performance
of the ELLPACK data structure decreases and storage requirements
increase, see [26,25].

ELLPACK-R is a variant of the ELLPACK format introduced in [25]
with the purpose of optimizing the sparsematrix vector product on
GPUs. ELLPACK-R consists of two arrays following original ELLPACK
and moreover, an additional integer array is included with the
purpose of storing the actual length of every row, regardless of the
number of the zero elements padded.

5. GPU kernels

In this section, the primary kernels used in the implementation
of the NLCG and NLPCG algorithms are explained. The kernels
represented here perform mathematical operations used in the
algorithms. Following Algorithms 1 and 2, the basic operations
to implement the proposed methods are sparse matrix vector
product, vector operations (included in level 1 BLAS [13]), inner
product and LU solver (included in SPARSKIT [24] only for
NLPCG method; see Section 6). In the rest of this section, we
describe different ways of computing these basic operations and
we analyze them in the context of our work, that is, in the
context of solving nonlinear systems using the NLCG and NLPCG
methods. Some optimizations will be considered in Section 6
from a global perspective with respect to the algorithms. Some of
these operations are also available as kernels in several libraries
as CUBLAS [20] or CUSPARSE [21]. In Section 6 our kernels are
compared to those of these libraries.

5.1. Sparse matrix vector product

In order to compute the sparse matrix vector product (SpMV),
we consider the different sparse matrix storage formats described
in Section 4. Particularly, the kernel code to compute the SpMV,
using CRS format, is not optimized. In order to optimize the
code there are two ways, the first one is to use a storage format
to optimize subsequent computation and the second one is to

4 V. Galiano et al. / J. Parallel Distrib. Comput. () –

Fig. 1. Inner product according to the NVIDIA CUDA C SDK.

optimize the access to the GPU global memory modifying the
thread mapping. However, in the second case the performed
optimizations based on the CRS format are focused on matrices
with higher nonzero elements per row than the matrices used in
our work. Note that, in our test example the typical number of
nonzero elements per row is 7 (see Section 6), and, for example,
the optimizations presented in [15] need more than 32 nonzero
elements per row. Consequently, in order to optimize the SpMV
operation, we consider the use of ELLPACK and ELLPACK-R storage
formats following [25]. Note that in both formats the memory
access pattern is improved. Moreover, according to the mapping
of threads in the computation of every row, we also consider the
SpMV implementations proposed in [26] and based on ELLPACK-R
format. In this proposal, T threads compute the ith element of
the matrix-vector product accessing to the ith row of the matrix.
The implementation of the SpMV following [25] is referred in the
numerical experiments as ELLR, while the implementation of [26]
is referred to as ELLR-T.

On the other hand, in order to compute the SpMV we also
test the use of CUSPARSE [21]. CUSPARSE is a new library of
GPU-accelerated sparse matrix routines for sparse/sparse and
dense/sparse operations. Currently, the sparse matrix vector
product is only supported in CRS format.

5.2. Vector operations

As we can see in Algorithms 1 and 2, the common vector
operations, regardless of the reduction process, are the vector
copy, the scalar vector product, the axpy operation and the
nonlinear function computation of the nonlinear system. In order
to optimize these operations, we try to group several operations
into a single kernel. For example, the inner products needed for
the computation of α as well as the inner products involved in
the β computation are grouped in single kernels. On the other
hand, CUBLAS [20] has been used to compute the basic operations
with vectors. CUBLAS is an implementation of BLAS (Basic Linear
Algebra Subprograms) using CUDA. Note that the use of CUBLAS
does not allow to group several operations into a single kernel,
however in our code we perform the axpy function and the vector
copy function in the same kernel.

5.3. Inner product

The inner (or dot) product of a vector is a special operation
in CUDA because it implies a reduction process. It is necessary

to be able to use multiple thread blocks in order to process large
vectors and keep busy all streaming multiprocessors (SM) of the
GPU. For this purpose each thread block makes a reduction of a
portion of the vector, but CUDA has no global synchronization to
communicate partial results between thread blocks. To perform
inner products we follow the proposal of NVIDIA CUDA C SDK,
i.e., we compute VECTOR_N vectors of ELEMENT_N elements.
ELEMENT_N must be a multiple of the warp size to meet
alignment constraints of memory coalescing. One block computes
the reduction of one or more portions of vector. In order to avoid
synchronization processes, we work with a shared memory array
of size ACCUM_N which acts as an accumulator. ACCUM_N must
be a power of two and preferably a multiple of the warp size.
Each thread computes an accumulator element through vectors
with stride equal to ACCUM_N. To finish the kernel we perform a
tree-like reduction of the results stored in the accumulator array,
where synchronization processes between threads are necessary
(see Fig. 1). Note that, in our implementation, CPU must complete
the operation by computing the VECTOR_N partial results. The
reduction of the VECTOR_N partial results could be performed in
the CPU or in the global memory of the GPU. However, we have
tested both options and we have observed that the use of the
global memory of the GPU for this reduction does not increase the
performance. This is due to the fact that this reduction does not
need a lot of communications between CPU and GPU, and using the
GPU we need to execute a kernel performing a reduction process
of log2(VECTOR_N) steps. Note that the optimal value of VECTOR_N
parameter is 128, therefore we must use a kernel with a single
block with 64 threads. We have tested this process working on
both global memory and shared memory, in both cases we obtain
a slight decrease of the performance than when using the CPU.

On the other hand, CUBLAS also provides inner product, and
taking into account that we work with the optimized version
included in CUDA Toolkit 3.2 RC, we will not consider other
optimizations.

5.4. LU solver

In the LU solver each computed element of the solution vector
is needed to compute the next element. There is no inherent fine
grain parallelism. We have tried various strategies to compute the
LU solver on the GPU but efficiency has not been achieved. Remark
that this procedure performs two loops without dependencies to
compute each element of the solution vector. In the first strategy,
we launch N blocks in one or more kernels, where N is the size

V. Galiano et al. / J. Parallel Distrib. Comput. () – 5

Fig. 2. Kernels sequence for the NLCG and NLPCG algorithms.

of the system, each thread computes its partial computation of
both loops, performing a reduction process to complete the loops.
In the second one, following the partitioning showed in (3), the
computation of each block solution is assigned to each SM of the
GPU. Therefore we perform a partitioning based on the number of
SMs of the GPU, 30 on the GTX 280. On the other hand, strategies
that group independent rows into levels in order to sequentially
iterate across the constructed levels, as the one presented in [18],
entail a sequential computation due to the sparsity pattern of the
LU in our matrix problem. Hence, the parallelism involved by the
preconditioner algorithm (Algorithm 3) has been exploited with
themulticore CPU architecture. However, this parallelismbecomes
somewhat ineffective due to CPU–GPU communications. Due to
the structure of (3) and assuming that p is the number of cores,
the number of iterations of the NLPCG method, in a multicore,
increases with the number of cores; therefore the amount of
communications between CPU and GPU increases. In Section 6
we will show results using CUDA and OpenMP in multicore CPU.
Note that in the NLCG method the communications between CPU
and GPU are reduced to some scalars and the arrays to complete
reduction operations.

Fig. 2 summarizes the kernels used in each algorithm showing
the involved grouped operations according to the structure of
Algorithms 1 and 2. We note that the same kernel is used in both
algorithms for the same operation, except for the computation of
β and p(i+1).

6. Numerical experiments

In order to illustrate the behavior of the NLCG and NLPCG
methods, we have run both algorithms on a multicore computer
Intel Core 2 Quad Q6600, 2.4 GHz, with 4 GB of RAM and 8 MB
of L2 Cache Memory, called SULLI. The operating system in SULLI
is Ubuntu 9.04 (Jaunty Jackalope) for 64 bit systems. The GPU
is an NVIDIA GeForce GTX 280 connected to SULLI. The CUDA
kernels were compiled using the NVIDIA CUDA compiler (nvcc)
from CUDA Toolkit 3.2 RC. As our illustrative example we have
considered a nonlinear elliptic partial differential equation, known
as the Bratu problem. In this problem, heat generation from a
combustion process is balanced by heat transfer due to conduction.
The three-dimensional model problem is given as ∇

2u − λeu = 0,

where u is the temperature and λ is a constant known as the Frank-
Kamenetskii parameter; see e.g., [2]. There are twopossible steady-
state solutions to this problem for a given value of λ. One solution
is close to u = 0 and it is easy to obtain. A starting point near to the
other solution is needed to converge to it. For our model case, we
consider a 3D cube domain Ω of unit length and λ = 6. To solve
this problem using the finite differencemethod, we consider a grid
in Ω of d3 nodes. This discretization yields a nonlinear system of
the form Ax = Φ(x), where Φ : ℜ

n
→ ℜ

n is a nonlinear diagonal
mapping, i.e., the ith component Φi of Φ is a function only of the
ith component of x. The matrix A is a sparse matrix of order n = d3
and the typical number of nonzero elements per row of this matrix
is seven, with fewer in rows corresponding to boundary points of
the physical domain.

The performed analyses are based on the run-times and the
number of floating point operations per second (Flops) measured
on a GeForce GTX 280 compared with the parallel run-times and
Flops measured on SULLI using OpenMP. First we present results
for the NLCGmethodwith problems of various sizes. In Fig. 3(a) we
show the speed-up using OpenMP and different number of cores
in SULLI, and the speed-upwhen the NLCGmethod is computed on
theNVIDIAGeForceGTX280GPU,managed fromone core of SULLI.
In addition, Fig. 3(b) compares this method in terms of GFLOPS
on both architectures. We obtain a good speed-up with OpenMP
using the available cores, but not comparable with the speed-up
obtained with GPU, greater than 36. These results confirm a good
interaction between the NLCG algorithm and a GPU computing
platform. Note that, on the GPU, the NLCG method is about 12–13
times faster than using four cores of the CPU, achieving about 7
GFlops.

In order to call a CUDA kernel, the number of threads of each
block must be established taking into account that the maximum
number of threads is 512. Therefore, the number of blocks in each
grid depends on the number of required threads. For example, if
each block has 512 threads, for calling the axpy kernel working
with a system of size n = 373,248, a grid with 729 blocks is
required. On the other hand, for calling the inner product kernel,
the number of blocks and the number of threads in each block
should be selected in order to obtain the best performance. We
have analyzed the behavior of the NLCG algorithm with respect
to the number of threads in each block and the influence of
ACCUM_N, that is, the size of the shared memory arrays that

6 V. Galiano et al. / J. Parallel Distrib. Comput. () –

(a) Speed-up. (b) GFlops.

Fig. 3. NLCG method.

(a) Comparison sparse matrix storage formats. (b) Comparison CUBLAS and/or CUSPARSE.

Fig. 4. NLCG method.

act as accumulators. Although the influence of the number of
threads in each block and ACCUM_N is not critical, the best
performance is obtained using 128 or 256 threads in each block
and ACCUM_N = 128.

In Fig. 4(a) we analyze the performance of the different storage
formats explained in Section 4. The sparse matrix storage format
used changes the code to compute the SpMV operation (see
Section 5.1). The best results are obtained using ELLPACK-R format
(ELLR and ELLR-T). The algorithms for computing SpMV using
ELLPACK-R do not include flow control instructions that serialize
the execution of a warp of 32 threads and they allow coalesced
matrix data access. Note that ELLPACK-R format is the sparse
matrix storage format with highest memory requirement when
compared with the other discussed formats. This is due to the use
of a vector of integers in order to store the number of nonzero
elements of each row and to avoid the flow control inside the
iterative loop for computing each element. The results shown
in Fig. 4(a) have been obtained using optimal values for all the
parameters. In the case of the ELLR-T implementation, for our
problem, the best performance has been achieved with T = 8 and
using a thread block size of 256 (see [26] for a detailed description
of these parameters). In [25] it is confirmed that, for matrices with
high sparsity pattern having almost the same number of nonzero
elements per row, the performance improvement obtained with
ELLR for the SpMV, is not significant compared with the use of
CRS and ELLPACK formats. In fact, for these three cases, the SpMV
represents, in our test, problems of about the 50% of the total
solving time, and the analysis of the performance (GFlops) of the
SpMV kernels of the algorithm shows similar results for these
storage formats (between 2.3 and 2.6 GFlops). However, the ELLR-
T implementation outperforms the other approaches. In this case
the SpMV represents about the 30% of the total time, achieving
between 5.6 and 5.8 GFlops.

To conclude the analysis of the NLCG method, we present in
Fig. 4(b) results using the CUBLAS andCUSPARSE libraries, included
in the CUDA Toolkit 3.2 RC. We analyze the use of CUBLAS and
the use of CUSPARSE separately, and the use of both together.
First, when we only use CUBLAS library the results are worse
than the results using only the CUDA API (with CRS format). This

is due to the optimizations performed by grouping operations,
which can not be performed using CUBLAS. In addition, reduction
operations may be affected by the parameters. In contrast, the
use of CUSPARSE leads to a slight improvement. In this case
the SpMV kernels of the algorithm achieve between 2.5 and 3.1
GFlops. On the other hand the axpy operations achieve more than
4 GFlops and the inner product operations between 8.5 and 11.5
GFlops. However, the best performance is obtained in the iterative
procedure to compute α achieving between 15.2 and 19.9 GFlops.
Remark that CUBLAS and CUSPARSE libraries hide to the user the
setting of parameters, both for calling kernels and in the reduction
operations.

In order to analyze the NLPCG method, first we present results
showing the behavior of this method respect to its characteristic
parameters, which are the number of outer iterations, the number
of inner iterations of the block two-stage method and the level
of fill-in of the incomplete LU factorizations. Note that, as we
have mentioned in Section 5.4, the LU solver is computed in the
multicore, where p is the number of cores. Initially, we consider
only one block, thus the method uses one core and the GPU. In
Fig. 5 we present results varying the number of inner iterations q
and the number of outer iterations m, for a system of size equal
to 373,248 and level of fill-in equal to 0 and equal to 1. Fig. 5
shows that, for the matrix of size 373,248, the best results are
obtained using q = 1 and m = 1. More specifically, at each
nonlinear iteration of the NLPCG algorithm, only one step (m = 1)
of the truncated series preconditioner defined by Algorithm 3 is
used, performing q = 1 inner iterations of the iterative procedure
defined by the incomplete LU factorization (see Section 2). All
performed experiments have shown analogous results to those
obtained in a multicore architecture, where the best results were
obtained with small values of q andm (see [17]).

Fig. 6 presents results using 2 cores and the GPU to solve a
system of size 884,736. The results correspond to a level of fill-
in equal to 0. Since the LU solver is performed at the CPU, using
more than one core can benefit the algorithm as it is shown in
Fig. 7. However, it is important to remark thatwhen optimal values
are used, it should not be used more than one core, because the
increase in the number of global iterations required does not allow

V. Galiano et al. / J. Parallel Distrib. Comput. () – 7

(a) ILU(0). (b) ILU(1).

Fig. 5. NLPCG, 1 core + GPU, n = 373,248.

Fig. 6. NLPCG, 2 cores + GPU, n = 884,736, ILU(0).

Fig. 7. NLPCG, n = 884,736, m = 2, ILU(1).

Fig. 8. NLPCG, 1 core + GPU, m = 1, q = 1, ILU(0).

an improvement. The conclusions about the optimal value of the
number of threads in each block have been analogous to those
obtained for the NLCG method. On the other hand, the behavior

of the NLPCG algorithm is not affected by the value of ACUMM_N.
Fig. 8 shows that the use of CUBLAS in the NLPCG method slightly
increases the computational times, as we have also seen in the
NLCG method. Moreover, the NLPCG method is not affected by
using CUSPARSE. It is due to the small number of iterations of the
NLPCG method, which is nearly 10 times lower than the iterations
needed by the NLCG method. Finally, from the analysis of Fig. 9 it
is deduced that the speed-up using GPU is greater than the speed-
up using four cores of the CPU. Moreover, as compared to the CPU
implementation of the NLCG algorithm, our GPU implementation
of the NLPCG is up to 18–20 times faster. Nevertheless the speed-
up of the NLPCG method is not comparable with the one obtained
by the NLCG method, which is above 36. This is due to the need
to run the LU solver on the CPU, and the decrease of the work
performed on the GPU. In addition, the communications between
CPU and GPU are increased. Note that the percentage of the
execution time required by the LU solver in the NLPCG algorithm
(using one core of the CPU) is about 40%–50%. This percentage
increases up to 60%–70%when CPU–GPU communications are also
considered. Clearly, bothmethods present a very different inherent
parallelism, therefore their performance on two different parallel
architectures is also different. However, as can be expected, the
best execution times of both methods are always obtained when
the algorithms make use of the GPU.

7. Conclusions

We have developed the Fletcher–Reeves version of the
nonlinear conjugate gradient method and we have applied a
polynomial preconditioner based on two-stage methods. We
have analyzed both methods using a multicore OpenMP model,
a GPGPU model and a mixed model in order to exploit both
parallel systems. We have analyzed the proposed algorithms in
order to identify the main operations, and we have implemented
some optimizations and tested some libraries in order to perform
these operations optimally. CUBLAS and CUSPARSE libraries offer
a good performance, and the sparse matrix format should be
chosen according to the parallel architecture, being ELLPACK-R and
specifically its ELLR-T implementation, the most efficient format.

(a) Total execution time. (b) Speed-up per iteration.

Fig. 9. Comparison NLCG and NLPCG on CPU and GPU, n = 884,736.

8 V. Galiano et al. / J. Parallel Distrib. Comput. () –

We would like to point out that the use of the GPU improves the
results obtained using any of the proposed methods. On the other
hand, the NLCG method exploits better the parallelism offered by
the GPU than the NLPCG method.

References

[1] L. Adams,M-step preconditioned conjugate gradientmethods, SIAM J. Sci. Stat.
Comput. 6 (1985) 452–462.

[2] B.M. Averick, R.G. Carter, J.J. More, G. Xue, The MINPACK-2 test problem
collection, Technical Report MCS-P153-0692, Mathematics and Computer
Science Division, Argonne, 1992.

[3] J. Bolz, I. Farmer, E. Grinspun, P. Schröder, Sparse matrix solvers on the GPU:
conjugate gradients and multigrid, ACM Trans. Graph. 22 (3) (2003) 917–924.

[4] R. Bru, V. Migallón, J. Penadés, D.B. Szyld, Parallel, synchronous and
asynchronous two-stagemultisplittingmethods, Electron. Trans. Numer. Anal.
3 (1995) 24–38.

[5] L. Buatois, G. Caumon, B. Lévy, Concurrent number cruncher: a GPU
implementation of a general sparse linear solver, Int. J. Parallel Emergent
Distrib. Syst. 24 (3) (2009) 205–223.

[6] L. Dechevsky, B. Bang, J. Gundersen, A. Lakså, A.R. Kristoffersen, Solving non-
linear systems of equations on graphic processing units, Lect. Notes Comput.
Sci. 5910 (2010) 719–729.

[7] R. Fletcher, C. Reeves, Function minimization by conjugate gradients, The
Comput. J. 7 (1964) 149–154.

[8] G.A. Gravvanis, C.K. Filelis-Papadopoulos, K.M. Giannoutakis, Solving finite
difference linear systems on GPUs: CUDA parallel explicit preconditioned
biconjugate conjugate gradient type methods, J. Supercomput. (2011)
doi:10.1007/s11227-011-0619-z.

[9] R. Helfenstein, J. Koko, Parallel preconditioned conjugate gradient algorithm
on GPU, J. Comput. Appl. Math. (2011) doi:10.1016/j.cam.2011.04.025.

[10] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear
systems, J. Res. Nat. Bur. Stand. 49 (1952) 409–436.

[11] D.R. Kincaid, D.M. Young, A brief review of the ITPACK project, J. Comput. Appl.
Math. 24 (1–2) (1998) 121–127.

[12] H.P. Langtangen, Conjugate gradient methods and ILU preconditioning of
nonsymmetric matrix systems with arbitrary sparsity patterns, Internat. J.
Numer. Methods Fluids 9 (1989) 213–233.

[13] C.L. Lawson, R.J. Hanson, D. Kincaid, F.T. Krogh, Basic linear algebra
subprograms for FORTRAN usage, ACM Trans. Math. Software 5 (1979)
308–323.

[14] E. Lindholm, J. Nickolls, S. Oberman, J. Montrym, NVIDIA Tesla: a unified
graphics and computing architecture, IEEE Micro 28 (2) (2008) 39–55.

[15] M. Manikandan, R. Bordawekar, Optimizing sparse matrix-vector multiplica-
tion on GPUs, IBM Research Report RC24704, 2008.

[16] D. Michels, Sparse-matrix-CG-solver in CUDA, in: Proceedings of the 15th
Central European Seminar on Computer Graphics, 2011.

[17] H. Migallón, V. Migallón, J. Penadés, Parallel nonlinear conjugate gradient
algorithms on multicore architectures, in: J. Vigo (Ed.), Proceedings of the
International Conference on Computational and Mathematical Methods in
Science and Engineering, 2009, pp. 689–700.

[18] M. Naumov, Parallel solution of sparse triangular linear in the preconditioned
iterative methods on the GPU, NVIDIA Technical Report NVR-2011-001, 2011,
http://research.nvidia.com/sites/default/files/publications/nvr-2011-001.pdf.

[19] J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programmingwith
CUDA, ACM Queue 6 (2) (2008) 40–53.

[20] NVIDIA Corporation, CUDA CUBLAS Library, Document PG-05326-032_V01,
2010, http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/
docs/CUBLAS_Library.pdf.

[21] NVIDIA Corporation, CUDA CUSPARSE Library, Document PG-05329-032_V01,
2010, http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/
docs/CUSPARSE_Library.pdf.

[22] NVIDIA Corporation, NVIDIA CUDA C Programming Guide, Version 3.2, 2010,
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/
CUDA_C_Programming_Guide.pdf.

[23] OpenMP official site, 2008, http://openmp.org.

[24] Y. Saad, SPARSKIT: a basic tool kit for sparsematrix computation, http://www-
users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html.

[25] F. Vázquez, J.J. Fernández, E.M. Garzón, A new approach for sparse matrix
vector product on NVIDIA GPUs, Concurrency Computat.: Pract. Exp. 23 (2011)
815–826.

[26] F. Vázquez, G. Ortega, J.J. Fernández, E.M. Garzón, Improving the performance
of the sparse matrix vector product with GPUs, in: 10th IEEE International
Conference on Computer and Information Technology, CIT2010, 2010,
pp. 1146–1151.

[27] F. Wei, J. Feng, H. Lin, GPU-based parallel solver via Kantorovich theorem for
the nonlinear Bernstein polynomial system, Comput.Math. Appl. 62 (6) (2011)
2506–2517.

V. Galiano is a Professor of the Physics and Computer Ar-
chitecture Department at the Miguel Hernandez Univer-
sity in Elche (Spain). He received the Ing. grad. from the
Polytechnic University of Valencia and the Ph.D. degree in
Computer Science in 2007. His main research interests in-
clude parallel algorithms for heterogeneous platforms for
solving linear and nonlinear systems, high level interface
design in parallel libraries for using them in meteorologi-
cal and biological applications and parallel simulations for
modeling electronic systems.

H.Migallón is a Professor of the Physics and Computer Ar-
chitecture Department at the Miguel Hernandez Univer-
sity in Elche (Spain). He received the Degree in Physics
and Electronic Eng. from the University of Valencia. He
is member of the ‘‘Architecture and Computer Technol-
ogy’’ at Miguel Hernández University and the ‘‘High Per-
formance Computing and Parallelism’’ at the University of
Alicante research groups. His main research interests in-
clude parallel high level interfaces for heterogeneous plat-
forms, parallel algorithms for solving linear and nonlinear
systems, parallel algorithms for image processing and par-

allel simulations for modeling electronic systems.

V. Migallón is Full Professor of the Computing Science and
Artificial Intelligence Department and a research member
of the University Institute for Computing Research, both at
the University of Alicante (Spain). She received the Ph.D.
degree in Computer Science in 1993. She is a member
of the ‘‘High Performance Computing and Parallelism’’
research group at the University of Alicante which
led from its foundation in 1991 until 2002. Her main
research interests are scheduling techniques and parallel
algorithms for heterogeneous platforms for solving linear
and nonlinear systems and high level interface design,

which simplifies programming in parallel environments.

J. Penadés is Full Professor of the Computing Science and
Artificial Intelligence Department and a research member
of the University Institute for Computing Research, both
at the University of Alicante (Spain). He received the
Ph.D. degree in Computer Science in 1993. His main
research interests are scheduling techniques and parallel
algorithms for heterogeneous platforms for solving linear
and nonlinear systems and high level interface design,
which simplifies programming in parallel environments.
He currently leads the ‘‘High Performance Computing and
Parallelism’’ research group in Alicante.

http://dx.doi.org/doi:10.1007/s11227-011-0619-z
http://dx.doi.org/doi:10.1016/j.cam.2011.04.025
http://research.nvidia.com/sites/default/files/publications/nvr-2011-001.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUBLAS_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUBLAS_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUBLAS_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUBLAS_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUBLAS_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUBLAS_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUBLAS_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUBLAS_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUBLAS_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUBLAS_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUBLAS_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUBLAS_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUBLAS_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUBLAS_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUSPARSE_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUSPARSE_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUSPARSE_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUSPARSE_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUSPARSE_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUSPARSE_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUSPARSE_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUSPARSE_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUSPARSE_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUSPARSE_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUSPARSE_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUSPARSE_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUSPARSE_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUSPARSE_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://openmp.org
http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html
http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html
http://www-users.cs.umn.edu/~saad/software/SPARSKIT/sparskit.html

	GPU-based parallel algorithms for sparse nonlinear systems
	Introduction
	Nonlinear preconditioned conjugate gradient method
	GPU architecture --- CUDA parallel programming
	Sparse matrix storage formats
	GPU kernels
	Sparse matrix vector product
	Vector operations
	Inner product
	LU solver

	Numerical experiments
	Conclusions
	References

