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Abstract In this paper, we present PyPANCG, a Python library-interface that imple-
ments both the conjugate gradient method and the preconditioned conjugate gradient
method for solving nonlinear systems. We describe the use of the library and its ad-
vantages in order to get fast development. The aim of this library is to develop high
performance scientific codes for high-end computers hiding many of the underlying
low-level programming complexities from users with the use of a high-level Python
interface. The library has been designed for adapting to different stages of the design
process, depending on whether the purpose is computational performance or fast de-
velopment. Experimental results report the performance of our approach on different
parallel computers.

Keywords Parallel libraries · Nonlinear algorithms · Python high-level interfaces

1 Introduction

The use of high level environments, and particularly the Python programming lan-
guage [15], is common place in science and engineering (see, e.g., [3, 11, 12]) to
enable the development of custom applications, particularly during the early stages
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of a new product or system modeling, simulation, and optimization. These very high
level languages make it easy to manipulate high level objects (e.g., matrices), hid-
ing many of the underlying low-level programming complexities from users. They
also support rapid code iteration and refinement by enabling an interactive develop-
ment and execution environment. Although there are other high level languages (like
Matlab, Mathematica, . . . ) that are more popular than Python, we decided to use this
interpreter due to its remarkable power and very clear syntax; also, it is available for
free. Python scripts can call out to existing Fortran, C and C++ libraries, Java classes,
and many more.

Although Python was not targeted for parallel programming in the original de-
sign, nowadays several implementations exist that enable execution in a message-
passing parallel environment. Different tools exist to manage the parallel environ-
ment through MPI [8]. These tools are Python extensions that are implemented by
building an alternative startup executable for Python. Examples of these parallel ex-
tensions are pyMPI [10] and mpipython included in Scientific Python [6]. In addition,
there are several interfaces to scientific computing libraries, for example, PyACTS [3],
Visual Python [14], and PyTrilinos [13].

The goal of this paper is to present PyPANCG (atc.umh.es/PyPANCG), a Python
based high-level parallel interface-library for solving nonlinear systems of the form

Ax = �(x), (1)

where A ∈ �n×n and � : �n → �n is a nonlinear diagonal mapping, i.e., the ith
component φi of φ is a function only of the ith component xi of x. This library, dis-
tributed as a standard Python package, consists of two modules, PySParNLCG and
PySParNLPCG. The PySParNLCG module provides parallel implementations of the
nonlinear conjugate gradient method (NLCG) and the PySParNLPCG module im-
plements the nonlinear preconditioned conjugate gradient method (NLPCG). These
algorithms are based on both the Fletcher–Reeves version of the conjugate gradient
method [4] and polynomial preconditioners based on the block two-stage method [5].

This paper is structured as follows. Section 2 introduces these algorithms and the
parallelization we have performed in the PySParNLCG and PySParNLPCG modules
of PyPANCG. Sections 3 and 4 explain the main tools used to build PyPANCG, the
involved parameters and different ways to implement the nonlinearity. In Sect. 5,
some examples of using PyPANCG are reported while in Sect. 6 the behavior of this
library is illustrated by means of numerical experiments. Finally, concluding remarks
are presented in Sect. 7.

2 Nonlinear conjugate gradient algorithms

Consider that the matrix A in (1) is partitioned into p × p blocks, with square di-
agonal blocks of order nj ,

∑p

j=1 nj = n. Analogously, we consider x(i), r(i), p(i),

and �(x(i)) partitioned according to the block structure of A. With this notation, we
construct the following parallel algorithm based on the NLCG method.

Algorithm 1 (Parallel Nonlinear Conjugate Gradient)
Given an initial vector x(0)
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Algorithm 2 (Computing α)
α

(0)
i

= 0

For k = 0,1,2, . . . , until convergence

δ(k) = α
(k)
i

〈Ap(i),p(i)〉−〈r(i),p(i)〉+〈�(x(i))−�(x(i)+α
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Stopping criterion (|δ(k)| < ζ )

Preconditioning is a technique for improving the condition number (cond) of
a matrix. Suppose that M is a symmetric positive definite matrix that approxi-
mates A, but is easier to invert. We can solve Ax = �(x) indirectly by solv-
ing M−1Ax = M−1�(x). If cond(M−1A) � cond(A), we can iteratively solve
M−1Ax = M−1�(x) more quickly than the original problem.

In order to obtain an effective preconditioner, a good approximation M to the
matrix A is needed. One of the general preconditioning techniques for solving linear
systems [1] consists of considering a splitting of the matrix A as

A = P − Q (2)

and performing m steps of the iterative procedure defined by this splitting toward the
solution of As = r , choosing s(0) = 0. In order to obtain the preconditioners, let us
consider the splitting (2) such that P = diag(A11, . . . ,App). Note that in this case,
performing m steps of the iterative procedure defined by the splitting (2) to approx-
imate the solution of As = r corresponds to perform m steps of the Block–Jacobi
method. Thus, at each step l, l = 1,2, . . . , of a Block–Jacobi method, p independent
linear systems of the form

Ajj s
(l)
j = (Qs(l−1) + r)j , 1 ≤ j ≤ p, (3)

need to be solved, therefore, each linear system (3) can be solved by a different pro-
cess. However, when the order of the diagonal blocks Ajj , 1 ≤ j ≤ p is large, it is
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natural to approximate their solutions by using an iterative method, and thus we are
in the presence of a two-stage iterative method; see, e.g., [9]. In a formal way, let us
consider the inner splittings

Ajj = Bj − Cj , 1 ≤ j ≤ p, (4)

and at each lth step perform for each j , 1 ≤ j ≤ p, q(j) inner iterations of the it-
erative procedure defined by the splittings (4) to approximate the solution of (3).
Algorithm 3 summarizes this parallel block two-stage method for solving As = r .

Algorithm 3 (Parallel Block Two-Stage)
Given an initial vector s(0) = ((s

(0)
1 )T , (s

(0)
2 )T , . . . , (s

(0)
p )T )T , and a sequence of numbers of inner itera-

tions q(j),1 ≤ j ≤ p
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Therefore, using similar notation as in Algorithm 1, we construct the following
parallel nonlinear preconditioned algorithm.

Algorithm 4 (Parallel Nonlinear Preconditioned Conjugate Gradient)
Given an initial vector x(0)

Process j, j = 1,2, . . . , p
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Convergence test
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We would like to point out that the developed implementations of the above al-
gorithms exploit, if needed, the sparsity of the matrix A (see Sects. 3 and 5). For
the sake of simplicity, we have omitted this description from the formulation of the
algorithms.
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3 PyPANCG basic tools and parameters

The development of the basic routines has been done using Fortran language in such a
way that the whole library is based on this language. The desired objective is to unite
the development features offered by Python in a single platform and to approach the
execution features offered by, in this case, Fortran. To do this, equivalent routines
were developed in both languages. In addition, mixed routines which work with both
languages at different levels were developed. In order to access the routines developed
in Fortran from Python, the F2PY tool (cens.ioc.ee/projects/f2py2e) was used. To
increase the possible parallel environments, the library has been developed to enable
work with two of the most common tools, mpipython, which forms part of Scientific
Python, and pyMPI. The use of MPI through these tools enables PyPANCG to be
used, among others, on clusters with or without multicore nodes, and on multicore
platforms. In addition, the library has been designed such that one MPI process per
core is assigned.

Another very important aspect, both for communication between Python and For-
tran as well as for performance is the use and handling of arrays or vectors; two
equivalent options can be used here, also. This is important with regard to the per-
formance of the Python codes and is indispensable when it comes to communication
between languages. For the manipulation of vectors, we can use Numeric or the nu-
marray module included in NumPy. The use of one tool or the other is directly related
to the tool used to manage the parallel environment. If mpipython is used, Numeric
must be used; if pyMPI is chosen, numarray must be used instead. We have devel-
oped four specific routines for each functionality. These routines were developed in
pure Fortran, or in pure Python, or using two different mixed models. The basic rou-
tines have been grouped into operations for sparse matrices (based on SPARSKIT),
basic operations between vectors (based on BLAS), and specific functions for the
methods at hand, which are associated with different steps of the NLCG and NLPCG
algorithms. We want to point out that PyPANCG does not need to be compiled with
either SPARSKIT or with BLAS because the needed functions of these libraries have
been rewritten and adapted to our requirements.

The only indispensable parameters in a PyPANCG call are the parameters related
to the system to be solved (Ax = φ(x)), which are the size of the system, the matrix
A stored in CSR (Compressed Sparse Row) format, and the nonlinear mapping φ(x).
In addition, the derivative of φ(x) (φ′(x)) is required for computing δ according to
Algorithm 2. However, there is a series of parameters that permits the modification of
these algorithms. The optional parameters used in both algorithms and their default
values are as follows:

– initial_vector: Initial iterate equal to zero.
– global_stopping_error ξ = 10−7: Global stopping criterion evaluated using the

Euclidean norm of the residual vector (‖r‖2).
– alfa_stopping_error ζ = 10−7: Stopping criterion for computing α.
– iter_alfa = 0: By setting this parameter to a value higher than 1, we can limit the

number of iterations performed to calculate α.
– For_or_Py = “Python_full”: It selects one of the four different sets of routines to

be used during the algorithm execution.

http://cens.ioc.ee/projects/f2py2e
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– trash_int: Integer vector (see Sect. 4).
– trash_double: Double precision vector (see Sect. 4).

The PySParNLPCG module uses Algorithm 3 for preconditioning the NLCG
method. For this algorithm, the outer splitting A = P − Q is determined by P =
diag (A11, . . . ,App) and the inner splittings are of the form Ajj = LjUj −Rj , where
each LjUj is an incomplete LU factorization of the matrix Ajj , j = 1,2, . . . , p. Let
us denote by ILU(S) the incomplete LU factorization associated with the zero pat-
tern subset S of Sn = {(i, j) : i �= j,1 ≤ i, j ≤ n}. In particular, when S = {(i, j) :
aij = 0}, the incomplete factorization with zero fill-in, known as ILU(0), is obtained.
To improve the quality of the factorization, many strategies for altering the pattern
have been proposed. In the “level of fill-in” factorizations [7], ILU(κ), κ ≥ 0, a level
of fill-in is recursively attributed to each fill-in position from the levels of its parents.
Then the positions of the level lower than κ are removed from S. The PySParNLPCG
module implements these “level of fill-in” factorizations, ILU(κ), κ ≥ 0. In this way,
the NLPCG specific parameters and their default values are:

– level = 1: Level of fill-in of the incomplete LU factorization used in Algorithm 3.
– niter_2e = 3: Number of steps m performed by Algorithm 3 to approximate the

corresponding linear system in Algorithm 4.
– val_q = 3: Number of inner iterations q(j),1 ≤ j ≤ p performed in Algorithm 3.

Another important parameter that the system can calculate if the matrix is avail-
able in only one of the processes is the size of the problem assigned to each process;
this is given by the parameter block_ dimensions. In the examples provided by Py-
PANCG, the parameter is internally calculated, such that a load balancing is achieved.
If the matrix is distributed among processes, this parameter must specify the portion
available at each process. The parameter For_or_Py selects the set of routines to be
used. The following options can be chosen with regard to this parameter:

1. Python_full: All of the routines used are codified in Python.
2. Python: The routines used are codified in Python but the functions based on

SPARSKIT and BLAS are in Fortran.
3. Fortran: All of the routines used are codified in Fortran. Moreover, φ and φ′ are

codified independently.
4. Fortran_full: All of the routines used are codified in Fortran but φ and φ′ are not

codified independently.

4 Nonlinearity implementation

One of the major obstacles to developing libraries for solving nonlinear systems is
the implementation of the nonlinearity of the problem to be solved. One important
aspect is that the ith component φi of φ only depends on the ith component of x.
Thus, φ and φ′ can be developed at the vector level or at the vector component level.
For performance reasons, development will take place at vector level if Python is
used and, for usability reasons, it will take place at the component level when Fortran
is used. The example below shows the Python code for the function φ(x) used in the
examples of PyPANCG.
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def Fi_x(vector,trash_int,trash_double):
sc = trash_double[0]
x = -sc*numpy.exp(vector)
return x

The same function developed in Fortran is:

double precision function phi(input,trash_int,trash_double)
implicit none
real*8 input,trash_double(*),sc
integer trash_int(*)
sc = trash_double(1)
phi = -sc*exp(input)
return

In addition to observing that the Python code works using vectors while Fortran
works using a single component, it is important to note that both functions require a
parameter transfer (sc) for the computation of φ. To realize this transfer—both real
values and integer values if needed—we use two vectors, one integer vector trash_int
and one double precision real vector trash_double. These vectors are dynamic, and
thus all parameters required for the computation can be passed to functions φ and φ′.
Naturally, these functions must always be implemented in order to adapt to the prob-
lem being solved. If they are implemented in Python, the Python or Python_full op-
tions must be used. If they are implemented in Fortran, the Fortran or Fortran_full
options must be used. Moreover, in the latter case, the module must be installed and
compiled again following the development of the functions. The Python and Fortran
options are very similar; both use basic functions in Fortran but differ in their imple-
mentation of the functions φ and φ′.

The Fortran_full option does not use these functions except for integrating them
in the routines that use these functions. Thus, its adaptation is more complicated and
laborious. However, it is the option that provides the best performance. On the other
hand, Python_ full option does not use any Fortran code, which enables much faster
development but an excessively poor performance.

5 Using PySParNLCG and PySParNLPCG

As already mentioned, in order to use the library the size of the system (nrow), the
matrix A in CSR format (tcol, trow, tval), the block size assigned to each process
(block_dimensions), and the nonlinear functions (φ and φ′) must be passed at the
very least. However, if we wish to pass other parameters, we will use the variables
trash_int and trash_double. The following code shows the most simple NLCG func-
tion call, in which we assume that the functions φ and φ′ were implemented in Python
beforehand.

1 from math import exp
2 import numpy
3 import PyPANCG
4 import PyPANCG.PySParNLCG as PySparNLCG
5 iam = PySParNLCG.iam
6 trash_double = numpy.zeros(((1),),float)
7 trash_double[0] = 6/(float(49)**3)
8 nrow = 125000
9 nrow,block_dimensions,bls = PyPANCG.MakeBlockStructure(nrow=nrow)
10 nnz,tcol,trow,tval = PyPANCG.PartialMatrixA(Mx=Mx,s=bls[iam],d=block_dimensions[iam])
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11 x,error,time,iter = PySParNLCG.nlcg(nrow=nrow,tcol=tcol,trow=trow,tval=tval, _
block_dimensions = block_dimensions,Fi_x=Fi_x,Fi_prime_x=Fi_prime_x, _
trash_double = trash_double)

The matrix A is obtained in lines 9 and 10; this code is enclosed with the library
but can only be used as an example or test. It is important to point out that each
process only contains the portion of the matrix that it requires. In line 11, the ac-
tual call to the NLCG method takes place, whereby we assume that Fi_x (φ) and
Fi_prime_x (φ′) were declared in Python and the vector trash_double is passed, in
this case of a single component.

The most simple NLPCG function call is similar to the aforementioned NLCG
example. In this case it must import the PySParNLPCG module instead of the PyS-
ParNLCG module in line 4, and it must call the NLPCG method in line 11.
4 import PyPANCG.PySParNLPCG as PySparNLPCG

11 x,error,time,iter = PySParNLPCG.nlpcg(nrow=nrow,tcol=tcol,trow=trow,tval=tval, _
block_dimensions = block_dimensions,Fi_x=Fi_x,Fi_prime_x=Fi_prime_x, _
trash_double = trash_double)

Note that there are parameters that can significantly change the behavior of the
NLPCG method. These parameters are the level of fill-in (level) used in the ILU
factorization, the number of steps m performed by Algorithm 3 (niter_2e), and the
number of inner iterations (val_q) performed in the block two-stage method. The
following example changes the default values of these parameters to other ones.
11 x,error,time,iter = PySParNLPCG.nlpcg(nrow=nrow,tcol=tcol,trow=trow,tval=tval, _

block_dimensions = block_dimensions,Fi_x=Fi_x,Fi_prime_x=Fi_prime_x, _
level = 2, niter_2e = 4, val_q = 5, trash_double = trash_double)

6 Numerical experiments

In order to illustrate the behavior of PyPANCG, we have tested the algorithms pro-
vided by this library on two multicore computers. The first platform, Bi-Quad, is a
DELL PowerEdge 2900 with two Quad-Core Intel Xeon 5320 sequence processors
at up to 1.86 GHz with 8 GB of RAM. The second platform, SULLI, is an Intel Core
2 Quad Q6600, 2.4 GHz with 4 GB of RAM and 8 MB of L2 Cache Memory. The
operating system in Bi-Quad is Ubuntu 8.04 (Hardy Heron), and the operating sys-
tem in SULLI is Ubuntu 9.04 (Jaunty Jackalope), in both cases for 64 bit systems. We
have used the GNU Fortran compiler gfortran included in gcc 4.3.3. Furthermore, the
versions of the tools used in PyPANCG are the following: Python 2.6.2, numpy 1.2.1,
Numeric 24.2, mpich 1.2.7-p1, pyMPI 2.5, and mpipython 1.0.

As our illustrative example, we have considered a nonlinear elliptic partial differ-
ential equation, known as the Bratu problem [2]. We present here the results obtained
with nonlinear systems of size 125000, 373248, and 592704, respectively. The con-
vergence test used was ‖r‖2 < 10−7 and the stopping criterion for α was |δ| < 10−7.
We first analyze the behavior of PySParNLCG, Fig. 1 shows that the best results are
obtained using routines fully developed in Fortran such that the computation of φ

and φ′ is performed inside these routines. The worst results are obtained with the
For_or_Py = ‘Python_full’ option. On the other hand, the options that combine For-
tran and Python code achieve similar performance. Figure 2 analyzes the influence
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Fig. 1 PySParNLCG using 2 processes, pyMPI, SULLI

Fig. 2 Efficiency of PySParNLCG, n = 373248, pyMPI

of the number of processes, on the two multicore platforms mentioned previously.
The best efficiencies are obtained using 2 or 3 processes in SULLI, or a maximum of
5 processes in Bi-Quad. Figure 3 compares the use of mpipython and Numeric with
the use of pyMPI and numpy in the behavior of PyPANCG.PySParNLCG. As can
be seen, Numeric offers better performance than numpy, more remarkable when the
For_or_Py = ‘Python_full’ option is used.

Figure 4 illustrates the behavior of PySParNLPCG depending on the different op-
tions of For_or_Py. Similar performances to those for PySParNLCG module are ob-
tained.

7 Conclusions

In this paper, we have presented PyPANCG, a parallel Python library-interface for
solving nonlinear systems. PyPANCG is distributed as a standard Python package,
and it consists of two modules that parallelize the conjugate gradient method for
solving nonlinear systems, and the preconditioning technique based on block two-
stage methods using incomplete LU factorizations. This work follows the guidelines
of a high-level interface providing an easy-to-use parallel environment that hides the
challenges of parallel programming, but in fact it is a library developed using a mixed
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Fig. 3 PySParNLCG: mpipython versus pyMPI, n = 125000, SULLI

Fig. 4 PySParNLPCG using 2 processes, κ = 1, mpipython, SULLI

model that uses different programming languages. In order to create the high-level
interfaces, we have chosen the Python language for several reasons, for example, its
remarkable power is combined with a very clear syntax. The library combines the de-
velopment features offered by Python and the execution performance offered by, in
this case, Fortran. It has been designed to adapt to different stages of the design pro-
cess, depending on whether the purpose is computational performance or rapid code
iteration and refinement. Moreover, in order to illustrate the behavior of PyPANCG,
we have tested the algorithms provided by this library on two multicore computers.
Numerical experiments show good behavior but are obviously not comparable with
lower level developments. The best results are obtained using routines fully devel-
oped in Fortran where the computation of the nonlinearity is performed inside these
routines.
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