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Abstract

Lossy compression algorithms used in digital video systems produce artifacts whose visibility strongly depends on the
actual image content. Simple error measures such as RMSE or PSNR, albeit popular, ignore this important fact and are
only a mediocre predictor of perceived quality. Many applications require more reliable assessment methods. This paper
discusses issues in vision modeling for perceptual video quality assessment (PVQA). Its purpose is not to describe
a particular model or system, but rather to summarize and to provide pointers to up-to-date knowledge of important
characteristics of the human visual system, to explain how these characteristics may be incorporated in vision models for
PVQA, to give a brief overview of the state-of-the-art and current e!orts in this "eld, and to outline directions for future
research. ( 1999 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Verlustbehaftete Kompressionsalgorithmen, wie sie in digitalen Video-Systemen verwendet werden, erzeugen Arte-
fakte, deren Sichtbarkeit stark vom Bildinhalt abhaK ngt. Einfache Fehlermetriken wie der mittlere quadratische Fehler
oder der Signal-Rausch-Abstand sind zwar weitverbreitet, doch sie ignorieren diese wichtige Tatsache und koK nnen
folglich nur ein mittelmaK {iger Indikator fuK r die wahrgenommene QualitaK t sein. Viele Anwendungen benoK tigen jedoch
zuverlaK ssigere Beurteilungsmethoden. Dieser Artikel behandelt Aspekte der Modellierung des visuellen Systems fuK r
wahrnehmungsbasierte VideoqualitaK tsbeurteilung (PVQA). Das Ziel ist weniger, ein spezielles Modell oder System zu
beschreiben, sondern vielmehr den gegenwaK rtigen Wissensstand uK ber wichtige Charakteristiken des menschlichen
visuellen Systems zusammenzufassen, die Integration dieser Charakteristiken in Modelle zur VideoqualitaK tsbeurteilung
zu erlaK utern, einen UG berblick uK ber den Stand der Technik und uK ber aktuelle Arbeiten zu geben, sowie moK gliche
Richtungen fuK r zukuK nftige Forschungsarbeit aufzuzeigen. ( 1999 Elsevier Science B.V. All rights reserved.

Re2 sume2

Les algorithmes de compression avec perte utiliseH s dans les sytèmes video numeH riques produisent des artefacts dont la
visibiliteH deH pend fortement du contenu des images traiteH es. Les mesures d'erreurs les plus simples, telles que l'erreur
quadratique moyenne ou le rapport signal sur bruit, ignorent cette caracteH ristique et ne sont donc qu'un preH dicteur
meH diocre de la qualiteH perc7 ue. Beaucoup d'applications neH cessitent des techniques de mesure plus "ables. Cet article
preH sente divers aspects de la modeH lisation du système visuel dans le cadre de l'eH valuation de qualiteH des seH quences video
(PVQA). L'objectif n'est pas de deH crire un modèle particulier mais pluto( t d'exhiber et reH sumer l'eH tat de nos connaissances
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des caracteH ristiques importantes du système visuel humain, d'expliquer comment celles-ci peuvent e( tre incorporeH es dans
les modèles de vision appliqueH s à l'eH valuation de qualiteH des seH quences video, de donner un aperc7 u de l'eH tat de la recherche
dans ces domaines et en"n de proposer de possibles directions d'investigation. ( 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The advent of digital video systems has exposed
the limitations of the techniques traditionally used
for video quality measurement. For conventional
analog video systems there are well-established per-
formance standards. They rely on particular test
signals and measurement procedures to determine
parameters such as di!erential gain, di!erential
phase or waveform distortion, which can be related
to perceived quality with relatively high accuracy
[143]. While these parameters are still useful today,
their connection with perceived quality has become
much more tenuous; because of compression,
digital video systems exhibit artifacts funda-
mentally di!erent from analog video systems }
examples include blockiness, blurring, ringing,
color bleeding, and motion compensation mis-
matches [8,140]. The amount and visibility of these
distortions strongly depends on the actual image
content. Therefore, traditional signal quality
measurements are inadequate for the evaluation of
these compression artifacts.

Given these limitations, the designers of com-
pression algorithms have had to resort to subjective
viewing tests in order to obtain reliable ratings for
the quality of compressed images or video [50].
While these tests } if executed properly } are the
closest we can get to the `trutha about perceived
quality, they are complex, time-consuming and
consequently expensive. Hence, they are often high-
ly impractical or not feasible at all.

Looking for faster alternatives, researchers
have turned to simple error measures such as root
mean squared error (RMSE) or peak signal-to-
noise-ratio (PSNR), suggesting that they would
be equally valid. However, these simple error
measures operate solely on a pixel-by-pixel basis
and neglect the important in#uence of image con-

tent and viewing conditions on the actual visibility
of artifacts. Therefore, they cannot correlate well
with perceived quality, and many experiments
con"rm this low correlation } see for example
[67,81].

These problems necessitate methods of objective
video quality assessment. As a matter of fact, there
is a broad range of applications for objective video
quality assessment systems, including:
f evaluation, test, and comparison of video codecs;
f online quality monitoring and control;
f end-to-end testing of video transmission/com-

munication systems;
f perceptual video compression;
f perceptual video restoration.
Coupled with appropriate video segmentation, the
quality of speci"c features (e.g. contours or tex-
tures) or speci"c compression artifacts (e.g. blocki-
ness) can be evaluated separately and eventually
used to tune certain parts of the encoder [111]. In
a similar fashion, the quality of motion rendition
can be assessed [18].

In order to be able to replace subjective rating
experiments, the ideal objective quality assessment
system should rate video impairments just like
a human being. Considering the variety of com-
pression algorithms available and the rapid change
of technology in this "eld, a quality metric that is
independent of the particular algorithm is prefer-
able in order to avoid early obsolescence. Metrics
based on models of the human visual system are
one way to achieve this technology independence,
because they are the most general and potentially
the most accurate ones. However, the human visual
system is extremely complex, and many of its
properties are not well understood even today.
Evidently, these uncertainties about the actual pro-
cessing of visual information in the human brain
complicate the design of vision models and explain
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Table 1
Approximate angular sizes and resolutions of TV systems at
viewing distances of three and six times screen height

System D Vertical Horizontal f
.!9

16 : 9 HDTV 6H 9.53 173 60 cpd
16 : 9 HDTV 3H 193 343 30 cpd
4 : 3 PAL 6H 9.53 133 30 cpd
4 : 3 NTSC 6H 9.53 133 25 cpd
4 : 3 PAL 3H 193 253 15 cpd

many of the di!erences between existing PVQA
systems.

While systems for the quality assessment of still
images are already too numerous to mention here
(see e.g. [2] for a review), their extension to moving
pictures has not received much attention until re-
cently. Lukas and Budrikis [68] were the "rst to
propose a comprehensive metric based on a
spatio-temporal model of the human visual system
in 1982. Other models and metrics followed now
and then [37,75,117], but only in the past few years
has there been an increasing interest in PVQA,
as the rising number of publications shows
[14,46,62,67,108,110,112,118,122,127,132,138].

This paper is structured as follows. First, it dis-
cusses what quality constitutes to the human ob-
server and how it can be measured. Then, it
describes the human visual system, from the optics
of the eye up to the neurons in the primary visual
cortex and higher-level cognition. In parallel, it
outlines in every section how each component or
phenomenon may be incorporated in a vision
model for PVQA, and which restrictions apply. The
paper concludes with a section about the validation
and evaluation of PVQA systems.

2. Quality factors

In order to be able to design a reliable PVQA
system, it is necessary to understand what `qualitya
means to the viewer. Viewers' enjoyment when
watching a video depends on many factors. One of
the most important is of course program content
and material. Provided the content itself is at least
`watchablea, video and sound quality play a prom-
inent role. Research has shown that video quality
depends on viewing distance, display size, resolu-
tion, brightness, contrast, sharpness, colorfulness,
naturalness and other factors [3,56,74,93]. To
make things worse, there is a di!erence between
"delity (the accurate reproduction on the display)
and perceived quality } for instance, subjects prefer
slightly more colorful images despite realizing that
they look somewhat unnatural [26,139]. The ac-
companying sound has also been shown to in#u-
ence perceived video quality: subjective quality
ratings are generally higher when the test scenes are

accompanied by a good quality sound program,
which apparently lowers the viewers' ability to de-
tect video impairments [90].

It is helpful for the following sections to relate the
de"nitions of some of these factors to vision
modeling and the human visual system. For in-
stance, in the video community it is very popular to
specify viewing distance in terms of display size, i.e.
in multiples of screen height. There are two reasons
for this: "rst, it was assumed for quite some time
that the ratio of preferred viewing distance to
screen height is constant [69]. More recent experi-
ments with larger displays have shown, however,
that this is not the case. While the preferred viewing
distance is indeed around 6 or 7 screen heights for
smaller displays, it approaches 3 to 4 screen heights
with increasing display size [9,69]. Incidentally,
typical home viewing distances are far from ideal in
this respect [7]. The second reason was the implicit
assumption about a certain display resolution (a
certain number of scan lines), which is usually "xed
for a given television standard. In the context of
vision modeling, the size and resolution of the im-
age projected onto the retina are more adequate
speci"cations. The size is measured in degrees of
visual angle a, and the resolution or maximum
spatial frequency f

.!9
is measured in cycles per

degree of visual angle (cpd). For a given screen
height H, viewing distance D and number of scan
lines ¸, these two units are computed as follows:

a"2arc tan(H/2D),

f
.!9

"¸/2a [cpd].

Table 1 gives examples for the size and resolution
of the image that some television systems and
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Fig. 1. Presentation sequence for the DSCQS method.

Fig. 2. Rating scale for the DSCQS method.

Fig. 3. Presentation sequence for the DSIS method.

Fig. 4. Rating scale for the DSIS method.

viewing setups produce on the retina. It is instruc-
tive to compare these "gures to the corresponding
`speci"cationsa of the human visual system men-
tioned in later sections.

3. Subjective quality assessment

Subjective quality ratings form the benchmark
for objective metrics. However, di!erent applica-
tions require di!erent testing procedures. Formal
subjective testing is de"ned in ITU-R (formerly
CCIR) Recommendation 500 [50], which suggests
standard viewing conditions, criteria for observer
and test scene selection, assessment procedures,
and analysis methods. Outline three of the more
commonly used procedures here.
f Double stimulus continuous quality scale

(DSCQS). The presentation sequence for a
DSCQS trial is illustrated in Fig. 1. Viewers are
shown multiple sequence pairs consisting of
a `referencea and a `testa sequence, which are
rather short (typically 10 seconds). The reference
and test sequence are presented twice in alternat-
ing fashion, with the order of the two chosen
randomly for each trial. Subjects are not in-
formed which is the reference and which is the
test sequence. They rate each of the two separ-
ately on a continuous quality scale ranging from
`bada to `excellenta as shown in Fig. 2. Analysis
is based on the di!erence in rating for each pair,
which is often calculated from an equivalent nu-
merical scale from 0 to 100.

f Double stimulus impairment scale (DSIS). The
presentation sequence for a DSIS trial is illus-
trated in Fig. 3. As opposed to the DSCQS
method, the reference is always shown before the
test sequence, and neither is repeated. Subjects
rate the amount of impairment in the test se-
quence on a discrete "ve-level scale ranging from
`very annoyinga to `imperceptiblea as shown in
Fig. 4.

f Single stimulus continuous quality evaluation
(SSCQE) [77]. Instead of seeing separate short
sequence pairs, viewers watch a program of typi-
cally 20}30 minutes duration which has been
processed by the system under test; the reference
is not shown. Using a slider, the subjects con-

tinuously rate the instantaneously perceived
quality on the DSCQS scale from `bada to `ex-
cellenta (Fig. 2).

The above-mentioned methods generally have
di!erent applications. DSCQS is the preferred
method when the quality of test and reference
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Fig. 5. Point spread function of the human eye as a function of
visual angle [128].

sequence are similar, because it is quite sensitive to
small di!erences in quality. The DSIS method is
better suited for evaluating clearly visible impair-
ments such as artifacts caused by transmission
errors, for example. Both DSCQS and DSIS
method share a common drawback, however: cha-
nges in scene complexity or statistical multiplexing
in the transmission system can produce substantial
quality variations that are not evenly distributed
over time; severe degradations may appear only
once every few minutes. The standard DSCQS and
DSIS methods with their one-time rating are not
suited to the evaluation of such long sequences
because of the recency phenomenon, a bias in the
ratings toward the "nal 10}20 seconds due to lim-
itations of human working memory [6]. Further-
more, it has been argued that the presentation of
a reference and the repetition of the sequences in
the DSCQS method puts the subjects in a situation
too removed from the home-viewing environment
by allowing them to become familiar with the ma-
terial under investigation [63]. SSCQE has been
designed with these problems in mind, as it relates
well to the time-varying quality of today's com-
pressed digital video systems [78]. On the other
hand, program content tends to have a signi"cant
in#uence on SSCQE scores. Also, SSCQE scores of
di!erent tests are harder to compare because of the
lack of a reference.

4. Optics of the eye

The optics of the eye constitute the "rst process-
ing stage that visual information passes on its way
through the human visual system. Attempts to
make general statements about the eye's optical
characteristics are complicated by the fact that
there are considerable variations of its properties
between individuals. Furthermore, its components
undergo continuous changes throughout life. In
general, however, the parameters of an individual
healthy eye are correlated in such a way that the
eye can produce a sharp image of a distant object
on the retina [16].

To determine the quality of the optics of the eye,
the re#ection of a visual stimulus projected onto the
retina can be measured [13]. The retinal image

turns out to be a distorted version of the input, the
most noticeable distortion being blurring. To quan-
tify the amount of blurring, a point or a thin line is
used as the input image, and the resulting retinal
image is called the point spread function or line
spread function of the eye; its Fourier transform is
the modulation transfer function. The amount of
blurring depends on the pupil size: for small pupil
diameters up to 3}4 mm, the optical blurring is
close to the di!raction limit; as the pupil diameter
increases (for lower ambient light intensities), the
width of the point spread function increases as well,
because the distortions due to cornea and lens
imperfections become large compared to di!rac-
tion e!ects [13,94]. The optical quality also deteri-
orates with increasing distance from the optical
axis and the fovea [61].

Westheimer [128] proposed a simple formula to
approximate the foveal point spread function of the
human eye when in good focus with a pupil dia-
meter of 3 mm:

PSF(a)"0.952e~2.59@a@1.36#0.048e~2.43@a@1.74,

a being in minutes of arc. This function is illustrated
in Fig. 5. For more elaborate expressions with
parameters for pupil size [94], age and pigmenta-
tion [49], the reader is referred to the literature.

The point spread function also changes with
wavelength. By accommodation, the eye can place
any wavelength into good focus, but it is impossible
to focus all wavelengths simultaneously. This e!ect
is called chromatic aberration. It can be quanti"ed
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Fig. 6. Variation of the modulation transfer function of a hu-
man eye model with wavelength [73].

by determining the modulation transfer function of
the human eye for di!erent wavelengths. This is
shown in Fig. 6 for a human eye model with a pupil
diameter of 3 mm and in focus at 580 nm [73]. It is
evident that the retinal image contains only poor
spatial detail at wavelengths far from the in-focus
wavelength (note the sharp cuto! going down to
a few cycles per degree at short wavelengths). This
tendency toward monochromacy becomes even
more pronounced with increasing pupil diameter.

As far as modeling is concerned, some PVQA
systems incorporate the point spread function to
blur the input prior to all other processing, but
none of the models I know take the e!ects of
chromatic aberration into account explicitly. It can
be argued that the blurring can be considered at
a later stage by appropriate modeling of contrast
sensitivity (see also Section 7), but this approach
ignores many "ne details of the shape of the modu-
lation transfer function and its variation with
wavelength (cf. Fig. 6).

5. Photoreceptor mosaic

Through the optics of the eye, the visual input is
projected onto the retina, the neural tissue at the
back of the eye composed of the photoreceptor
mosaic. The photoreceptors sample the image and
convert the information into signals that can be
interpreted by the brain. There are two di!erent
types of photoreceptors, rods and cones. Rods are
responsible for vision at low light levels, i.e. under
scotopic conditions. In general, they can be neg-
lected for the applications considered in this paper,
because TV displays operate at much higher light
levels.

Cones are responsible for vision at these higher
light levels, i.e. under photopic conditions. They are
concentrated in the fovea, the region of highest
visual acuity, which covers approximately two
degrees of visual angle on the retina. As a matter
of fact, there are three types of cones, L-cones,
M-cones, and S-cones, sensitive to long, medium
and short wavelengths, respectively. They form the
basis of color perception (see Section 6). Estimates
of their spectral sensitivities are shown in Fig. 7
[104]. Note that these measurements were made

with a light source at the cornea, and are thus
in#uenced by the optical system of the eye as de-
scribed above.

The density of photoreceptors varies greatly
across the retina [1]. L- and M-cones dominate
overall; in the central fovea, they form a tightly
packed mosaic reaching a density of up to 300,000
mm2 [19]. At a size of approximately 0.5 minutes of
visual angle, the maximum frequency of around 60
cpd attained here is high enough to capture all of
the spatial variation after the blurring by the eye's
optics. S-cones are much more sparse and account
for less than 10% of the total number of cones.
They are spaced approximately 10 minutes apart
on average, resulting in a maximum frequency of
only 3 cpd [20]. This is probably rooted in the
strong defocus of short-wavelength light by the
eye's optics (see Fig. 6).

In fact, many PVQA systems neglect eccentricity
and o!-axis e!ects and concentrate their modeling
e!orts on the fovea. This is often justi"ed with the
fact that the eyes are directed in such a way that the
current region of attention is brought into focus
there. It also signi"cantly simpli"es modeling, be-
cause the optical and retinal properties are relative-
ly uniform across the fovea. However, it must not
be forgotten that its diameter of two degrees is
rather small compared to the size of a TV display
projection on the retina (cf. Table 1).
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Fig. 7. Normalized spectral sensitivities of the three cone types:
L-cones (solid), M-cones (dashed), and S-cones (dot-dashed)
[104].

Fig. 8. Normalized spectral sensitivities of the three components
black-white (solid), red-green (dashed), and blue-yellow (dot-
dashed) of the opponent-colors space derived by Poirson and
Wandell [85,86].

6. Color perception

As is evident from Fig. 7, there is a signi"cant
overlap between L- and M-cone sensitivities. In
order to improve the e$ciency of the visual encod-
ing, the L-, M-, and S-cone absorption rates are
decorrelated very early in the visual system by
forming new signals.

Hering [44] was the "rst to point out that some
pairs of hues can coexist in a single color sensation
(e.g. a reddish yellow is perceived as orange), while
others cannot (we never perceive a reddish green,
for instance). This led him to the conclusion that
the sensations of red and green as well as blue and
yellow are encoded in separate visual pathways,
which is commonly referred to as the theory of
opponent colors. Both psychological and physiolo-
gical experiments in the 1950s yielded further evid-
ence to support this theory [48,52]. The principal
components of opponent-colors space are black-
white (B-W), red-green (R-G) and blue-yellow
(B-Y). The precise color directions of these compo-
nents are still subject to debate, however. As an
example, the spectral sensitivities of the opponent
colors space derived by Poirson and Wandell
[85,86] are shown in Fig. 8. As can be seen, the
B-W channel, which encodes luminance informa-
tion, is determined mainly by medium to long

wavelengths. The R-G channel discriminates be-
tween medium and long wavelengths, while the B-Y
channel discriminates between short and medium
wavelengths. Because most of the psychophysical
experiments for chromatic contrast sensitivity and
chromatic masking (see Sections 7 and 9) are based
on opponent-colors stimuli, vision models working
in opponent-colors space have the advantage of
their channels being adapted to these stimuli, which
facilitates model design and analysis [110,120].

Alternatively, models employing CIE ¸HuHvH
[67] or a modi"ed CIE ¸HaHbH [141,142] color
space instead of or in combination with an oppo-
nent-colors space have been proposed for PVQA
systems. The roots of CIE ¸HuHvH can be traced
back to color television studies, while CIE ¸HaHbH
comes from the textile industry [47]. Both CIE
¸HuHvH and CIE ¸HaHbH color spaces (see Appen-
dix A for transformation formulas) were de"ned
with a perceptually uniform measure for color dif-
ferences in mind: the Euclidean distance between
color coordinates in these spaces provides an ap-
proximation to the perceived di!erence [134]. This
can be advantageous for PVQA systems because
they try to determine the amount of this perceived
di!erence between reference and test sequences.

It is interesting to note that in a comparison
between a luminance-only PVQA system and its
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Fig. 9. Conversion from video >@C@
B
C@

R
components to CIE

X>Z tristimulus values [88].

full-color extension, the results di!ered only slight-
ly [111]. This is to be expected since many encoders
distribute the distortions more or less equally be-
tween chromatic and achromatic channels. Future
tests will have to show how the signi"cant increase
in complexity and computational load for color
PVQA systems can be balanced against quality
rating accuracy.

6.1. Component video

The color spaces used in many standards for
coding visual information, including PAL, NTSC,
JPEG, MPEG and others, already take into
account certain properties of the human visual
system; the above-mentioned theory of opponent
colors and the fact that acuity for color information
is lower than for luminance prompted the use of
color di!erence components instead of color pri-
maries for coding. Furthermore, the human visual
system has a nonlinear, roughly logarithmic re-
sponse to intensity. Therefore, a compressive non-
linearity is applied before coding [87].

It so happens that conventional television cath-
ode ray tube (CRT) displays also have a nonlinear
relationship between signal voltage or frame bu!er
values x and displayed intensity I [10]. This rela-
tionship can be slightly di!erent for each of the
three color primaries, but it can be approximated
quite well by a function such as

I(x)"(ax#b)c. (1)

The exponent c usually varies between 2.2 and 2.5;
a and b can be adjusted with the picture/contrast
and black level/brightness controls. Applying the
inverse of this function to intensity values is refer-
red to as gamma correction. Coincidentally, the
lightness sensitivity of human vision is very nearly
the inverse of Eq. (1) [87]. Therefore, coding visual
information in the gamma-corrected domain is not
only more meaningful perceptually, but also auto-
matically compensates for CRT nonlinearities.

ITU-R Recommendation 601 [51] is the inter-
national standard for studio-quality component
digital video. It de"nes a >@C@

B
C@

R
color space,

where >@ encodes luminance, C@
B

the di!erence be-
tween blue primary and luminance, and C@

R
the

di!erence between red primary and luminance (the

prime is used here to emphasize the nonlinear na-
ture of these quantities). Because the >@C@

B
C@

R
space

assumes a particular display device, or to be more
exact, a particular spectral power distribution of
the light emitted from the display, CIE X>Z
tristimulus values serve as a reference for conver-
sions from >@C@

B
C@

R
to the color spaces discussed

above. Conversion from >@C@
B
C@

R
to CIE X>Z re-

quires two linear transformations and gamma-cor-
rection as illustrated in Fig. 9; the corresponding
formulas are given in Appendix B.

7. Contrast sensitivity

Contrast is a measure of the relative variation of
luminance. Unfortunately, a common de"nition of
contrast suitable for all stimuli does not exist. In the
case of a periodic pattern of symmetrical deviations
ranging from ¸

.*/
to ¸

.!9
, Michelson contrast [76]

is generally used:

C
M
"

¸
.!9

!¸
.*/

¸
.!9

#¸
.*/

.

When the pattern consists of a single increment or
decrement *¸ to an otherwise uniform background
luminance ¸, Weber contrast is often used [80]:

C
W
"

*¸

¸

.

These two de"nitions are by no means equivalent
and do not even share a common range of values:
Michelson contrast can range from 0 to 1, whereas
Weber contrast can range from !1 to R. To
make things worse, neither of the two is appropri-
ate for measuring contrast in complex images, be-
cause a few very bright or very dark points would
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Fig. 10. Spatio-temporal contrast sensitivity functions of the
B-W channel (top) and the R-G channel (bottom) according to
[12,53}55]. The CSF of the B-Y channel (not shown) is very
similar in shape to the CSF of the R-G channel.

determine the contrast of the whole image. Further-
more, human contrast sensitivity varies with the
adaptation level associated with the local average
luminance. In order to address these issues, Peli
[82] proposed a local band-limited contrast
measure

C
i
(x,y)"

BP
i
(x,y)

¸P
i
(x,y)

,

where BP
i
(x,y) is the bandpass image of band i, and

¸P
i
(x,y) contains the energy below band i. Modi"-

cations of this local band-limited contrast de"ni-
tion have been used successfully in vision models
for PVQA [21,66] and are in good agreement with
psychophysical contrast-masking experiments with
Gabor patches [83]. Nevertheless, more experi-
ments are necessary before one can conclude that
the de"nite measure for contrast in complex images
has been found [133].

Sensitivity to contrast depends on the color as
well as the spatial and temporal frequency of the
stimuli. Contrast sensitivity functions (CSFs) are
generally used to quantify these dependencies. Con-
trast sensitivity is de"ned as the inverse of the
contrast threshold, i.e. the minimum contrast ne-
cessary for an observer to detect the target.

Spatio-temporal CSF approximations are shown
in Fig. 10. Achromatic contrast sensitivity is gener-
ally higher than chromatic, especially for high
spatio-temporal frequencies. The full range of
colors is perceived only at low frequencies. As spa-
tio-temporal frequencies increase, blue-yellow sen-
sitivity declines "rst. At even higher frequencies,
red-green sensitivity diminishes as well, and percep-
tion becomes achromatic. On the other hand, albeit
to a lesser extent, achromatic sensitivity decreases
at low spatio-temporal frequencies, whereas chro-
matic sensitivity does not. However, this apparent
attenuation of sensitivity towards low frequencies
may be attributed to implicit masking, i.e. masking
by the spectrum of the window within which the
test gratings are presented [137].

There has been some debate about the space-
time separability of the spatio-temporal CSF. This
property is of interest in vision modeling because
a CSF that could be expressed as a product of
spatial and temporal components would simplify

modeling. Early studies concluded that the spatio-
temporal CSF was not space-time separable at
lower frequencies [59,91]. Kelly [53] measured
contrast sensitivity under stabilized conditions (i.e.
the stimuli were stabilized on the retina by compen-
sating for the observers' eye movements). He "t an
analytic function to his measurements [54], which
is technically the CSF for traveling waves. Through
variable substitution, it can be rewritten in terms of
spatial frequency f

s
and temporal frequency f

t
of the

test stimuli to yield a very close approximation of
the spatio-temporal CSF for counterphase #icker:

CSF( f
s
, f
t
)"4p2f

s
f
t
e~4p(ft`2fs)@45.9

](6.1#7.3D log ( f
t
/3 f

s
)D3). (2)

Burbeck and Kelly [12,55] found that this CSF and
also its chromatic counterparts can be approxi-
mated by linear combinations of two space-time
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Fig. 11. Idealized receptive "eld of a neuron in the primary
visual cortex.

separable components termed excitatory and inhi-
bitory CSFs. The resulting approximations of the
CSFs of the B-W and R-G channels are shown in
Fig. 10. The CSF of the B-Y channel is very similar
in shape to the CSF of the R-G channel; the B-Y
sensitivity is somewhat lower overall, and its high-
frequency decline sets in earlier.

Yang and Makous [136] measured the spatio-
temporal CSF for both in-phase and conventional
counterphase modulation. Their results suggest
that the underlying "lters are indeed spatio-tem-
porally separable and have the shape of lowpass
exponentials. The spatio-temporal interactions
observed for counterphase modulation may be
explained as a product of masking by the zero-
frequency component of the gratings.

Recently, Daly [22] addressed the important
issue of unconstrained eye movements for CSF
models in PVQA systems. In particular, he showed
how to include natural drift, smooth pursuit and
saccadic eye movements in Kelly's formulation of
the stabilized spatio-temporal CSF given by Eq. (2)
using a model for eye velocity. The e!ect on the
shape of the CSF is substantial and can best be
described as a stretch along the temporal frequency
axis. Westen et al. [127] incorporated eye move-
ments into their model by a similar motion com-
pensation of the CSF. They proposed a method for
the estimation of smooth-pursuit eye movements
under the worst-case assumption that the observer
is capable of tracking all the objects in the scene.

Existing PVQA systems are based on a variety of
di!erent contrast sensitivity measurements, mostly
from the early studies. Basically, there are two
possibilities for how to incorporate contrast sensi-
tivity into a vision model: The "rst is to set the gain
of each "lter in the bank of a multi-channel imple-
mentation (see next section) such that the ensemble
approximates the empirical CSF. The second is to
pre-"lter the B-W, R-G and B-Y channels with the
respective contrast sensitivity functions and to cali-
brate the following stages of the model in such
a way that no further variations in contrast sensi-
tivity are introduced. Both approaches have been
used in the PVQA systems proposed so far. While
the "rst method is more e$cient in the implementa-
tion, the second facilitates a more accurate approxi-
mation of the shape of the CSF.

8. Multi-resolution architecture

Early vision models [68,72,95] were based on
single-resolution theory and provided a "rst insight
into simple visual phenomena. However, they are
unable to cope with more complex patterns and
were soon challenged by empirical data from mask-
ing and pattern adaptation experiments. These
data can be explained quite successfully by
a multi-resolution theory of vision, which employs
a whole set of di!erent "lters instead of just one.

8.1. Spatial mechanisms

A large number of neurons in the primary visual
cortex, the so-called simple cells, have receptive
"elds composed of several parallel elongated
excitatory and inhibitory regions as illustrated in
Fig. 11 [23,116]. Hence, they can be characterized
by a particular radial spatial frequency, de"ned by
the distance between adjacent maxima or minima
of the response function, and by an orientation,
corresponding to the angle perpendicular to the
`barsa. Serving as an oriented bandpass "lter, the
neuron will respond to a certain range of spatial
frequencies and orientations about its center

240 S. Winkler / Signal Processing 78 (1999) 231}252



Fig. 12. Idealized illustration of a possible partitioning of the
spatial frequency plane as used in [131,132]. The actual
transitions between the bands are gradual. Three spatial fre-
quency levels with four orientations plus one (isotropic) low-
pass "lter are shown. The shaded region indicates the spectral
support of a single channel.

values. There is still a lot of discussion about the
exact tuning shape and bandwidth, and di!erent
experiments have led to di!erent results. For the
achromatic visual pathways, most of the studies
give estimates of approximately 1 to 2 octaves for
the spatial frequency bandwidth and 20 to 60 de-
grees for the orientation bandwidth, varying with
spatial frequency [27,28,84]. These results are con-
"rmed by psychophysical evidence from studies of
discrimination and interaction phenomena [80].
Interestingly, these cell properties can also be re-
lated with and even derived from the statistics of
natural images [32,113].

Fewer empirical data is available for the chro-
matic pathways. They probably have similar spa-
tial frequency bandwidths [64,65,125], whereas
their orientation bandwidths have recently been
found to be signi"cantly larger, ranging from 60 to
130 degrees [114].

Given these bandwidths, and considering the
decrease in contrast sensitivity at high spatial fre-
quencies (see previous section), the spatial fre-
quency plane for the achromatic channel can be
covered by 4}6 spatial frequency-selective and 4}8
orientation-selective mechanisms. Further reducing
orientation selectivity can a!ect modeling accu-
racy, as was reported in a comparison of two mod-
els with 3 and 6 orientation-selective mechanisms,
respectively [109].

Taking into account the larger orientation band-
widths of the chromatic channels, 2}3 orientation-
selective mechanisms may su$ce there. Chromatic
sensitivity remains high down to very low spatial
frequencies, which necessitates a low-pass mecha-
nism and possibly additional spatial frequency-
selective mechanisms at this end. For reasons of
implementation simplicity, it may be advantageous
to use the same decomposition for chromatic and
achromatic channels nonetheless. An example of
a partitioning of the spatial frequency plane used in
a PVQA system by the author [131,132] is shown
in Fig. 12.

8.2. Temporal mechanisms

Temporal mechanisms have been studied as well,
but there is less agreement about their character-
istics than for spatial mechanisms. While some

studies concluded that there are a large number of
narrowly tuned mechanisms [60], it is now believed
that there is just one lowpass and one bandpass
mechanism [36,45,115], which are generally refer-
red to as sustained and transient channel, respec-
tively. An actual third mechanism was proposed
[45,71], but has been called in question by later
studies [36,40]. Physiological experiments con"rm
these "ndings to the extent that lowpass and band-
pass mechanisms have been discovered [34], but
neurons with bandpass properties exhibit a wide
range of peak frequencies. Recent results also indi-
cate that the peak frequency and bandwidth of the
mechanisms change considerably with stimulus
energy [35].

In a recent study, Fredericksen and Hess [35,36]
model temporal mechanisms with derivatives of the
impulse response function

h(t)"e~(-/(t@q)@p)2.

They achieve a very good "t to their data using
only this function and its second derivative,
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Fig. 13. Frequency responses of sustained (lowpass) and transi-
ent (bandpass) mechanisms of vision based on a model by
Fredericksen and Hess [35,36].

corresponding to one sustained and one transient
mechanism, respectively. For a typical choice of
parameters q"0.16 and p"0.2, the resulting
frequency responses of their "lters are shown in
Fig. 13.

8.3. Filter design

The above "ndings can be incorporated into
a PVQA system via a "lter bank. The fundamental
requirements for its design include joint localiza-
tion in space, spatial frequency and orientation in
order to model the frequency- and orientation-
selectivity of channels in the human visual system.
For implementation e$ciency, a pyramid structure
with self-similar "lters and dyadic subsampling is
favorable. Invertibility is an advantage in applica-
tions where perfect reconstruction from the chan-
nels is required; a "lter set summing to 1 is also
desirable because it allows the CSF to be modeled
independently of the decomposition "lters.

As noted earlier, certain receptive "elds in the
human visual system are tuned in spatial frequency
and orientation; in fact, their pro"le (cf. Fig. 11)
resembles two-dimensional Gabor functions
[23,116]. Consequently, it was posited that cortical
"lters act to minimize simultaneously the joint
product of standard deviation of spatial and

spatial-frequency sensitivities in accordance with
the uncertainty principle from Fourier analysis
[24]. Therefore, the Gabor transform may be
considered an obvious implementation choice.
However, this argument is based on a particular
de"nition of uncertainty involving second-order
moments, which may not be appropriate for the
visual system [105]. Furthermore, only complex-
valued Gabor functions have this property
[57,135]. From a practical point of view, the Gabor
transform is also di$cult to reconstruct, hence
other approaches have been investigated and have
gained popularity.

Pyramid structures have been proposed for
many image processing applications. They seek to
reduce the number of pixels by repeated lowpass
"ltering and subsampling, which reduces the
amount of computation. The cortex transform in-
troduced by Watson [116] and later modi"ed and
used for quality assessment by Daly [21] is an
example. It is appealing because of its #exibility:
radial frequency selectivity and orientation selectiv-
ity are modeled separately, frequency and orienta-
tion bandwidth can be adjusted within a broad
range, and the transform is easily invertible.
Simoncelli et al. [99,100] proposed the steerable
pyramid, which is attractive because of its `shifta-
bilitya property: it is translation- and rotation-in-
variant, self-inverting, essentially aliasing-free, and
can be designed for any number of orientation
bands.

The disadvantage of all these decompositions is
that they are overcomplete. This is generally less of
a concern for PVQA, but it is naturally undesirable
for perceptual coding applications. Discrete wave-
let transforms have proven highly e$cient for cod-
ing applications because of their orthogonal basis
functions. In contrast to the decompositions men-
tioned above, they are critically sampled, i.e. the
number of transform coe$cients is equal to the
number of samples in the input signal. However,
the amount of aliasing they introduce in the sub-
bands as well as their behavior for translated or
dilated input signals make them less useful for
vision modeling [100]. The quadrature mirror "lter
(QMF) transform on a hexagonal grid [98] was
used for perceptual distortion measurement by
Teo and Heeger [109]. However, the orientation
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bandwidth of these "lters turned out to be too
broad (nearly 60 degrees), which a!ected the "t of
the model to psychophysical data.

The design of the temporal "lter bank is govern-
ed by di!erent criteria. In certain applications of
PVQA systems such as monitoring and control,
a low delay is important. This fact together with
limitations of memory and computing power favor
time-domain implementations of the temporal
"lters over frequency-domain decompositions.
A trade-o! has to be found between an acceptable
delay and the accuracy with which the temporal
mechanisms ought to be approximated. Recursive
in"nite impulse response (IIR) "lters fare better in
this respect than (nonrecursive) "nite impulse re-
sponse (FIR) "lters; IIR "lters can achieve a close
approximation with delays of only a few frames
[62,132], while FIR "lters may introduce delays of
a few dozen frames. However, the latter are easier
to design and generally have better phase charac-
teristics.

8.4. Spatio-temporal considerations

How can the interactions between spatial and
temporal channels indicated by contrast sensitivity
measurements be incorporated into the channels of
a multi-resolution architecture? There are two hy-
potheses on this matter: The sensitivity-scaling hy-
pothesis states that the temporal "lters have a peak
sensitivity that is independent of spatial frequency,
only the "lter gain changes; therefore, a "lter bank
that is separable in space and time can be used
[129]. The covariation hypothesis states that the
ensemble of "lters exhibits a spatio-temporal
covariation; in this case the "lter bank cannot be
separable.

The in#uence of these hypotheses on the perfor-
mance of vision models has not yet been in-
vestigated. It is evident that the sensitivity-scaling
paradigm permits an easier implementation. The
sequence can be "ltered "rst in the temporal do-
main, and afterwards the di!erent temporal chan-
nels undergo separate spatial decompositions.
PVQA system designers often choose this approach
for reasons of simplicity [111].

The covariation paradigm o!ers a potentially
more accurate modeling of vision mechanisms, but

requires a more elaborate spatio-temporal de-
composition, as indicated in [117]. For this ap-
proach, the above-mentioned "lter structures could
be extended to the time dimension.

9. Masking

Masking is a very important phenomenon in
vision in general and in PVQA in particular as it
describes interactions between stimuli. Masking
occurs when a stimulus that is visible by itself
cannot be detected due to the presence of another.
Sometimes the opposite e!ect, facilitation, occurs:
a stimulus that is not visible by itself can be detec-
ted due to the presence of another. Within the
framework of quality assessment it is helpful to
think of the distortion or coding noise being
masked (or facilitated) by the original image or
sequence acting as background. Masking explains
why similar coding artifacts are disturbing in cer-
tain regions of an image while they are hardly
noticeable elsewhere.

9.1. Spatial masking

Many vision models are limited to intra-channel
masking, assuming that masking occurs only be-
tween stimuli located in the same channel. How-
ever, more recent psychophysical experiments
suggest that masking also occurs between channels
of di!erent orientation [33], between channels of
di!erent spatial frequency, and between chro-
minance and luminance channels [17,64,106].

Models have been proposed which explain
a wide variety of empirical contrast masking data
within a process of contrast gain control. These
models were inspired by analyses of the responses
of single neurons in the visual cortex of the cat
[5,42,43], where contrast gain control serves as
a mechanism to keep neural responses within the
permissible dynamic range while at the same time
retaining global pattern information.

Contrast gain control can be modeled by an
excitatory nonlinearity that is inhibited divisively
by a pool of responses from other neurons. Mask-
ing occurs through the inhibitory e!ect of the nor-
malizing pool [33,109]. Watson and Solomon
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[119] recently presented an elegant generalization
of these models, which permits an easy integration
of many kinds of channel interactions and spatial
pooling: Let a"a(t, c, f, h, x, y) be a coe$cient of
the perceptual decomposition in temporal channel
t, color channel c, frequency band f, orientation
band h, at location x,y. Then the corresponding
sensor output s"s(t, c, f, h, x, y) can be computed as

s"k
ap

p2#aq*h
. (3)

The excitatory path in the numerator consists of
a simple power-law nonlinearity with exponent p.
The inhibitory path in the denominator controls
the gain of the excitatory path. It also includes
a nonlinearity with a possibly di!erent exponent
q. Additionally, "lter responses are pooled over
di!erent channels in the inhibitory path by virtue
of a convolution with the pooling function
h"h(t, c, f, h, x, y), for example a Gaussian kernel
[119]. In its most general form, this pooling opera-
tion may combine coe$cients from the dimensions
of time, color, frequency, orientation, space, and
phase. The saturation constant p is added to pre-
vent division by zero; k is used to adjust the overall
gain of the mechanism. Introduced for luminance
images, this contrast gain control model has been
used successfully with color images and video by
the author [131,132].

In Teo and Heeger's implementation [109],
which is based on a direct model of neural cell
responses [43], pooling is limited to orientation,
and the exponents of both the excitatory and inhib-
itory nonlinearity are "xed at p"q"2 so as to be
able to work with local energy measures. However,
this procedure rapidly saturates the sensor outputs,
which is why they have to use multiple contrast
bands (i.e. several di!erent ks and ps) for all coe$-
cients in order to cover the full range of contrasts.
Watson and Solomon [119] showed that the same
e!ect can be achieved with a single contrast band
when p'q. This reduces the number of model
parameters considerably and simpli"es the "tting
process.

Although implemented one way or another in
most PVQA systems, contrast masking is not the
only conceivable masking mechanism and cannot

explain all masking data. The models described
above are based on experiments with simple stimuli
such as sinusoidal gratings and Gabor patches.
With complex stimuli as are found in real scenes,
the distortions can be more noise-like, and masking
can become much larger [11,30]. Entropy masking
has been proposed as a bridge between contrast
masking and noise masking, when the distortion is
deterministic but unfamiliar [121], which may be
a good model for quality assessment by inexperi-
enced viewers. A discussion and comparison of
several di!erent models for spatial masking can be
found in [58].

9.2. Temporal masking

Temporal masking is an elevation of visibility
thresholds due to temporal discontinuities in inten-
sity, for example scene cuts. Within the framework
of television, it was "rst studied by Seyler and
Budrikis [96,97], who concluded that the threshold
elevation may last up to a few hundred milliseconds
after a transition from dark to bright or from bright
to dark. More recently, Tam et al. [107] investi-
gated the visibility of MPEG-2 coding artifacts
after a scene cut and found signi"cant visual mask-
ing e!ects only in the "rst subsequent frame.
Carney et al. [15] noticed a strong dependence on
stimulus polarity, with the masking e!ect being
much more pronounced when target and masker
match in polarity. They also found masking to be
greatest for local spatial con"gurations.

Interestingly, temporal masking can occur not
only after a discontinuity (`forward maskinga), but
also before. This `backward maskinga may be ex-
plained as the result of the variation in the latency
of the neural signals in the visual system as a func-
tion of their intensity [4]. The opposite of temporal
masking, temporal facilitation, can occur at low-
contrast discontinuities [38].

So far, the above-mentioned temporal e!ects
have received much less attention in the video cod-
ing community than their spatial counterparts. In
principle, temporal masking can be taken into ac-
count with a contrast gain control model as in Eq.
(3) by adding a time-dependency to the pooling
function h, as demonstrated by Girod [38]. Watson
[118] recently outlined a PVQA system that
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models forward masking e!ects by means of
a masking sequence produced by passing the refer-
ence through a lowpass "lter.

10. Pattern adaptation

Pattern adaptation adjusts the contrast sensitiv-
ity of the visual system in response to the prevalent
stimulation patterns. For example, adaptation to
patterns of a certain frequency can lead to a notice-
able decrease of contrast sensitivity around this
frequency [39,101,130]. Together with masking,
adaptation was one of the major incentives for
developing a multi-resolution theory of vision.
However, pattern adaptation has a distinct tem-
poral component to it and is not automatically
taken into account by a multi-resolution repres-
entation of the input; rather, it needs to be incorp-
orated explicitly by adapting the pertinent model
parameters. Ross and Speed [92] presented
a single-mechanism model that accounts for both
pattern adaptation and masking e!ects of simple
stimuli, but PVQA systems have largely ignored
this phenomenon.

An interesting study in this respect was carried
out by Webster and Miyahara [123]. They used
natural images of outdoor scenes (both distant
views and close-ups) as adapting stimuli. It was
found that exposure to this kind of stimuli induces
pronounced changes in contrast sensitivity. The
e!ects can be characterized by selective losses in
sensitivity at lower to medium spatial frequencies.
This is consistent with the characteristic amplitude
spectra of natural images, which decrease with fre-
quency roughly as 1/f. This is a typical situation
when viewing video, and the CSF of the vision
model may need to be adjusted so as to take this
phenomenon into account.

Likewise, Webster and Mollon [124] examined
how color sensitivity and appearance might be in-
#uenced by adaptation to the color distributions of
images. They found that natural scenes exhibit
a limited range of chromatic distributions, so that
the range of adaptation states is normally limited as
well. However, the variability is large enough so
that di!erent adaptation e!ects may occur for indi-
vidual scenes and for di!erent viewing conditions.

11. Pooling

The processes described so far take place before
or in the primary visual cortex, also referred to as
area V1. It is believed that the information repre-
sented there in various channels is integrated in the
subsequent brain areas, beginning with area V2.
This process can be simulated by gathering the data
from these channels according to rules of prob-
ability or vector summation, also known as
pooling. However, little is known about the nature
of the actual integration in the brain. As a matter
of fact, there is no "rm experimental evidence
that the mathematical assumptions and equations
presented below are a good description of
mechanism pooling in the human visual system
[36,89].

If there are a number of independent `reasonsa
i for an observer noticing the presence of a distor-
tion, each having probability P

i
respectively, the

overall probability P of the observer noticing the
presence of the distortion is

P"1!<
i

(1!P
i
). (4)

This is the probability summation rule. The de-
pendence of P

i
on the distortion strength x

i
can be

described by the psychometric function

P
i
"1!e~xbi

i . (5)

This is one version of a distribution function
studied by Weibull [126] and "rst applied to vision
by Quick [89]. b determines the slope of the func-
tion. Under the homogeneity assumption that all
b
i
are equal [79], Eqs. (4) and (5) can be combined

to yield

P"1!e~+x
b
i .

The exponent in the above equation is in itself an
indicator of the visibility of distortions. Therefore,
models may postulate a combination of mechanism
responses before producing an estimate of detec-
tion probability. Vector summation (also called
Minkowski summation) achieves this:

x" bJ+xb
i
.
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Fig. 14. Sample frame from MPEG-encoded Basketball se-
quence (top). The distortion map (bottom) contains spatial as
well as temporal aspects of impairment visibility [132].

Di!erent exponents b have been found to yield
good results for di!erent experiments and imple-
mentations. b"2 was used e.g. in [109,131]; this
case corresponds to the ideal observer formalism
under independent Gaussian noise, which assumes
that the observer has complete knowledge of the
stimuli and uses a matched "lter for detection. In
a study of subjective experiments with coding arti-
facts, b+2 was found to give good results [25].
Intuitively, a few high distortions may draw the
viewer's attention more than many lower ones. This
behavior can be emphasized with higher exponents,
which have been used in several other vision mod-
els, for example b"4 [110,112]. The best "t of
a contrast gain control model to masking data was
achieved with b+5 [119].

In any case, the pooling operation need not be
carried out over all pixels in the entire sequence or
frame. In order to take into account the focus of
attention of observers, for example, pooling can be
carried out separately for spatio-temporal blocks of
the sequence that cover roughly 100 milliseconds
and two degrees of visual angle each [112]. Alter-
natively, the distortion can be computed locally for
every pixel, yielding a perceptual distortion map for
better visualization of the temporal and spatial
distribution of distortions. For demonstration,
I encoded the Basketball scene with the MPEG-2
encoder of the MPEG Software Simulation Group
at 3 Mbit/s. Fig. 14 shows a sample frame from the
sequence and the corresponding distortion map
produced by the author's PVQA system [132],
which includes temporal aspects of the distortions
as well. Such a distortion map can help the expert
to locate and identify problems in the processing
chain or shortcomings of an encoder, for example.
This can be more useful than a global measure in
many PVQA applications.

12. Cognitive processes

While the previous sections were concerned
mostly with lower-level near-threshold aspects of
vision, the cognitive behavior of humans when
watching a video cannot be ignored in advanced
PVQA systems. However, cognitive behavior may
di!er greatly between individuals and situations,

which makes it very di$cult to generalize. Never-
theless, I want to point out two important compo-
nents, the shift of the focus of attention and the
tracking of moving objects, which are not unre-
lated.

When viewing a video, we focus our gaze on
particular areas. Studies have shown that the direc-
tion of gaze during viewing is not completely
idiosyncratic to individual viewers. Instead, a sig-
ni"cant number of viewers will focus on the same
regions of a scene [31,102,103]. Naturally, this
focus of attention is highly scene-dependent.
Maeder et al. [70] proposed constructing an
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importance map for the sequence as a prediction
for the focus of attention, taking into account per-
ceptual factors such as edge strength, texture en-
ergy, contrast, color variation, homogeneity, etc.

In a similar manner, viewers may also track
speci"c moving objects in a scene. In fact, motion
tends to attract the viewers' attention. Now, the
spatial acuity of the human visual system depends
on the velocity of the image on the retina: as the
retinal image velocity increases, spatial acuity de-
creases. The visual system addresses this problem
by tracking moving objects with smooth-pursuit
eye movements, which minimizes retinal image
velocity and keeps the object of interest on the
fovea. Smooth pursuit works well even for high
velocities, but it is impeded by large accelerations
and unpredictable motion [29,41]. On the other
hand, tracking a particular movement will reduce
the spatial acuity for the background and objects
moving in di!erent directions or at di!erent vel-
ocities. An appropriate adjustment of the spatio-
temporal CSF as described in Section 7 to account
for some of these sensitivity changes can be con-
sidered as a "rst step in modeling such phenomena
[22,127].

13. Evaluation of PVQA systems

Some authors have demonstrated the perfor-
mance of their video quality metrics by computing
the correlation of their system's ratings with subjec-
tive ratings of a set of sequences. However, subjec-
tively rated sequences are hardly available in the
public domain; the sequences and subjective ratings
used in these demonstrations have been mostly
proprietary, making it di$cult to compare metrics
with each other.

In 1997, the Video Quality Experts Group
(VQEG) was formed with the objective to collect
reliable subjective ratings for a well-de"ned set of
sequences and to evaluate the performance of dif-
ferent video quality assessment systems with re-
spect to these sequences. The goal of this e!ort is to
recommend the video quality assessment system(s)
whose quality predictions are in best agreement
with subjective ratings. The emphasis of the "rst
phase of VQEG is on distribution-class video, i.e.

mainly MPEG-2 encoded sequences with di!erent
pro"les, levels and other parameter variations, the
bit rates ranging from 768kbit/s to 50Mbit/s. In
total, 16 conditions and 20 scenes of 8 seconds each
were selected and encoded (the scenes were dis-
closed to the proponents only after the submission
deadline). Ten di!erent PVQA systems were sub-
mitted, and their output for each of the 16]20
sequences will be recorded. In parallel, DSCQS
subjective ratings for all sequences will be obtained
by several testing labs. The metrics' predictions
will then be compared to the subjective ratings
by means of statistical data analysis methods;
performance criteria include prediction accuracy
and consistency. The participating ITU study
groups, ITU-T SG 9, ITU-T SG 12, and ITU-R
SG 11, will base their recommendations on
the results of this evaluation. An important
measure of acceptability will be a comparison of
metric prediction errors to rating di!erences be-
tween groups of subjective viewers. As this paper is
being published, "rst results of this e!ort should
become available.1

14. Conclusions

I have discussed some of the issues in applying
vision models to perceptual video quality assess-
ment. Several models have already been proposed
and implemented, and the results are quite promis-
ing. Nevertheless, some issues regarding the inner
workings of the human visual system itself have not
yet been resolved satisfactorily and are still under
investigation; for others it is not clear how to best
incorporate them into a vision model. We are still
a long way from having developed or even designed
the `perfecta PVQA system that could replace sub-
jective tests. Research in this area is vivid, however,
and with the VQEG e!ort as the "rst major under-
taking to compare and analyze the performance of
objective video quality metrics, we are taking an-
other important step in this direction.

1Consult the o$cial VQEG web site http://www.crc.ca/vgeg
for more information and the current status of this e!ort.

S. Winkler / Signal Processing 78 (1999) 231}252 247



Appendix A

Conversion from CIE 1931 X>Z tristimulus
values to CIE ¸HaHbH and CIE ¸HuHvH color spaces
is de"ned as follows [134]. The conversions make
use of the function

f (x)"G
x1@3, if x'0.008856,

7.787x#16/116, otherwise.

Both CIE ¸HaHbH and CIE ¸HuHvH space share
a common lightness component ¸H:

¸H"116 f (>/>
0
)!16.

The 0-subscript refers to the corresponding unit for
the reference white being used. The two chromatic-
ity coordinates uH and vH in CIE ¸HuHvH space are
computed as follows:

uH"13¸H(u@!u@
0
), u@"

4X

X#15>#3Z
,

vH"13¸H(v@!v@
0
), v@"

9>

X#15>#3Z
,

and the CIE ¸HuHvH color di!erence is given by

*EH
uv
"J(*¸H)2#(*uH)2#(*vH)2.

The two chromaticity coordinates aH and bH in CIE
¸HaHbH space are computed as follows:

aH"500[ f (X/X
0
)!f (>/>

0
)],

bH"200[ f (>/>
0
)!f (Z/Z

0
)],

and the CIE ¸HaHbH color di!erence is given by

*EH
!"
"J(*¸H)2#(*aH)2#(*bH)2.

By de"nition, ¸H"100, uH"vH"0, and aH"
bH"0 for the reference white.

Appendix B

>@C@
B
C@

R
color space is de"ned in ITU-R Recom-

mendation 601 [51]. Conversion from >@C@
B
C@

R
to

standard CIE 1931 X>Z tristimulus values re-
quires three steps as illustrated in Fig. 9. >@C@

B
C@

R
coding uses 8 bits for each component: >@ is coded
with an o!set of 16 and an amplitude range of 219,

while C@
B
and C@

R
are coded with an o!set of 128 and

an amplitude range of $112. The extremes of the
coding range are reserved for synchronization and
signal processing headroom, which requires clip-
ping prior to conversion. Nonlinear R@G@B@ values
in the range [0,1] are then computed from >@C@

B
C@

R
as follows:

C
R@

G@

B@D" 1

219 C
1 0 1.3707

1 !0.3365 !0.6982

1 1.7324 0 D
]AC

>@

C@
B

C@
R
D!C

16

128

128DB.
Gamma correction as in Eq. (1) has to be applied to
R@, G@, and B@ in order to obtain linear RGB values.
For displays with standard phosphors, these linear
RGB values can then be converted to CIE X>Z
tristimulus values as follows:

C
X

>

ZD"C
0.4306 0.3415 0.1784

0.2220 0.7067 0.0713

0.0202 0.1295 0.9394D C
R

G

BD .
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