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Abstract

We develop a new class of non�Gaussian multiscale stochastic processes de�ned by random cascades
on trees of multiresolution coe�cients� These cascades reproduce a semi�parametric class of random
variables known as Gaussian scale mixtures� members of which include many of the best�known heavy�
tailed distributions� This class of cascade models is rich enough to accurately capture the remarkably
regular and non�Gaussian features of natural images� but also su�ciently structured to permit the
development of e�cient algorithms� In particular� we develop an e�cient technique for estimation� and
demonstrate in a denoising application that it preserves natural image structure �e�g�� edges�� Our
framework generates global yet structured image models� thereby providing a uni�ed basis for a variety
of applications in signal and image processing� including image denoising� coding and super�resolution�

Running head� Random cascades on wavelet trees for modeling natural images

�
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� Introduction

Stochastic models of natural images underlie a variety of applications in image processing and low�level

computer vision� including image coding� denoising and restoration� interpolation and synthesis� Accord�

ingly� the past decade has witnessed an increasing amount of research devoted to developing stochastic

models of images �e�g�� ��� ��� 	
� 	�� 

�� Simultaneously� wavelet transforms and other multiresolution

representations have profoundly in�uenced image processing and low�level computer vision �e�g� �	�� More�

over� multiscale theory has proven useful in modeling and synthesizing a variety of stochastic processes �e�g��


�� ��� ����

The intersection of these three lines of research � statistical image models� multiscale representations�

and multiscale modeling of stochastic processes � constitute the focus of this paper� More speci�cally� our

goal is to develop and study a new class of multiscale stochastic processes that are capable of capturing

the statistics of natural images� These processes are de�ned by random coarse�to��ne cascades on trees of

wavelet or other multiresolution coe�cients� Our cascade models represent a signi�cant variation on linear

models de�ned on multiscale trees �e�g�� ��� Although such models lead to exceptionally e�cient algorithms

for image processing� their linear nature means that they cannot capture the striking types of non�Gaussian

behavior present in wavelet pyramids of natural images� To capture such behavior� we de�ne random

cascades that reproduce a rich semi�parametric class of random variables known as Gaussian scale mixtures

�GSM�� We demonstrate that the structure of our random cascade models not only captures natural image

statistics� but also facilitates e�cient and optimal processing� which we illustrate by application to image

denoising� Preliminary forms of parts of this work have appeared in �
�� 

��

��� The statistics of natural images

We begin with an overview of previous empirical work on natural image statistics� Typically� the term

�natural images� is used in a loose fashion to denote the ensemble of visual images found in the natural

environment� as opposed to other image classes �e�g�� radar images�� The study of image statistics dates

back to the pioneering work of television engineers in the ��
�s �e�g�� ��� ���� who studied the autocovariance

function of images� Other work has emphasized the fractal structure of natural images �e�g�� 	�� ��� 
	��

Consistent with fractal behavior� a large body of empirical work has shown that the power spectrum

of natural images obeys a f�� law �e�g�� ��� 	
�� Moreover� natural images exhibit highly non�Gaussian

statistical dependencies that can be revealed by examining the statistics of a multiresolution decomposition�

Figure � contrasts the marginal distributions of wavelet coe�cients for Gaussian noise with those for a
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typical natural image� Plotted on the vertical axis is log probability� so that the Gaussian curve is an

inverted parabola� In contrast� the marginal distribution obtained from the natural image is heavy�tailed

and kurtotic� These characteristics� which are are found for a wide range of �lters and natural images�

have been modeled by a number of researchers �e�g�� ��� ��� 		� 
���

Another important feature of natural images is their approximate scale invariance� meaning that their

statistics are invariant 
up to a multiplicative constant� to changes in scale� Intuitively� there should be no

preferred scale in an ensemble of natural images� since 
disregarding occlusion� the same scene is equally

likely to be viewed from a range of distances� One manifestation of the scale invariance of natural images is

their f�� spectral characteristic� The marginal distributions of wavelet coe�cients provide further support

for approximate scale invariance� When they are renormalized by a scale�dependent factor� the resulting

histograms tend to coincide� as they should for a scale�invariant process �
�� 
���

While a great deal of attention has been devoted to marginal statistics of single coe�cients� much

less has been paid to joint statistics of groups of wavelet coe�cients� Both theoretical �	�� and empirical

studies �e�g�� ��� show that coe�cients of orthonormal wavelet decompositions of natural images tend to be

roughly decorrelated� More recent work has shown that� nearby wavelet coe�cients� despite being roughly

uncorrelated� exhibit strong dependencies� The basic form of dependency� which is surprisingly regular

over a range of multiscale transforms� choice of coe�cient pairs� and natural images ��� ���� is illustrated

in Figure 
� Shown are two joint conditional histograms of two wavelet coe�cients� which we call the

�child� and its coarser scale �parent� at the same spatial position and orientation� Each column of the


D plots corresponds to a �D conditional histogram p
child jparent� for a �xed value of the parent� Light

intensity corresponds to frequency of occurrence� where each column has been independently rescaled to

form a conditional histogram� Panel 
a� corresponds to Gaussian white noise image� As expected� the two

coe�cients are independent� because the shape of the cross�section p
child jparent� is independent of the

value of the parent�

In contrast� panel 
b� shows typical behavior for a natural image� Although the two wavelet coe�cients

are approximately decorrelated� they are highly dependent� In particular� the distribution of the child

conditioned on the value of the parent has a standard deviation that scales with the absolute value of the

parent� The characteristic �bow tie� shape of this histograms is found for wavelet coe�cients at nearby

spatial positions� adjacent orientations and spatial scales� and over a wide range of natural images� Thus�

wavelet coe�cients from natural images exhibit a striking self�reinforcing characteristic� in that if one

wavelet coe�cient is large in absolute value� then �nearby� coe�cients 
where nearness is measured in

scale� position� or orientation� also are more likely to be large in absolute value�
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��� Overview

The previous section lays out a number of striking empirical characteristics that should be reproduced

by a stochastic model for images� The goals of this paper are to develop a mathematical framework for

capturing the structure of natural images� and to show that it can be used as the consistent basis for

a variety of image processing tasks� As with other work on natural images �e�g�� ��� ��� �	
� we work in

terms of wavelet or other multiresolution coe�cients� which can be identi�ed with the nodes of a multiscale

tree� The basis of our approach is the decomposition of wavelet coe�cients into two underlying stochastic

processes de�ned on the multiscale tree� In particular� we model wavelet coe�cients as a product of one

white multiscale Gaussian process with a second continuous
valued multiplier process� This multiplier

process� which is generated as a nonlinear function of a second Gaussian multiscale process �called the

premultiplier�� serves to control the non
Gaussian dependencies among wavelet coe�cients�

The class of marginal distributions generated by this nonlinear mixing is rich� including many of the

best known and well
studied heavy
tailed processes� Moreover� the multiscale tree structure allows us

to construct global probability distributions on all wavelet coe�cients� and hence statistical models for

natural images� We show that this framework is powerful enough capture the key characteristics of natural

images described above� moreover� it does so in a parsimonious fashion� requiring only a small set of

parameters� Both Gaussian processes in the underlying decomposition are modeled by the multiscale

framework of �	� ��
� which permits e�cient and optimal algorithms� As a result� although our models

produce highly non
Gaussian statistics� we are able to exploit this embedded linear
Gaussian structure to

great advantage� A number of other researchers �e�g�� ��� ��� ��� ��� �	
 have studied and exploited the

properties of natural images on which we focus here� and our approach has both some similarities and

important di�erences with these earlier e�orts� Later in the paper� we discuss these links both in image

modeling �Section ����� and in image denoising and coding �Section �����

In next section� we provide the mathematical preliminaries for our treatment� including an introduction

to and some new results concerning so
called Gaussian scale mixtures� We also brie�y review the relevant

features of the linear multiscale modeling framework in �e�g�� 	� ��
� In Section �� we introduce the class of

multiscale wavelet cascade models and illustrate the characteristics that can be captured by such models�

including the highly non
Gaussian characteristics of natural images� In Section �� we develop an algorithm

for MAP estimation of the premultiplier process� On the basis of this estimator� we develop a technique

for image denoising that preserves the structure of natural images� In addition� we describe an algorithm

for estimating model parameters� Section � provides illustrative results of applying the wavelet denoising
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algorithm to both �D signals and natural images� Section � summarizes our work� and points out directions

for future work�

� Mathematical preliminaries

This section develops mathematical preliminaries necessary for de�ning random cascades on wavelet trees�

We begin by introducing the semi�parametric class of random variables known as Gaussian scale mix�

tures �GSMs�� and providing some analysis of their properties required for our development� The second

subsection reviews the relevant aspects of previous work on linear multiscale stochastic processes�

��� Gaussian scale mixtures

In this section� we introduce and describe some of the basic properties of GSMs� including several new

results whose proofs can be found in Appendix A� To begin� a GSM vector c is formed by taking the

product of two independent random variables� namely a positive scalar random variable z known as the

multiplier or mixing variable� and a Gaussian random vector u distributed as� N �	�
�� With this notation�

we have c
d
�
p
zu� where

d
� denotes equality in distribution�

The choice of mixing variable speci�es the GSM variable c with associated GSM density pc� In partic�

ular� the GSM density can be represented as an integral of a Gaussian kernel function scaled and weighted

by the mixing variable�

pc�c� �

Z
�

�

�

�
��m��jz
j��� exp
�� c

T
��c


z

�
pz�z�dz ���

where pz is the density of the mixing variable� and m is the dimension of the random vector c� As a

special case� the �nite mixture of Gaussians corresponds to choosing pz to be a �discrete� probability mass

function� in which case the integral reduces to a �nite sum�

A �rst question concerns characterizing which random vectors can be represented as GSMs� For sim�

plicity in notation� we focus on the case of a scalar GSM� although the results can be stated more generally�

We begin with a few de�nitions� First of all� recall that the characteristic function of a random variable

c is given by �c�s� �
R
�

��
exp �i c s�pc�c�dc� where pc is the density function of c� We also need the notion

of complete monotonicity� a function f de�ned on �	��� is completely monotone if it has derivatives f �n�

of all orders� and ����n f �n��y� � 	 for all y � 	 and n � 	� �� 
� � � � � With these de�nitions� we have the

following necessary and su�cient conditions�

�The notation x � N ����� means that x is distributed as a Gaussian with mean � and covariance ��
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Theorem �� A symmetric random variable c with characteristic function �c�t� is a GSM if and only if

g�s� � �c�
p
s� is completely monotone�

Proof� See Appendix A�

Andrews and Mallows ��� provide the following necessary and su�cient conditions on the density function	

Theorem �� Let c have a density function pc that is symmetric about zero� Then c is a GSM if and only

if f�y� � pc�
p
y� is completely monotone�

These two theorems provide straightforward criteria for a GSM in the characteristic function and density

domains respectively�

The family of Gaussian scale mixtures includes several well
known families of random variables� in


cluding those shown in Table �� The densities of these variables are characterized by a scale parameter �

and a parameter � that controls the heaviness of the tails� Each family typically exhibits a range of tail

behavior as � varies� ranging from Gaussian to very heavy
tailed� In fact� although the scale parameter

� is analogous to a variance� the tails of many of these variables are so heavy that variances fail to exist�

A classical example is the �
stable family� which has been extensively studied �see �
�� The case � � �

corresponds to the familiar Gaussian� whereas variables with smaller � � � have increasingly heavy tails�

A well
known example with heavy tails is the Cauchy distribution� which corresponds to � � �� The

generalized Gaussian family� also known as the generalized Laplacian family� is described by a parameter

� � ��� ��� The choice � � � again corresponds to a Gaussian� whereas � � � is a symmetrized Lapla


cian� The generalized Gaussian family is often used to model the marginals of wavelet coe�cients �e�g��

��� ��� ��� ���� where the tail parameter when �t to empirical histograms is typically less than one� The

symmetrized gamma family is also important because it �like the �
stable� is in�nitely divisible ����� a

property emphasized in the context of natural images in �����

For most of the random variables in Table �� it is either well
known or straightforward to �nd the density

of the multiplier variable� For the generalized Gaussian family� however� this veri�cation is not entirely

straightforward� In order to show that the generalized Gaussian is a GSM� we �rst need to formally develop

a relation apparent in Table � �e�g�� compare symmetrized gamma and generalized Student variables��

Theorem �� Let c
d
�
p
z u be a GSM with characteristic function �c� and let the mixing variable z have

density pz� De�ne f�v� � pz�v��
p
v� and suppose that

R�
�

f�v�dv � �� in which case we can consider a

random variable v with the density f � Then the GSM y
d
� �p

v
u has density py�y� � �c�y�	
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Proof� See Appendix A�

On the basis of Theorem �� one would conjecture that the generalized Gaussian family should have

a representation c
d
� �p

v
u� with the density of v satisfying f�v� � p�

�

�v��
p
v� where p�

�

is the density

of a positive �
�
�stable random variable� In order to prove this conjecture� it is necessary to verify that

f �as de	ned above� valid density function
 i�e� that
R�
�

f�v� dv � �� This veri	cation is not entirely

straightforward� because with certain exceptions �e�g�� � � �

�
�� there are no explicit forms for the positive

��stable densities� Nonetheless� it can be proved by using properties of positive ��stable densities ��
�� and

we summarize the result in the following


Proposition �� The generalized Gaussian family has the representation c
d
� �p

v
u� where in particular� v

has the density proportional to p�
�

�v��
p
v� and p�

�

is the density of a positive �
�
�stable variable�

Proof� See Appendix A�

In this paper� we will frequently exploit the fact that a large class of non�negative multipliers z can be

generated by passing a Gaussian random variable x through the appropriate function h 
 R � R
� � The

following result characterizes those GSMs that can be represented in this way


Proposition �� Let c
d
�
p
zu be a GSM� and suppose that the cumulative distribution function F of the

multiplier is invertible� Then c has an equivalent representation c
d
� h�x�u for an appropriate function

h 
 R � R
� � where x � N ��� ���

Proof� Let F and G be the CDFs of z and x respectively� Since the inverse function F�� 
 ��� �� � R
� is

de	ned� we have z
d
� F���G�x��� and h�x� �

�
F���G�x��

����
is the appropriate function�

According to this representation� the multiplier z is given by h��x�� We refer to the Gaussian quantity

x as the premultiplier since it is the stochastic input to the nonlinearity h that generates the multiplier�

The conditions of Proposition � �i�e�� invertible cumulative distribution function F � will be satis	ed under

a variety of conditions� including when the density pz is nowhere zero on ������ This latter condition

includes all random variables listed in Table ��

In many cases� it is possible to determine explicitly the form of h� For example� choosing h�x� � jxj
will generate the square root of gamma variables of index ���� which allows us to produce the symmetrized

Gamma variable of index ���� For the purpose of application� the precise form of GSM may not be

critical� In this context� an advantage of the GSM framework is that it does not require an explicit
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form of the density of c� but instead focuses attention on the multiplier� Our set�up allows an arbitrary

choice of the nonlinearity h� meaning that it permits the use of GSMs which may confer a computational

or analytical advantage� For the results in this paper� we will choose h from parameterized families of

functions that generate random variables with ranges of behavior� One example is the family of functions

f�exp�x��� j � � �g� corresponding to the lognormal family listed in Table �� Another choice is the family

f�x��� j � � �g� which generates a class of variables with a range of tail behavior that is qualitatively

similar to the symmetrized Gamma and generalized Gaussian families��

The GSM class includes many random variables with tails so heavy that variances and lower moments

may fail to exist� Such variables are characterized by polynomial decay in the tails of the distribution�

where the prototypical example is the ��stable family for � � 	� Polynomially�decaying tails are not

appropriate for modeling the wavelet coe
cients of natural images� for which the tails tend to drop o�

more quickly� Therefore� for the applications to natural images in this paper� we consider GSMs for which

variances exist� Such variables can still exhibit highly non�Gaussian tail behavior� as will be clear in our

modeling of wavelet marginal densities�

��� Multiscale stochastic processes

In this section� we introduce some of the basic concepts and results concerning linear multiscale models

de�ned on trees� We limit our treatment to those aspects required for subsequent development
 the reader

is referred to other literature �e�g�� �� ��� ��� �	� for further details of these models� and their application

to a variety of ��D and 	�D statistical inference problems�

The processes of interest to us are de�ned on a tree T � such as that illustrated in Figure �� The nodes

s � T are organized� as depicted in the �gure� into a series of scales� which we enumerate m � �� �� � � � �M �

At the coarsest scale m � � �the top of the tree� there is a single node s � �� which we designate the

root node� At the next �nest scale m � � are q nodes� that correspond to the children of the root node�

We specialize here to regular trees� so that each parent node has the same number of children �q�� This

procedure of moving from parent to child is then applied recursively� so that a node at scale m � M gives

birth to q children at the next scale �m � ��� These children are indexed by s��� � � � s�q� Similarly� each

node s at scale m � � has a unique parent s�� at scale �m � ��� It should be noted that such trees

arise naturally from multiresolution decompositions� For instance� a wavelet decomposition of a �D signal

generates a binary tree �q � 	�� whereas decomposing an image will generate a quadtree �q � ���

�Here the notation x
� denotes the positive part of x� de�ned by x

� � x for x � � and � otherwise�
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To de�ne a multiscale stochastic process� we assign to each node of the tree a random vector x�s�� The

processes of interest to us are a particular class that are Markov with respect to the graph structure of the

tree� In particular� a multiscale Markov tree process x�s�� s � T has the property that for any two distinct

nodes s� t � T � x�s� and x�t� are conditionally independent given x��� at any node � on the unique path

from s to t� For example� if we de�ne s� t as the coarsest�scale node on this path �also the nearest common

ancestor of s and t�� then x�s� and x�t� are independent given x�s � t��

Multiscale processes in which the random variables x�s� at each node assume a discrete set of values

represent a generalization of the usual �discrete� Markov chain to more general tree graphs� A number

of researchers have studied and made use of such discrete multiscale processes �e�g�� 	� 
��� Of particular

relevance here is the work of Baraniuk and colleagues �
�� �
�� who have used such discrete multiscale

stochastic processes as part of their non�Gaussian modeling framework for signal and image processing� In

Section 
��� we brie�y discuss this work and its relationship to our framework�

The class of multiscale Markov processes of interest to us are Gaussian processes speci�ed by the

distribution x��� � N ��� Px���� at the root node� together with coarse to �ne dynamics

x�s� � A�s�x�s��� �B�s�w�s� ���

where the process noise is white� on T � The vector x�s� at each node is distributed as N ��� Px�s�� where

the covariance Px�s� � E �x�s�xT �s�� evolves according to the discrete�time Lyapunov equation�

Px�s� � A�s�Px�s���A
T �s� �Q�s� �
�

where Q�s� � B�s�BT �s�� In this paper� we will pay particular attention to stationary processes� for

which we have A�s� � A� B�s� � B� and Px�s� � Px for all nodes s � T � where the covariance Px is the

solution of the Lyapunov equation APxA
T � BBT � Px � Processes de�ned according to the dynamics

in equation ��� are called multiscale autoregressive �MAR� processes� It has been shown that the MAR

framework can e�ectively model a wide range of Gaussian stochastic processes� including one�dimensional

Markov processes �

� 

�� 
�f �like processes ��� 
�� 

� 
�� ���� and Markov random �elds �

� 
���

An additional bene�t of the MAR framework is that it leads to extremely e�cient algorithms for

estimating the process x�s� on the basis of noisy observations of the form y�s� � C�s�x�s� � v�s� where

v�s� is a zero�mean white noise process with covariance R�s�� In particular� the optimal estimates of x�s�

at every node of the tree based on fy�s�� s � T g can be calculated very e�ciently by a direct algorithm ���

that is a generalization of two�pass algorithms for estimation of time series �e�g�� the Rauch�Tung�Streibel

�Here we assume without loss of generality that means are zero� since it is straightforward to add in non�zero means�
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smoother ������ It consists of an upward pass from the leaf nodes to the root� followed by a downward pass

from the root to the leaves� The computational complexity is O	d�N� where d is the maximal dimension

of x	s� at any node� and N is the total number of nodes� This same algorithm also computes Pe	s�� the

covariance of the error �x	s�� bx	s�� at each node s � T �

For notational reasons� it is useful to write down a vectorized form of the solution to the estimation

problem� Let x be a vector formed by stacking the vectors x	s� from each node s � T in a 
xed order�

and de
ne y analogously so that y � Cx� v where C is a block diagonal matrix comprised of the C	s�

matrices� and v � N 	
� R� where R is the block diagonal matrix formed using the R	s� matrices� The

Bayes least�squares 	BLS� and maximum a posteriori 	MAP� estimates are identical in this case� and are

given by

bx � PeC
TR��y Pe �

�
P��
x

� CTR��C
�

	��

where Pe is the covariance of the error e � x�bx� It is important to realize that for typical image processing

problems 	with several hundred thousand nodes�� bx and Pe are of extremely high dimension� and thus their

computation as suggested by equation 	�� is prohibitive� Instead� the fast tree algorithm solves the set

of equations P��
e

bx � CTR��y and simultaneously computes the diagonal blocks of Pe� with the two pass

procedure outlined previously�

� Random cascades on wavelet trees

In this section� we introduce and develop a new type of multiscale stochastic process de
ned by random

cascades on trees� In particular� each tree node corresponds to a vector of wavelet or multiresolution

coe�cients� and the cascade process is constructed so as to produce a GSM vector at each node� We show

that the GSM variables produced by these cascade processes account well for the statistical properties

of wavelet decompositions of natural images� including self�similarity� kurtotic and heavy�tailed marginal

histograms� and self�reinforcement among local groups of coe�cients�

��� Cascades of Gaussian scale mixtures

As noted previously� naturally associated with a multiresolution decomposition like the wavelet transform

is a tree of coe�cients 	a binary tree for �D signals� a quadtree for images�� Lying at each node is a random

vector c	s�� which will be used to model a vector of d wavelet coe�cients at the same scale and position�

but di�erent orientations� Using the decomposition of Proposition �� we model the wavelet vector c	s� as
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a GSM of the form

c�s�
d
� h�x�s��� u�s� ���

where x�s� and u�s� are d�dimensional independent Gaussian random vectors� Here the nonlinearity h

acts element�wise on the vector x�s�� and � denotes element�wise multiplication of the two d�vectors� We

assume that h has been appropriately normalized so that E 	h� �xk�s��
 � � for k � �� � � � d� where xk�s�

denotes the kth element of the vector x�s�� so that u�s� controls the variance of c�s��

To specify a multiscale stochastic process� we need to de�ne parent�to�child dynamics on the underlying

state variables x�s� and u�s�� Recall that for wavelet coe
cients of natural images� the parent and child

vectors are close to decorrelated� We can express the covariance between c�s� and its parent c�s��� as

cov
�
c�s�� c�s���

�
� E

�
h�x�s��	h�x�s����

�T�
� cov

�
u�s�� u�s���

�
� where we have used the independence of x

and u� This relationship shows that the decorrelation of c�s� and c�s��� is determined by the u process�

Therefore� to model wavelet coe
cients of natural images� it is appropriate to choose u�s� as a white noise

process on the tree T � uncorrelated from node to node� In contrast� the vector x�s� must depend on its

parent x�s���� in order to capture the strong property of local reinforcement in wavelet coe
cients of natural

images� Therefore� the GSM representation of equation ��� decomposes the wavelet vector c�s� into two

random components� one of which controls the correlation structure� while the other controls reinforcement

among wavelet coe
cients�

We model the white noise process u�s� as

u�s� � D�s���s� � ��s� � N ��� I� ���

so that D�s� controls any scale�to�scale variation �and hence the scaling law� for the process� To capture

the dependency in the premultiplier process x�s�� we use a MAR model�

x�s� � Ax�s��� �Bw�s� ���

with x��� � N ��� Px���� and ��s� � N ��� I� at the root node� Although we specialize here to the stationary

case of a MAR model �i�e�� A�s� � A and B�s� � B for all nodes s � T �� it is clear that GSM cascades

with non�stationary MAR dynamics are also possible� Figure � provides a graphical representation of this

model structure for two levels of a binary tree� The premultiplier process x�s� and white noise u�s� both

live at the nodes of a multiscale tree� represented by open circles� These processes generate the wavelet

coe
cient vector c�s�� represented by �lled squares� via the nonlinearity h�

Equations ���� ��� and ��� together specify the coe
cients c�s� of a multiresolution decomposition on a

tree� For each node s� let m�s� be its spatial scale� and let p�s� be its spatial location in the image plane�
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The quantity c�s� is a random vector of wavelet coe�cients for a set of di�erent orientations at the same

spatial location� For the ��D examples shown subsequently	 we use an orthonormal wavelet representation	

whereas for 
�D applications to images	 we use the steerable pyramid ���
	 an overcomplete representation

that divides the image into subbands localized in both scale and orientation� A steerable pyramid can be

designed with any number of orientation bands� for the work reported here	 we use d � � orientations�

These coe�cients then de�ne a random image via the inverse transform

I�p�� p�� �
X

s�T

dX

k��

ci�s��k�s�p�� p�� ���

where �p�� p�� is a point in the 
�D image plane	 ck�s� is the k
th element of c�s� �corresponding to the kth

orientation�	 and �k�s corresponds to the multiresolution basis element corresponding to orientation k	 and

centered at scale and position �m�s�� p�s���

An advantage of the steerable pyramid for image processing tasks �e�g�	 denoising� is its translation�

invariance ���
� Achieving this invariance requires overcompleteness	 implying that there is redundancy in

each vector of coe�cients c�s�� In principle	 this can be easily accommodated by taking ��s� in ��� to be a

lower�dimensional random vector	 so that D�s� is rectangular� For the work reported here	 we have taken

��s� to be of the same dimension as u�s� and hence c�s�� This is not a strictly accurate model since it

suggests that there are more degrees of freedom in the c�s� than there should be� however	 we have found

this formulation to be adequate in practice�

��� Properties of GSM cascades

In this section	 we examine the properties of random cascades of Gaussian scale mixtures on trees� We

show that they are well�suited to capturing the statistical behavior of multiresolution coe�cients from

natural images�

����� Self�similarity

Recall that self�similarity of a process means that its statistics are invariant �up to a multiplicative constant�

under any change of scale� Note that GSM tree processes	 as de�ned above	 are generated by a discrete

multiresolution transform as in equation ���� Such processes can never be strictly self�similar� However	 by

appropriate choice of parameters	 we can ensure that they satisfy a weaker form of self�similarity	 known

as dyadic self similarity� In particular	 dyadic self�similarity of the random image I�p�� p�� means that

I�p�� p��
d
� 
�k�

I
�

k�p�� p��

�
for all integers k	 where � is a parameter� From equation ���	 it can be shown
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that the synthesized process I�t� will be dyadically self�similar if and only if the basis coe�cients satisfy

c�s�
d
� ��

�
m�t��m�s�

�
c�t� for all nodes s� t � T � We guarantee this condition by choosing D�s� � ���m�s� in

equation �	�
 and taking the state process x�s� to be stationary
 so that x�s�
d
� x�t� for all nodes s� t � T �

The parameter � � � controls the drop�o� in the power spectrum of the synthesized process 
e�g�
 ����

����� Marginal distributions

That the marginal densities of wavelet coe�cients are well��t by at least one GSM family � namely
 the

generalized Gaussian with tail exponent � used as a �tting parameter � is widely known 
e�g�
 ��
 ��


��
 ���� In previous work 
���
 we have demonstrated that other GSM families also provide good �ts to

wavelet marginals� For example
 Figure � shows �ts of the symmetrized gamma family to the histograms

of marginal distributions from various natural images� Fitting was performed by numerically minimizing

the Kullback�Leibler divergence between empirical and theoretical histograms� The �ts are typically quite

good� for instance
 panel �d� shows one the worst �ts that we obtained from a range of natural images�

Thus
 the GSM class provides a �exible framework for choosing probabilistic models that capture real

image statistics� As a result
 it permits the use of GSM families that may have analytical or computational

advantages � that is
 families for which the multiplier distribution is easily expressed and manipulated

for state and parameter estimation�

����� Self�reinforcing property

Recall that the tree�structured nature of the dynamics in equations ��� and �	� imposes a powerful Markov

property on the wavelet coe�cients c�s�� In particular
 any two vectors of wavelet coe�cients c�s� and c�t�

are conditionally independent given x�s � t�
 where s � t denotes the nearest common ancestor in scale of

nodes s and t� In this section
 we exploit this property to show that the tree structure accounts for the

drop�o� in dependence between a pair of coe�cients as the spatial separation is increased�

The contours of joint distributions of wavelet coe�cients from natural images show a wide range of

shapes
 ranging from circular to a concave star�shape �see top row of Figure 	�� Huang and Mumford 
���

suggested that these joint contours might be modeled with a �D generalized Gaussian� Here we show that

the dependency structure of a random tree cascade accounts remarkably well for this range of behavior� In

particular
 we consider a random cascade on a multiresolution tree with A�s� � �I and B�s� �
p
�� �� I�

and h�x� � jxj which generates symmetrized gamma variables of index ��� �see Section ����� The tree

structure speci�es the joint distribution of any pair of wavelet coe�cients c�s� and c�t��
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Plotted along the second row of Figure � are joint contours of log probability for pairs of steerable

pyramid wavelet coe�cients ���� taken from the �Mountain� image shown at the top	 In this example


we used a complex�valued transform
 which incorporates both even and odd phase coe�cients �see ���	

Coe�cient pairs are at the same spatial scale and orientation
 but with a varying spatial separation of 


pixels	 The third row shows the same plots for coe�cients of the simulated GSM random cascade	 The

shapes of the joint contours of image data and simulated model are strikingly similar	 First of all
 consider

the pair of coe�cients in quadrature phase �i	e	
 even and odd phase coe�cients at the same spatial location


corresponding to 
 � ��	 The joint contours for this quadrature pair are very close to circular for natural

images
 as has been noted previously ����	 Likewise
 the model with 
 � � generates a pair of coe�cients

with circular joint contours	 For a pair of nearby coe�cients �
 � ��
 the contours are diamond�shaped


whereas they become a concave star�shape for widely separated coe�cients �
 � ����	 Plotted in the

last two rows are joint conditional histograms that more explicitly illustrate the dependence between the

coe�cient pairs	 While all pairs are decorrelated
 they exhibit a range of statistical dependencies	 The

pair in quadrature phase at the same spatial location are highly dependent
 as revealed by the familiar

�bow tie� shape of the joint conditional histogram	 As the spatial separation 
 increases
 the dependence

between coe�cient pairs drops o� with increasing spatially separation
 until the widely separated pair

�third column� are extremely close to independent	 This near independence is clear because the joint

conditional histogram has almost constant cross�section regardless of the value of the abscissa	 Thus
 a

GSM cascade on a tree accounts well for pairwise joint dependencies of coe�cients over a full range of

spatial separations	

��� Parameters of GSM cascades

An attractive feature of the wavelet cascade models developed here is that they are speci�ed by a rather

small set of parameters	 First of all
 the matrices D�s� determine any scale�to�scale variation in the process


and hence the scaling law	 Secondly
 the choice of the nonlinearity h determines the form of the marginal

distributions of wavelet coe�cients
 including tail behavior and kurtosis	 Thirdly
 the system matrices A

determine the dependency of the underlying premultiplier process x�s� from node to node	

Variations in D�s� control the amount of power at high frequencies relative to low frequencies
 and

hence the overall smoothness of the process	 The e�ect of such changes is well�understood from studies

of f�� type Gaussian processes on multiscale trees �e	g	
 ��
 ���	 Here we investigate the e�ect of varying

the nonlinearity h
 as well as the system matrices	 In particular
 we simulate a one�dimensional cascade
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�i�e�� the wavelet representation of a ��D process� with the parameters D�s� � 	��m�s� and � � ��
� the

nonlinearity h�x� � �x���� and system matrices A � �� and B �
p
�� ��� where the choices of the

parameter �� and the scale�to�scale dependence � were varied�

Figure � shows simulated random cascades for four combinations of the parameters ��� �� using the


Daub�� wavelet� The �rst three panels in each sub�gure correspond to three scales of the wavelet pyramid�

ranging from coarse to �ne� The fourth panel in each sub�gure corresponds to the synthesized GSM

process� First considering the e�ect of the parameter �� note that the wavelet coe�cients in cascades with

� � 	 �panels �c� and �d�� exhibit sparse behavior� in that a few outlying values tend to dominate� The

wavelet coe�cients of images also exhibit such sparsity� in that coe�cients corresponding to edges and

other discontinuities will tend to dominate� Of course� for both natural images and simulated cascades�

this sparsity is a re�ection of heavy tails in the densities�histograms� In contrast� wavelet coe�cients in

the cascades corresponding to � � ��	 �panels �a� and �b�� are distributed much more densely� In fact� the

histograms of these coe�cients� as well as the behavior of the synthesized processes� are both quite close to

Gaussian� Varying the parameter � also has a dramatic e�ect� particularly for the cascades with � � 	�

With � � ���
 �panels �a� and �c��� coe�cients from scale to scale are close to independent� so that high

valued coe�cients do not tend to cluster in patterns through scale� In contrast� the high scale�to�scale

dependence for the cascades with � � ���
 manifests itself in trails of large �in absolute value� coe�cients

through scale� One such trail is especially apparent in panel �d�� These trails through the scale space of

wavelet coe�cients lead to a localized area of discontinuity and sharp variations in the synthesized process�

Indeed� such trails are the scale space signature of discontinuities and other structures of interest� In this

respect� our GSM tree models constitute a precise analytical model for the cascade behavior exploited by

successful image coders such as embedded zero�trees �e�g�� ����

��� Relation to previous work on image modeling

In this section� we discuss relations between GSM cascades on wavelet trees� and other approaches to image

modeling� Simoncelli and colleagues ��� ��� ��� modeled the dependency between wavelet coe�cients with

a conditionally Gaussian model� where the variance of one wavelet coe�cient depends on the absolute

value of its neighbors� This local model has proven useful in a variety of applications� including image

coding� denoising� and texture synthesis� Our GSM cascades capture these same dependencies� but using

an auxiliary multiplier variable that controls dependencies between coe�cients� The multiplier variable is

de�ned on a multiscale tree� thereby inducing a global probability distribution on the space of images�
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Huang and Mumford ���� analyzed a variety of image statistics� documenting approximate scale invari�

ance and a range of shapes in the joint contours of empirical histograms of wavelet coe�cients	 Building on

earlier work of Ruderman �

�� Lee and Mumford ���� developed a random collage model that exhibits both

translational invariance and approximate scale invariance	 As discussed in Section �	�	�� our GSM tree

models satisfy an approximate form of scale invariance	 Moreover� the marginal distributions of GSMs are

highly kurtotic for many choices of multiplier variables� and particular choices ensure that the statistics will

be in�nitely�divisible 
e	g	� symmetrized Gamma� ��stable	� As shown in Figure �� our GSM tree models

generate a range of behaviors in the joint contours of pairs of wavelet coe�cients	 Thus� our GSM cascades

capture many of the properties emphasized by Mumford and colleagues in a parsimonious manner	

Our work is also related to the framework for non�Gaussian signal processing developed by Baraniuk and

colleagues ����� and applied to image denoising �
��	 Their framework uses a hidden discrete�state process

de�ned on a tree to capture dependencies between wavelet coe�cients� which themselves are modeled

as �nite scale mixtures of Gaussians	 Accurately modeling the heavy tails and high kurtosis of wavelet

marginal distributions will typically require a large number of discrete states	 The corresponding increase

in the number of parameters leads to models that may not provide a parsimonious description	 In contrast�

we have emphasized the use of in�nite parametric mixtures� which as we have shown� accurately capture

both the heavy tails and high kurtosis of wavelet marginal distributions with a small number of parameters	

� Estimation

We now turn to problems of estimation in GSM cascades on wavelet trees	 Such problems involve using

data or observations to make inferences about either the state 
i	e	� x
s� and u
s�� of the GSM� or about

unknown model parameters	 Of particular interest are estimates of the premultiplier process x
s�� which

determines the multiplier h
x
s��	 A signi�cant bene�t of the GSM framework is that conditioned on

knowledge of the premultiplier� a GSM model reduces to a linear�Gaussian system� which can be analyzed

by standard techniques	 In the context of image processing� estimates of the premultiplier are of potential

use for a variety of applications 
e	g	� coding� denoising�	

In this section� we develop a Newton�like algorithm for maximum a posteriori 
MAP� estimation of the

premultiplier x
s� based on noisy observations	 The cost of computing intermediate quantities within each

iteration scales linearly in problem size� because very fast algorithms 
see Section �	�� can be applied to the

underlying Gaussian�tree structure	 Furthermore� under suitable regularity conditions� this algorithm has

a number of desirable properties� including guaranteed convergence to a local optimum at a quadratic rate	
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We then show this algorithm can be used as the basis of a method for wavelet domain denoising� Next we

turn to the problem of estimating parameters that specify a GSM model� and develop a technique in which

state estimates are exploited in intermediate computations� The resultant technique is an approximate

form of expectation�maximization algorithm ����� where intermediate computation is again e	cient due to

the tree structure�

��� State estimation

Here we consider the problem of estimating the premultiplier x
s� given noisy observations

y
s� � h
x
s��� u
s� 
 v
s� 
��

where v
s� � N 
�� R
s�� is observation noise� An interesting feature of this problem is that unlike the

standard linear observation problem 
see Section ������ the task of estimating x
s� given noiseless observa�

tions 
i�e�� R
s� � �� is not trivial� Indeed� even in the absence of v
s�� the state u
s� e�ectively acts as a

multiplicative form of noise� With the noise v
s� present� we have an estimation problem that is nonlinear�

and includes both additive and multiplicative noise terms�

Given that we have a dynamical system de�ned on a tree� optimal estimation can� in principle� be

performed by a two�pass algorithm� sweeping up and down the tree� For the linear�Gaussian case described

in Section ���� computation of the optimal estimate 
which is simultaneously the Bayes� least�squares 
BLS�

and maximum a posteriori 
MAP� estimate� is particularly simple� involving the passing of conditional

means and covariances only� In general� for nonlinear�non�Gaussian problems� however� not only are the

BLS and MAP estimates di�erent� but neither is easy to compute� However� the GSM models developed

here have structure that can be exploited to produce an e	cient and conceptually interesting algorithm

for MAP estimation�

To set up the estimation problem� let x denote a vector formed by concatenating the state vectors

x
s� at each node� and de�ne the vector y similarly� Recall that the computation of the MAP estimate

involves the solution of the optimization problem bxMAP � argminx
�
� log p
xjy�

�
� Herein we simply

write bx to mean this MAP estimate� At a global level� our algorithm is a Newton�type method applied

to the objective function f
x� � � log p
xjy�� That is� it entails generating a sequence fxng via the

recursion x
n�� � x

n 
 �nS��
xn�rf
xn�� where the matrix S
xn� is the Hessian of f � or some suitable

approximation to it� and �n is a step size parameter� This class of methods is attractive �see ��� because

under suitable regularity conditions� not only is convergence to a local minimum guaranteed� but in addition

the convergence rate is quadratic� The disadvantage of such methods� in general� is that the computation
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of the descent direction dn � �S���xn�rf�xn� may be extremely costly� This concern is especially valid

in image processing applications� where the dimension of the matrix S�xn� will be of the order ��� or

higher�

One of the most important features of our model set�up is that the computation required for each step

of the Newton recursion can indeed be performed e	ciently� More precisely� the computation of the descent

direction is equivalent to the solution of a linear MAR estimation problem� allowing the e	cient algorithm

of 
�� described in Section 
�
 to be used for its computation� In order to demonstrate this equivalence�

we rewrite the objective function as f�x� � � log p�yjx� � log p�x� � C using Bayes� rule� where C is a

constant that absorbs terms not depending on x� The vector x is distributed as N ��� Px�� where the large

covariance matrix Px is de�ned by the system matrices A and B in equation ���� As a result� the log

prior term can be written as �

�
xTP��

x
x � C� Finally� since the data y�s� at each node is conditionally

independent of all other data given the state vector x� we can write�

f�x� � �
NX

s��

log p�y�s�jx�s�� �
�



xTP��

x
x� C

From this representation of f � it can be seen that the Hessian of f will have the formr�f�x� � P��
x

�D�x��

where D�x� is a block diagonal matrix� with each block corresponding to a node s� With this form of the

Hessian� the descent direction dn is given by dn � �
�
P��
x

�D�xn�
�
��
rf�xn�� Comparing this form of the

descent direction to the linear�Gaussian problem given in equation ���� it is clear that the two problems are

equivalent with appropriate identi�cation of data terms� observation matrix� and noise covariance� Further

details of these identi�cations� as well as calculation of the Hessian� the gradient rf�x� and D�x�� can be

found in Appendix B�

Note that the overall structure of this MAP estimation algorithm is of a hybrid form� The Newton�like

component involves an approximation of the objective function f that is performed globally on the entire

graph at once� Local graphical structure is exploited within each iteration where the descent direction

is computed by extremely e	cient and direct algorithms for linear multiscale tree problems 
��� Thus�

the complexity per iteration scales as O�d�N�� where N is the number of nodes� and d is the number of

orientations� As a Newton method� quadratic convergence is guaranteed for suitably smooth choices of the

nonlinearity� This method is distinct from extended Kalman �ltering 
e�g� 
��� a technique for approximate

estimation of nonlinear dynamic systems� because the objective function is approximated globally on the

entire state trajectory at once�

Another important characteristic of the GSM framework is that conditioning on the premultiplier

x�s� reduces the model to the linear�Gaussian case� That is� when the multiplier is known� the observa�
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tions ��� are of the standard linear�Gaussian form� If� indeed x�s� were known exactly� we would have

that Pc�s� 	 H
x�s��Pu�s�H
x�s�� where Pu�s� 	 D�s�DT �s� is the covariance of u�s�� and the matrix

H
x�s�� � diagfh�x�s��g� This suggests a suboptimal estimate in which we replace x�s� by bx�s� � namely


bc�s� 	 bPc�s�
� bPc�s� �R�s�

�
��
y�s� ����

where bPc�s� 	 H
bx�s��Pu�s�H
bx�s��� It is this form of wavelet estimator that we use in our application to

image denoising in Section ��

��� Relation to other estimators

There are a number of interesting links between the GSM tree estimator developed here� and previous

approaches to wavelet denoising� In particular� there is a large class of pointwise approaches to denoising�

so�called because they operate independently on each wavelet coe�cient� The link to the GSM framework

comes from the Bayesian perspective� in which many of these methods can be shown to be equivalent to

MAP or BLS estimation under a particular kind of GSM prior for the marginal distribution� For example�

soft shrinkage 
���� a widely studied form of pointwise estimate� is equivalent to a MAP estimate with a

certain GSM prior � namely� a Laplacian or generalized Gaussian distribution with tail exponent � 	 � 
see

��� Speci�cally� suppose that the prior on x has the form px�x� � exp ���

�
jxj�� and that y is an observation

of x contaminated by Gaussian noise of variance ��� Under these assumptions� it is straightforward to

verify that the MAP estimate is given by

bxMAP 	 
y � sign�y � �� � �� ����

where � � ��
�

�
� For the purposes of comparison� we apply this type of soft thresholding to image denoising

in Section �� Additional relations between thresholding and MAP estimators are discussed in 
���� It is

shown in 
��� that by varying the tail parameter � of a generalized Gaussian prior� it is possible to derive

a full family of pointwise Bayes least�squares �BLS� estimators�

The GSM framework can also be related to the James�Stein estimator �JSE�� a technique with an

interesting and often controversial history� The JSE applies to the problem of estimating the �xed mean

c of a multivariate normal distribution from noisy observations y 	 c � v� where v � N ��� ��I�� and the

length of the vector quantities is p� The maximum likelihood estimate of c� which is simply the data y

itself� was long thought to be best in the sense that no other estimator could achieve a lower mean�squared

error �MSE� for all values of c� However� in ���� James and Stein 
��� introduced an estimator of the

mean for dimension p � � that achieves a uniformly lower MSE for all values of c� The empirical Bayesian
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derivation for the JSE �see� e�g� ��� provides the link to GSMs� In the empirical Bayes formulation� c

is modeled as a random quantity� distributed according to N �	� ��
� If the quantity � were known� then

the Bayes least�squares �BLS
 estimate of c given y would be given by bcBLS �
�
���
���� 
 ��


�
y� For �

unknown� we can imagine trying to mimic the BLSE by estimating � �� and then substituting this estimate

into the formula for the BLSE� In fact� the JSE proceeds more directly by estimating the quantity ��

�����

as �p�����

kyk�
� which can be shown ���� to be an unbiased estimate� Substituting this estimate into the BLSE

formula yields the positive�part JSE� de�ned as bc � �
�kyk� � �p� �
�����

�
kyk�

�
y�

The link to Gaussian scale mixtures is clear� Under the empirical Bayesian interpretation� the JSE

decomposes the unknown mean c into two parts c � �u where u � N �	� I
� and � is an unknown but

�xed quantity� That is� the JSE decomposes the mean into a type of Gaussian scale mixture� involving a

Gaussian component u and an unknown multiplier � � For the Gaussian scale mixtures discussed in this

paper� we typically viewed � as a random variable� and assigned it a prior under which we computed the

MAP estimate� The JSE is very similar� except that it does not assign a prior to � � and performs an

operation that is very close to ML estimation of ��

�����
� Finally� both the JSE and the GSM tree method

replace the variance in standard linear�Gaussian equations �e�g�� in equation ��	

 by an estimated variance�

Although not always explicitly stated� many other approaches to image denoising and image coding

rely on a GSM type decomposition� The roots of this approach lie in the image coding literature� where

researchers in the ���	s proposed dividing DCT coe�cients into groups according to their variance ����

Similarly� Lee ���� proposed an enhancement technique that used local variances in the pixel domain� which

is now implemented in the MATLAB wiener� routine� More recent approaches also involve modeling

wavelet coe�cients as a scale mixture distributions �e�g�� �	� �� �� ��� ��� ��� ���� Another approach is

to model dependency between the variance of a subband coe�cient and its neighbors directly� using a

conditionally Gaussian model ��� ��� ���� Some models permit the variance parameter to assume only a

discrete set of values �e�g�� ���� whereas others allows a continuum of values� The latter models e�ectively

correspond to in�nite mixture models� similar to those emphasized in the current paper�

A step common to all these techniques� whether for denoising or coding� is to estimate the multiplier

or variance� Conditioned on the variance estimate� coe�cients can be denoised by the standard LLS

estimator in equation ��	
� Many approaches use a ML�like estimate for the variance parameter� based

on a local neighborhood of coe�cients� In such a ML framework� the variance parameter is viewed as an

unknown but �xed quantity� without a prior distribution� These forms of estimator are thus very close to

the James�Stein estimator discussed previously� More recently� Mihcak et al� ���� assumed an exponential

distribution on the variance parameter� and performed a local and approximate form of MAP estimation�



Random cascades on wavelet trees and and modeling natural images ��

This corresponds to a local GSM model using a symmetrized Gamma distribution with parameter � � ��

Overall� the GSM tree framework presented in this paper represents an extension from local to global

models� Our models allow an arbitrary choice of the prior on the multiplier� which is controlled by the

choice of the nonlinearity h� Moreover� the GSM tree algorithm computes the MAP estimate based on

a global prior model on the full multiresolution representation� This global prior� which incorporates the

strong self�reinforcing properties among wavelet coe�cients� is induced by the multiscale tree structure�

In the context of the underlying tree� our GSM cascade models are closely related to the non�Gaussian

modeling framework of Baraniuk and colleagues ��	
� In their models� a multiscale discrete�state mul�

tiplier process de�ned on a tree controls the dependency among wavelet coe�cients� which are modeled

as �nite scale mixtures of Gaussians� Such models have proven useful in various applications� including

image denoising ��

� For �nite mixtures in which the multiplier variable takes on discrete values� there

exist direct recursive algorithms for computing the marginal distributions of the discrete multiplier states

conditioned on the data� The BLS estimate of wavelet coe�cients given noisy observations can be obtained

by taking expectations over these marginal distributions �see �	
� However� the computational complexity

of computing marginal distributions scales exponentially as � Md� where M is the number of multiplier

states and d is the dimension of the multiplier� In practice� therefore� both the number of states and

dimension of the multiplier may be limited� for example� the denoising algorithm of ��

 uses a low and

high variance state �M � ��� and a scalar multiplier at each node �d � ��� A small number of multiplier

states means that the models may not properly capture the non�Gaussian tail behavior and high kurtosis of

wavelet marginals� whereas a low multiplier dimension will restrict the modeling of dependencies between

orientations� In contrast� our GSM modeling framework emphasizes in�nite scale mixtures of Gaussians�

As we have illustrated� these in�nite mixtures accurately capture the non�Gaussian tail behavior and high

kurtosis of wavelet coe�cients� Regardless of the particular GSM used� the complexity of our algorithm

scales as � d�� where d is the dimension of multiplier vector at each node�

��� Parameter estimation

We now address the problem of estimating the parameters of a GSM random cascade model� Recall that a

GSM model is speci�ed by a small set of quantities � namely� the matrices D�s� that control the scaling

law� the pointwise nonlinearity h� and the system matrices A and B that control the MAR dynamics�

Determining the matrices D�s� amounts to estimating the variance� and hence can be done with standard

methods� The nonlinearity h controls the marginal distributions� so that estimating h is similar to �tting



Random cascades on wavelet trees and and modeling natural images ��

a parameterized distribution to the marginal histograms of wavelet coe�cients� again a fairly standard

procedure� The novel aspect of our GSM models are the system matrices A and B that control the scale�

to�scale dependence of the underlying premultiplier process� and it is on the estimation of these quantities

that we focus here� In particular� let � be a vector of parameters that specify these system matrices� so

that we write the stationary MAR dynamics as�

x�s	 
 A��	x�s��	 �B��	w�s	 �
�	

The task is to estimate the parameter vector � on the basis of noisy observations given by equation ��	�

We begin by observing that this set�up shares a characteristic common to many parameter estimation

problems� namely� the estimation of � would be relatively straightforward given the premultiplier x� Given

this property� the parameter estimation problem lends itself to the use of the expectation�maximization

�EM	 algorithm �
��� a technique frequently used to obtain the maximum likelihood �ML	 estimate of ��

Recall that the ML estimate is given by b�ML 
 argmax���
�
log p�yj�	

�
where � is the domain of �� In

accordance with its name� the EM algorithm alternates between taking expectations over a set of �hidden�

variables x� and then performing maximization of the resulting function� In particular� the E�step of

iteration n involves taking the expectation of the augmented log likelihood log p�x� y� �	 with respect to

the conditional density p�x jy� �n��	� where �n�� is the parameter estimate from the previous iteration� In

the standard version of the EM algorithm� the M�step entails �nding the global maximum of the resulting

function� However� there exist other versions of EM �often called GEM for generalized EM �
��	 in which

the M�step consists of taking gradient step�

A disadvantage of EM�type algorithms is that calculating the expectation over the conditional den�

sity p�x jy� �n��	 can be di�cult� This problem is often encountered for continuous�valued variables�

where the integrals are typically intractable� One approach in such cases is to develop an approximation

q�xjy� �n��	 � p�x jy� �n��		� and perform an approximate E�step by taking expectations with respect to

the distribution q� whose form is chosen to make such expectations comparatively easy to compute� It can

be shown that such approximate methods will still converge� although they need not converge to a local

maximum of the log likelihood� but rather to a local maximum of a lower bound on the likelihood �����

We have developed such an approximate EM method for parameter estimation in GSM systems� where

the approximation q to the conditional density is obtained from the algorithm described in Section ��
�

It should be noted that even with an approximate form of the density� taking the expectation is not� in

general� a straightforward task� Again the problem stems from the high dimensionality of the conditional

density � in applications such as image processing� it will be on the order of 
�� or 
��� Nonetheless� we
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have found that the tree structure of the problem can again be exploited to great advantage� In particular�

we make use of highly e�cient algorithms for Gaussian likelihood calculation on multiscale trees in order

to perform gradient ascent�� This approximate EM algorithm itself is developed in Appendix C� Thus� by

exploiting the tree structure� we obtain a tractable technique for estimating the parameters specifying the

system matrices�

� Illustrative Results

In this section� we present some illustrative results of the state estimation algorithm developed in the

previous section� We focus� in particular� on the problem estimating wavelet coe�cients c�s� on the basis

of noisy observations y�s�� The wavelet coe�cients are generated by GSM tree dynamics� and hence lie

at the nodes of a multiresolution tree� However� to illustrate the basic properties of our estimator� we

�rst consider its application to the estimation of 	
D sequence of scalar
valued coe�cients c�s� from a

corresponding sequence of measurements� These sequences can be thought of as the successive values of

one of the components of c�s� and y�s� on a single coarse
to
�ne path in a tree� such as that in Figure ��

Following this 	
D example� we illustrate the application of our full algorithm to perform image denoising

on a multiresolution quadtree of coe�cients�

��� Examples in �D

We �rst consider a scalar GSM process obtained by sampling a GSM tree process along the unique tree path

beginning at the root node and moving down the tree �from parent to child�� terminating at a speci�ed

�ne
scale node� Such a sample path reveals the scale
to
scale dependence inherent in a GSM tree pro


cess� We generate the process on the tree with dynamics of the form x�s� � �x�s� 	� 

p
	� �� w�s� and

c�s� � h�x�s��u�s�� where u�s� and w�s� distributed asN ��� 	� at each node� We estimate c�s� � h�x�s��u�s�

on the basis of the noisy observations given in equation ���� with R�s� � ���

Shown in Figure � are sample paths from two di�erent GSM processes� as well as estimates based

on noisy observations� The sample paths were generated with � � ����� and the nonlinearities h�x� �

exp�	��x� for panel �a� and h�x� � �x��� for panel �b�� Observe that the sample paths of both GSM

processes alternate between regions of low amplitude values� interspersed with regions of high amplitude

process values� Changes in the premultiplier x�s� cause the transition from one region to another� In both

�Thus� the overall procedure actually exploits tree structure twice� once to compute the density q�xjy� �n��� using the

estimation algorithm of Section ��� and again in order to calculate the required expectation�
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examples� the signal�to�noise ratio �SNR� of the noisy observations was on the order of ��� dB� where the

SNR of the observations is de�ned as SNRobs � 	
 log���var�c�s����
��
 For any estimator �c�s�� we can

de�ne an SNR for comparison as SNRest � 	
 log���var�c�s��� var
�
�c�s�� c�s�

�
�
 Recall that our estimator

of c�s� consists of two steps� �rst computing the MAP estimate of x�s�� and then computing the mean of

c�s� conditioned on the data y�s� and the estimate bx�s�
 As a result� a fair comparison is to see how the

SNR enhancement of our estimator compares to that of an �ideal� case in which we know x�s� exactly �so

that the corresponding estimate of c�s� is obtained node�by�node via standard linear estimation�
 For the

example in Figure ��a�� our estimator achieves an SNR of �
�	 dB� while the unachievable ideal SNR is less

than 

�
 dB higher
 In addition to this quantitative comparison� it is also worthwhile to comment on the

qualitative properties of the estimator
 Note that for both GSM process� the estimator e�ectively suppresses

noise in regions where the multiplier h�x�s�� is of low amplitude� while simultaneously preserving peaks in

high amplitude regions
 Thus� the estimator behaves in a way well�suited for data with the characteristics

of natural imagery � i
e
� for which it is desirable to smooth low variance regions� while simultaneously

preserving edges and other discontinuities of interest


Figure � illustrates statistical properties of the estimator
 Plotted in panel �a� are empirical histograms

of the original wavelet coe�cients c� the noisy observations y� and the estimates bc
 Observe that the

histogram of the original values shows the high kurtosis and heavy tails that are typical of a GSM
 In

contrast� while the noisy histogram of observations retains the heavy tails� the noise contamination removes

the high kurtosis and makes it appear roughly Gaussian near the origin
 The estimation routine restores

the high kurtosis� as shown in the histogram of estimated coe�cients


Note that the estimate bc�s� at any node s can be viewed as a random variable given by a function

bc�s� � Gs�y� of the vector of data y
 Plotted in panel �b� is a joint conditional histogram of noisy

observations y�s� and estimates bc�s� for a given node s
 In particular� each column in this �gure corresponds

to the distribution of jbc�s�j conditioned on the corresponding value of jy�s�j represented on the abscissa


Note that we always have jbc�s�j � jy�s�j� since bc�s� is obtained multiplying y�s� by an adaptive factor

always less than one
 Therefore� all parts of the histogram in panel �b� lie below the diagonal
 For data

jy�s�j near zero� the estimate also tends to cluster near zero
 At the other extreme� as the data becomes

large in absolute value� then jbc�s�j clusters near jy�s�j
 The overlaid solid line in panel �b� corresponds to

the mean of the estimator conditioned on di�erent values of the data
 It shows that in an average sense�

this estimator behaves similarly to a form of shrinkage or soft thresholding �e
g
� 	�� �
�
 That is� the

estimator preferentially shrinks smaller observation values while modifying larger ones much less
 Based

on the discussion in Section �
�� this is not surprising since many forms of thresholding� when interpreted in
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a Bayesian framework� correspond to a pointwise GSM model� Of course� it is important to emphasize that

the GSM tree estimator is similar to thresholding only in this average sense� Thresholding is a deterministic

operation applied pointwise to each coe�cient� whereas our estimate of each coe�cient is based on the

full vector of data y� using a global prior model that incorporates the strong cascade dependencies among

coe�cients�

��� Image denoising

Here we illustrate the application of the GSM�tree framework to denoising natural images� using the

steerable pyramid ��	
� This is an overcomplete representation that decomposes the image into subbands

localized in both scale and orientation� In all cases� we use a decomposition with four orientations� which

corresponds to a state dimension of d � �� Therefore� lying at each node of a quadtree are the two ��vectors

x
s� and u
s�� which are used to model the ��vector of wavelet coe�cients c
s�� By the notation ck
s��

we mean the coe�cient at scale s and orientation� k� We refer to a collection of all coe�cients at the

same scale and orientation 
but di�erent spatial positions� as a subband� Noisy observations of the wavelet

coe�cients are given by equation 
��� where R
s� � ��I�

Recall that the GSM�tree algorithm �rst computes the MAP estimate of the premultipliers x
s�� which

it then uses to compute denoised wavelet coe�cients via equation 
	��� We have experimented with

di�erent choices of the nonlinearity h� including the previously discussed families fexp
x��� j� � �g and

f
x���j� � �g� As a Newton�like method� convergence of the algorithm tends to be rapid for su�ciently

smooth 
i�e�� C�� choices of this nonlinearity� The computational cost per iteration scales linearly in the

number of wavelet coe�cients� Given the denoised multiresolution coe�cients c
s�� the clean image is

obtained by inverting the multiresolution decomposition�

We compare the denoising behavior of the GSM�tree algorithm to a number of other techniques� With

the exception of one algorithm 
MATLAB�s adaptive �ltering�� all techniques are applied to the steerable

pyramid decomposition� and involve an estimate of the subband variance� This estimate is given by

��c � �var
y
s��� ��n

�� where ��n is the variance of the noise in the subband 
which can be computed

directly from ��� All of the algorithms compared here are semi�blind� in that we assume that the noise

variance �� is known� The techniques to which we compare our algorithm here are�

	� Wiener subband technique� for each subband� compute denoised coe�cients as bc
s� � ��c
�
��c � ��n

�
��
y
s��

where ��c is the variance of the subband� and ��n is the noise variance in that subband�

�Here the orientations k � �� � � � � � are ordered from vertical through to the ���� orientation�
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�� Adaptive� MATLAB�s adaptive �ltering routine called by wiener�m� it performs pixel�wise Wiener

�ltering with a variance computed from a local �� � neighborhood 	see �
��

�� Soft thresholding� 	
�� For each subband� compute the soft threshold given in equation �

�� where the

threshold t � ���
n
�� is determined by the noise variance ��

n
and the scale parameter � of a Laplacian

distribution �t to the subband marginal�

We have applied these algorithms to a variety of natural images� In Figure 
�� we depict representative

results for the ���� ��� �Einstein� image� Shown in Table � are the SNR in decibels �dB� of the denoised

images for all algorithms� based on original noisy images at four levels of SNR� For all levels of SNR� the

GSM tree algorithm is superior to other techniques� Figure 
� depicts cropped denoised images for the

�Einstein� image �a�� on the basis of the noisy observations �SNR ��
� dB� shown in �b�� Panels �c�� �d��

�e�� and �f� show the results of the Wiener subband denoising� MATLAB adaptive �ltering� thresholding�

and the tree algorithm respectively�

Although the GSM�tree algorithm is superior to these other techniques� it is important to note that

the method presented here is not as good as we ultimately expect to be able to achieve� The reason can be

traced directly to one of the well�known limitations of tree models 	���� namely that nodes corresponding

to nearby spatial positions in the original image may be much farther apart in terms of tree distance �for

example� variables x��� and x��� in Figure ��� As a result� although tree models are very successful at

capturing longer range dependencies� they may improperly model the dependency between certain pairs

of nearby variables� which can lead to artifacts� In this context� it is worth noting that Strela et al� 	���

have recently obtained excellent denoising results by using a local GSM model that avoids the problems

associated with a tree structure�

There are several ways to address the problem of these boundary artifacts while retaining a global

probability model� One approach is the so�called overlapping tree framework of 	���� which retains the tree

structure but uses nodes that overlap spatially� Another is to relax the requirement of a tree structure

by introducing graphical connections between wavelet coe�cients that are spatially close� The addition of

extra connections between spatially adjacent nodes should increase modeling power signi�cantly� However�

it also presents di�cult algorithmic issues for estimation� since we can no longer exploit extremely fast tree�

based algorithms� Nonetheless� there exist a number of alternative and emerging approaches� including

techniques from numerical linear algebra 	
��� as well as our recent work on estimation in graphs with

cycles 	�
�� Other directions for future work� including exploiting the phase information provided by

complex�valued transforms� are discussed brie�y in the following section�
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� Conclusion

In this paper� we have developed a semi�parametric class of non�Gaussian multiscale stochastic processes

de�ned by random cascades on trees of multiresolution coe�cients� As we have pointed out� although our

methodology has strong intellectual ties to a variety of di�erent image models and methods for image anal�

ysis� it also di�ers in fundamental and important ways� First of all� the power of our modeling framework

is demonstrated by its ability to accurately capture both the approximate decorrelation and dramatic

non�Gaussian dependencies of wavelet coe�cients of natural images� This is achieved by decomposing

wavelet coe�cients into two underlying stochastic processes	 a Gaussian white noise process is mixed with

a non�Gaussian multiscale process that captures self�reinforcing dependencies� A second signi�cant feature

of our modeling framework is its parsimony	 only a very small set of parameters are needed to specify

a GSM wavelet cascade� This suggests that �tting such models from data is a far better�posed problem

than other approaches which require many more degrees of freedom to be speci�ed� Thirdly� our modeling

framework is su�ciently structured to permit e�cient application to image processing� In particular� we

showed how very fast tree algorithms can be used to perform estimation� and established their e�ectiveness

in application to image denoising�

A number of extensions to the modeling framework presented here are possible� First� previous empirical

work 
��� shows that a small set of multipliers is su�cient to describe a local neighborhood of wavelet

coe�cients� In contrast� models described in this paper use a number of multipliers equal to the number

of wavelet coe�cients� Estimating the order of the underlying multiplier process� though a challenging

problem� is an important one in order to develop models of even more power� Second� in the current

application� we have considered only �xed parametric forms of nonlinearity� Using a nonparametric form

of this nonlinearity would allow the model to further adapt to the image under consideration� with no

loss of e�ciency� Third� using the information about phase provided by a complex�valued multiresolution

decomposition 
see� e�g�� 
�� should lead to even better image models� Finally� in order to overcome the

well�known limitations of tree�structured models� we are investigating GSM processes de�ned on graphs

with cycles �i�e�� non�trees�� The addition of extra edges to the graph leads to more powerful models� but

also presents new challenges in performing estimation�

A Proofs on Gaussian scale mixtures

We collect here proofs of various results stated about Gaussian scale mixtures�
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A�� Proof of Theorem �

Combining the following lemmas give us the proof of Theorem ��

Lemma �� Consider a GSM variable with representation x
d
�
p
zu� and let �c�t� and �z�t� be the char	

acteristic function and Laplace transform of c and z respectively� Then �c�t� � �z�t
�����

Proof� Apply iterated expectation to the representation of �c�t� � E
exp�jct��� and use the fact that the

characteristic function of a N ��� �� variable is exp ��t�����

Lemma �� A function g on ����� is the Laplace transform of a probability distribution F �� g is

completely monotone and g��� � ��

Proof� See Section �XIII
 �� of Feller 
����

A�� Proof of Theorem �

Theorem �� Let x
d
�
p
zu be a GSM with characteristic function �c� and let the mixing variable z have

density pz�u�� De�ne f�v� � pz�v��
p
v� and suppose that

R�
�

f�v�dv ��� in which case we can consider

a random variable v with the density f � Then the GSM y
d
� �p

v
u has density py�y� � �c�y��

Proof� We write

�c�t� �

Z �
��

�Z �
�

�p
��z

exp ��u�

�z
� pz�z�dz

�
exp �jut�du

�

Z �
�

�Z �
��

�p
��z

exp ��u�

�z
� exp �jut�du

�
pz�z�dz

�

Z �
�

p
z exp ��z t

�

�
�
pz�z�p

z
dz ����

where we have used Fubini�s theorem� and the fact that the characteristic function of a N ��� z� variable is

exp ��zt����� From the �nal equation� it is clear that if v has density f�v� � pz�v��
p
v� then y � �p

v
u is

a GSM with density py�y� � �c�y��

A�� Proof of Proposition �

The following classical result is required in the proof�
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Lemma �� For � � � � �� let G� be the distribution function of a positive ��stable variable� Then as

x� �� we have ex
��

G��x�� ��

Proof� See Feller 	 xXIII
 � ��
�

Equipped with this result� we can now prove the proposition�

Proposition �� The generalized Gaussian family has the representation y
d
� �p

v
u� where in particular� v

has the density proportional to p�
�

�v��
p
v� and p�

�

is the density of a positive �
� �stable variable�

Proof� We need to establish existence of the integral
R�
�

p�
�

�u�
p
u
du� where p�

�

�u� � d
du
G�

�

�u�� Integrating

by parts� we obtain
R�
�

p�
�

�u�
p
u

du �
G�

�

�u�
p
u

����
�

�

� �
�

R�
�

G�

�

�u�

u
�

�

du� Examining the �rst term on the right side�

clearly limu��
G�

�
�u�

p
u

� � sinceG�

�

�u� � � for all u � R� Otherwise� we write G�

�
�u�

p
u

�
h
eu
�

�

� G��u�
i �

e�u
�

�

�p
u

�
�

By inspection� the second term in square brackets tends to zero as u � �
 using Lemma �� the �rst term

in square brackets also tends to zero� By the product theorem for limits� we have limu��

G�

�
�u�

p
u

� �� As

for the second term in the integration by parts� similar arguments show that the integral exists�

B State estimation

Here we explicitly compute the gradient and Hessian of the objective function f�x� � � log p�x jy��
To begin� we write � log p�yjx� � �

�

PN
s��

�
log det	B�x�s��
 � yT �s�B���x�s��y�s�

�
� C where the matrix

B�x�s�� � H�x�s��Pu�s�H�x�s�� �R�s� is the covariance of y�s� given x�s�� Here Pu�s� is the covariance

of u�s�� and the matrix H�x�s�� � diagfh�x�s��g� Using this expansion� we can write

f�x� �
�

�

NX
s��

�
log det	B�x�s��
 � yT �s�B���x�s��y�s�

�
�

�

�
xTP��

x
x� C ����

where Px is the covariance matrix of x� and C absorbs terms not dependent on x� Note that P is de�ned

by the system matrices A�s� and Q�s� at each node s �see equation ����� We compute the derivative of f

with respect to x�

�rf�x���s�i� �
�

�
trace

h
B�� �B

�x�s
 i�

i
� yT �s�B�� �B

�x�s
 i�
B��y�s� � �

�

�
P��
x

x
�
�s�i�

where �B
�x�s�i� �

�H�x�s��
�x�s�i� Pu�s�H�x�s�� �H�x�s��Pu�s�

�H�x�s�i��
�x�s�i� � Here the notation �s
 i� refers to the ith

element of the vector x�s� at node s� and �
�x�s�i� refers to the partial derivative with respect to this element�

Similarly� the Hessian can be computed as r�f�x� � P��
x

�D�x� where D�x� is a block diagonal matrix�
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We now show that the computation of the descent direction dn � �
�
P��
x

�D�xn�
�
��
rf�xn� corre�

sponds to the canonical form of a linear�Gaussian problem shown in equation ���� In particular	 we let

P��
x

be the inverse covariance matrix in both cases
 we set the inverse noise covariance R�� � D�xn�
 and

the observations matrix C � I� Finally	 we de�ne a vector of �ctitious data as y � �D���xn�rf�xn��

Note that we have assumed here that the blocks of D�xn� are positive de�nite to ensure that is constitutes

a valid covariance� Satisfying this condition may require modifying D	 in which case the method is not

exact Newton but a Newton�like method�

C Details of parameter estimation

C�� Initial set�up

In this section	 we provide the details of estimating the parameter vector � in the model ��
� given the noisy

wavelet coe�cients y�s� in equation ���� We approximate the conditional density p�xjy
 �� by expanding

the negative log conditional density in a Taylor series about the MAP estimate bx�
f�x
 �� � f�bx
 �� � �



�x� bx���P��

x
��� �D�bx���x� bx� ����

where we have used the fact that rf�bx
 �� � � by de�nition of the MAP estimate� Here the matrix D�bx�
is the one that appeared earlier in the Hessian of f � This Taylor series expansion yields the approximation

p�xjy
 �� � q�xjy
 �� � N �bx� C�bx
 ��� where the covariance is given by C�bx
 �� � �
P��
x

��� �D�bx����
� At

iteration n	 we use the approximating density q�xjy
 �n��� to perform approximate E�step by calculat�

ing the expectation of the augmented log likelihood L��
 �n� � E q�xjy��n �

�
log p�x�y
 ��

�
� It is straight�

forward to show �
�� that this function is a lower bound on the log likelihood p�y
 ��� Like many

generalized EM methods	 instead of performing an exact maximization of L at the M�step	 we will

simply take a gradient step� This generates a series of parameter estimates f�ng via the recursion

�n � �n�� � �nS��n��
 �n���rL��n��
 �n��� where S is the Hessian of L �or some approximation to it�


and �n is a step size parameter�

To perform these updates	 we need to calculate the gradient rL� The ith element of this gradient is

given by �L
��i

� E q

h
�
��i

	
log p�x
 ��


i
	 where we have used the dominated convergence theorem to inter�

change expectation and di�erentiation	 and the fact that log p�yjx
 �� does not depend on �� Recall that

for a Gaussian process x � N ��� Px�	 we have � log p�x
 �� � N
� log�
�� � �

� log detP ��� �
�
�x

TP�����x	

where we write P � Px for simplicity in notation� The partial derivative with respect to �i is given

by � �
��i

�
log p�x
 ��

�
� �

� trace
�
P�� �P

��i

�
� �

�x
TP�� �P

��i
P��x� We calculate the ith element of the gradient
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rL by taking the expectation of of � �

��i

�
log p�xj��

�
with respect to this approximating normal density

q�x� �n� � N �bx� C�x� �n��� where the covariance C was de�ned earlier� Following some elementary calcula	

tions� we obtain

�L

��i



�

�
trace

�
P��

�P

��i

�
�

�

�
bx�P��

�P

��i
P��bx� �

�
trace

�
CTP��

�P

��i
P��

�
����

C�� Gradient evaluation via likelihood calculations

Although equation ���� is analytically straightforward� its actual computation is non	trivial� Recall that

the matrices P and C� as well as their inverses and derivatives� are all N �N � where N is very large �say

�
��� This large dimension renders infeasible any brute force approach� However� the tree structure can

be exploited to develop a very fast algorithm for likelihood calculation of MAR models �see ���� consisting

of a single upward sweep from leaves to root�

This algorithm for computing MAR likelihoods turns out to be useful here� By applying the matrix in	

version lemma to equation ���� and simplifying� we have �L

��i

 ��

�
bx�P�� �P

��i
P��bx� �

�
trace

h�
P �D��

�
�� �P

��i

i
�

For any covariance matrix �� let J�u� �� � �

�
trace log��� � �

�
u
T���

u be the corresponding Gaussian likeli	

hood� With this de�nition� it can be shown be shown that �L

��i
�bx� 
 �J

��i
�P � bx�� �J

��i
�P ��� � �J

��i
�P �D������

Thus� the gradient computation can be performed by taking derivatives of standard Gaussian likelihoods

on the tree� Similarly� this structure permits e�cient computation of elements of the Hessian�
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�a� Gaussian �b� Natural image

Figure �� Histograms of wavelet marginal distributions for �a� Gaussian noise� and �b� a typical natural
image� Vertical axis gives log probability �rescaled��
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�a� Gaussian white noise �b� Natural image

Figure �� Joint conditional histograms for a wavelet coe�cient �parent� and its coarser scale child taken from
Gaussian white noise �a�� contrasted with a natural image �b�� Each column of the ��D plots corresponds to
	�D conditional histogram of p�child j parent�� Lightness corresponds to frequency of occurrence�where each
column has been independently rescaled to form a conditional histogram�
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Figure �� A segment of a q�adic tree� with the unique parent s�� and children s�q � � � � s�q corresponding to
node s�
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Figure �� Graphical illustration of model structure� Premultiplier process x�s� and white noise u�s� are
de�ned on nodes �represented by �� of the multiscale tree� Wavelet coe�cient vectors c�s� �represented by
�� is generated via nonlinearity h�
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�a� �b� �c� �d�

Figure �� Log histograms of GSM model �ts �dotted line� to the log empirical histograms of steerable
pyramid coe�cients �a single subband� applied to natural images� Parameters are computed by numerical
minimization of the Kullback�Leibler divergence�
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Figure �� Examples of empirically observed distributions of wavelet coe�cients� compared with simulated
distributions from the GSM gamma model� Top row� �Mountain� image� Second row� Empirical joint
histograms for the �mountain� image� for three pairs of wavelet coe�cients� corresponding to basis functions
with spatial separations � 	 f
� �� �
�g� Third row� Simulated joint distributions for � 	 
��
� h�x� 	 jxj�
and the same spatial separations� Contour lines are drawn at equal intervals of log probability� Fourth row�
Empirical conditional histograms for the �mountain� image� Fifth row� Simulated conditional histograms for
the GSM cascade� For these conditional distributions� intensity corresponds to probability� except that each
column has been independently rescaled to �ll the full range of intensities�
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Figure �� Simulated random cascades for various choices of the parameters� Heaviness of tails �and hence
impulsiveness of the process� increases with the parameter �� whereas the parameter � controls the scale�to�
scale dependence�
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Figure �� Estimation of a ��D GSM processes based on observations contaminated by white Gaussian noise�
�a� GSM process generated with h�x� � exp����x�� �b� GSM generated with h�x� � �x�	��
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Figure �� �a� Empirical histograms of original wavelet coe�cients� estimated coe�cients� and noisy ob�
servations� all plotted on a semilog scale� �b� Joint histogram of absolute value of noisy observations
y�s� � c�s� � v�s� versus absolute value of estimates bc�s�� The overlaid solid line is the conditional mean
E
�
jbc�s�j �� jy�s�j
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Figure ��� Cropped denoising results using a ��orientation steerable pyramid� �a� Original image� �b�
Noisy image� �c� Wiener subband denoising� �d� MATLAB adaptive� �e� Soft thresholding� �f� GSM�tree
algorithm�



TABLES ��

Mixing density GSM density GSM char� function

�Z��� symmetrized Gamma �� � ��t�	��
 � � �

��Z��� �

�
�

Student�

�� � t����	�� � � �

�

No explicit form

Positive �

�

stable �
stable exp ��j�tj��
 � � ��� �	

No explicit form
generalized Gaussian�

exp ��
�
� c
�

�
���
 � � ��� �	

No explicit form

z
d
� � exp �x���

� � �

Log multiplier

No explicit form
No explicit form

Table �� Example densities from the class of Gaussian scale mixtures� The notation Z��� denotes a positive

gamma variable z of index � with density p�z� � z
���

���� exp ��z��



TABLES ��

Noisy Wiener subband wiener��m Soft threshold GSM Tree

���� ���� �	��� �	��� �	���

���	 �	��� ����� ����
 �����

��	� ����� ����
 ����� �����

���	� ����� ����� ����� �����

Table �� Denoising results �SNR in dB� for ��� � ��� Einstein image using a ��orientation steerable
pyramid	 The original noisy SNR is given by 
� log

��
�var�I����
� and the cleaned SNR is given by


� log
��
�var�I�� var�bI � I�
� where I and bI denote the original and denoised images respectively	


