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Abstract

A two-stage objective measurement model for MPEG-coded video is proposed. The first stage weights the coded video
distortion according to the human visual system’s response. It computes the frame-by-frame perceptual impairment in
the decoded picture with respect to a reference picture; this includes low-pass spatial filtering, a Sobel operation to derive
masking coefficients, and spatial masking on the raw error between reference and compressed pictures. The second stage,
a cognitive emulator, provides a simulation of human high-level processing of visual information. This includes the very
low temporal response of human viewers to image quality changes, and asymmetric behaviour in respect of picture
quality changes from bad to good, and vice versa. With this model, we have been able to mimic quite accurately the
temporally varying subjective picture quality of video sequences as recorded by the ITU-R SSCQE method. ( 1998
Elsevier Science B.V. All rights reserved.

Zusammenfassung

In dieser Arbeit wird ein zweistufiges objektives Me{modell für MPEG-codierte Videobilder vorgeschlagen. Die erste
Stufe gewichtet die Verzerrung des codierten Videobildes entsprechend den Eigenschaften des menschlichen visuellen
Systems. Dabei wird Frame für Frame die perzeptuelle Verschlechterung in decodierten Bild bezüglich eines Referenz-
bildes berechnet; diese Berechnung beinhaltet eine räumliche Tiefpa{filterung, eine Sobel-Operation zur Ableitung von
maskierungskoeffizienten sowie eine räumliche Maskierung des ursprünglichen Fehlers zwischen Referenzbild und
komprimiertem Bild. Die zweite Stufe, ein Kognitiver Emulator, simuliert die menschliche höherstufige Verarbeitung von
visueller information. Diese Stufe berücksichtigt die sehr geringe zeitliche Reaktion des menschlichen Betrachters auf
A® nderungen der Bildqualität sowie das asymmetrische Verhalten bezüglich Veränderungen von schlechter zu guter
Qualität und umgekehrt. Mit diesem modell konnten wir die zeitlich variierende subjektive Bildqualität von Video-
sequenzen, wie sie mit der ITU-R SSCQE-Methode aufgezeichnet wurde, recht genau nachahmen. ( 1998 Elsevier
Science B.V. All rights reserved.

Résumé

Un modèle de mesure objective en deux étapes pour les vidéos codées MPEG est proposé dans cet article. Dans la
première étape on pondère la distortion de la vidéo codée en fonction de la réponse du système visuel humain. La
déterioration perceptuelle trame par trame dans l’image décodée vis-à-vis d’une image de référence est calculée; ce calcul
inclut un filtrage spatial passe-bas, une opération de Sobel pour dériver les coefficients de masquage, et un masquage
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Fig. 1. Single stimulus method.

spatial sur l’erreur brute entre images de référence et comprimée. Dans la seconde étape, l’émulation cognitive, prend
place une simulation du traitement haut-niveau humain de l’information visuelle. Ceci inclut la réponse temporelle très
faible des observateurs humains aux changements de qualité d’image, et un comportement asymetrique vis-à-vis des
changements de qualité d’image de mauvais à bon et vice versa. Avec ce modèle, nous avons été capables d’imiter très
précisément la qualité subjective variant dans le temps de séquences vidéo enregistrées avec la méthode ITU-R
SSCQE. ( 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Digital image compression technology makes
digital image communications possible and effi-
cient. Image compression could be lossless or lossy,
depending on the application. Whilst lossless
compression allows perfect recovery of the digi-
tal image, lossy approaches offer much higher
compression ratio which is very attractive to image
archiving where storage capacity is a main concern,
or digital video transmission where channel band-
width is precious. However, high compression ratio
is very often associated with poorer picture quality.
In most applications, picture quality is a key factor,
and hence knowing the perceived quality of the
digital pictures is advantageous. Over the years,
many methodologies have been proposed to
measure the quality of digital pictures. This could
involve human observers, which is a very straight-
forward approach as human beings are the ultimate
end users of digital imaging systems; or it could
involve computers running very sophisticated algo-
rithms to estimate the picture quality that would be
perceived by human observers. The former class,
known as subjective assessments, has been used in
practice for years. Under strictly controlled condi-
tions, subjective assessment methodologies could
yield very accurate and reliable result. Its short-
coming is the cost and time required to prepare and
conduct the subjective assessment. The latter class
is known as objective measurements, using math-
ematical model to simulate the human visual sys-
tem. This approach is relatively faster and cheaper

than subjective assessments, and also offers the
possibility of being incorporated into digital video
system. We will first review some subjective assess-
ment methodologies and their associated problems,
and then present the objective model we propose.

2. Subjective assessment methodologies

Since human beings are the ultimate end users of
many digital video systems, intuitively human
observers should be used to judge the quality of
digital images. There are three classes of subjec-
tive assessment methodologies: single stimulus
methods, comparison methods and double stimu-
lus methods.

In single stimulus assessment methods, subjects
are presented with a series of independent video
sequences, and at the end of each presentation, the
subjects are asked to give an overall rating of the
quality of the preceding presentation. This is best
described by Fig. 1.

The rating scale used is typically the descriptive
5-grade category scale [4]: excellent, good, fair,
poor and bad. The problem of this method is
a well-known phenomenon called adaptation [5],
where the grating process of picture quality by
the subjects are very much affected by quality of the
preceding pictures, hence making the order of the
presentations very critical. There are suggestions
that inserting anchor pictures (presentation with
best- and worst-quality levels) may reduce the effect
of adaptation, but this raises more questions on

280 K.T. Tan et al. / Signal Processing 70 (1998) 279–294



Fig. 2. Presentation structure for DSCQS method.

insertion of anchors, for example, how frequent
should the anchor stimuli be presented?

Another member of single stimulus method is
single stimulus continuous quality evaluation
(SSCQE) [3,9] developed under RACE project
MOSAIC, which has now been accepted as a stan-
dard by ITU-R [18]. In this methodology, the
human evaluators are asked to adjust a slider
mechanism according to the variation in the pic-
ture quality during the test. The position of the
slider is sampled typically at 2.5 Hz, and the read-
ing is normalised to a range of 0.0—1.0. Aldridge
et al. [3] have demonstrated the repeatability and
stability of SSCQE method in recording the tem-
poral variations in subjective quality. However, one
problem associated with SSCQE is the lack of
reference, hence making comparison of different
continuous quality measurements difficult. Al-
dridge [1] addressed the need to anchor continu-
ous quality measurement to a common reference,
and proposed some calibration to be carried out.
Despite this problem, SSCQE does offer some very
attractive advantages, which will be discussed after
the presentation of double stimulus methods.

Comparison methods present pairs of pictures
contaminated by different levels of distortion to
human evaluators, and the subjects make relational
judgements between the two stimuli using a 7-grade
categorical scale: much better, better, slightly
better, the same, slightly worse worse and much
worse. The popularity of comparison methods has
been declining, mainly due to its failure in provid-
ing meaningful distance information between two
stimuli.

Double stimulus methods are strictly speaking,
another form of paired comparison method, but

with constant reference. There are two forms of
double stimulus methods: double stimulus impair-
ment scale (DSIS) and double stimulus continuous
quality scale (DSCQS). In double stimulus
methods, reference pictures are presented together
with impaired pictures. This provides the evaluator
a constant quality level functioning as an anchor.
Regular presentation of anchors throughout
a double stimulus test session helps to alleviate the
adaptation problem suffered by all the single stimu-
lus methodologies. This offers a consolidated frame
of reference within which picture quality judge-
ments are made, thus allowing double stimulus
methods to yield stable and reliable results [15]. In
this paper, we will only discuss DSCQS, and the
reader is referred to [18] for details on DSIS.

DSCQS [18] has become the most popular ap-
proach used in evaluating subjective picture qual-
ity. Fig. 2 illustrates the general format of DSCQS,
and the 5-grade category scale used for rating is
given in Fig. 3. The stimuli are 10 s in duration, and
each pair of reference and test pictures (A and B in
Fig. 2) are presented twice to the human evalu-
ators. At the end of each second presentation, the
subjects are asked to give a retrospective rating of
the preceding presentation (RA and RB, in Fig. 2).
The order of the reference and test pictures within
a pair is randomised, and the raters are not in-
formed of the order.

The DSCQS method has been used in so many
experiments of picture quality evaluation that it has
become the bench mark on which objective
measurements models’ performance are always
compared to. However there are arguments about
the suitability of DSCQS in evaluation of video
sequences quality. Lodge [13] argues that the 10 s
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Fig. 3. Five-grade continuous category rating scale used in
DSCQS method.

duration sequences used in DSCQS method are too
short to be statistically-representative selection of
scene content to be assessed. As a result, the process
of selection of test sequences could steer the out-
come of comparison between different coding
schemes into favour of a particular coder. Using
longer sequences may alleviate this problem, but
there is a worry about recency effect in evaluating
long-sequence quality using DSCQS [2,10]. Rep-
etition of the test sequence pairs also raises the
worry that subjects may identify the artefacts dur-
ing the first presentation, and focus on the impaired
section of the picture during the second presenta-
tion, which can result in underestimated judgement
of the picture quality. Finally, there are also con-
cern about the use of reference material, which is
a test environment very different from home view-
ing situation.

Compared to DSCQS, the SSCQE has the ad-
vantage of better simulation of home viewing envi-
ronment, where the programme is watched only
once without the reference material. The SSCQE
also offers more detailed information of the picture
quality variation, which is recorded continuously,
compared to the single rating given by DSCQS,
averaged over the test sequence duration. Use of
longer test sequences in SSCQE also does not suffer
from recency effect [10], therefore allowing more
statistical-representative set of picture quality vari-
ation to be evaluated.

3. Video distortion meter

Subjective assessment methodologies are gener-
ally time consuming and expensive. The advantages
of having a computational image quality metric are
then obvious: faster and cheaper evaluation of pic-
ture quality for selection of codecs or bit-rates; the
possibility of incorporating quality control into
coding process for optimisation; and for the world
of image coding, a tool more reliable than PSNR
for the researchers to assess their progress. How-
ever, a common tool covering this wide range of
applications will be too complex, if not unrealistic.
Therefore, over the years, this vast desire in evalu-
ating picture quality objectively has spurred so
many objective measurement models being pro-
posed. These models differ very much in terms of
approaches, application areas and complexity.
Some examples are Lubin [14], Boch [6], Horita
[11] and van den Branden Lambrecht [7].

Many models available today are mainly de-
signed to return a single rating representing the
quality of 10 s sequence. The disadvantage of hav-
ing only a single score is the loss of information
about the variation of picture quality within the
sequence. As a result, an encoder that causes bursty
impairment but otherwise fairly good quality may
be wrongly interpreted as better than another en-
coder that generates slight but evenly distributed
distortion over the sequence. Hence, it is important
in some applications to have full details of the
picture quality variation. There have been some
attempts [17] to develop video distortion meters
that produce an output trace showing the temporal
variation of picture quality of the video under test,
but so far there is little effort in simulating the
mental processes involved in judgement of picture
quality.

The accuracy of objective models is usually
judged by the degree of correlation between the
objective model output and the subjective data. For
continuous video quality evaluation, the subjective
assessment tool available is SSCQE. We therefore
propose a video distortion meter [8,19] which em-
phasises on simulating the process of image quality
evaluation using SSCQE methodology. The outline
of the model is illustrated in Fig. 4. The human
visual system properties are included in the
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Fig. 4. Outline of a video distortion meter.

Fig. 5. Distortion weighting stage.

Fig. 6. Low-pass filter response.

distortion weighting stage. This stage measures
the frame-by-frame perceptible distortion in the
decoded MPFG-2 picture with respect to the refer-
ence picture. The output of the distortion weighting
stage, denoted as the instrumental picture quality
(IPQ), is a quality metric ranging from 0.0 to 1.0,
with 0.0 represents the worst quality, and 1.0 the
best quality. If the input video sequences are of
frame rate of 25 frames/s, it follows that the IPQ is
a 25 samples/s discrete-time signal. This signal acts
as an input to the cognitive emulator for further
processing. The main task of the cognitive emulator
is to simulate the process of judgement and decision
making of the human evaluators. More details
about these stages will be discussed in the sub-
sequent sections.

3.1. Distortion weighting

The distortion weighting stage estimates the per-
ceptibility of the error in the decoded frame using
the low-level human visual system model. Fig. 5
shows the interior of this stage.

Both the reference and decoded pictures are first
low-pass filtered. The low-pass filter has the re-
sponse given in Fig. 6. After the filtering, the
absolute error between the reference and decoded

pictures is computed:

e(x, y)"D½
3
(x, y)!½

#
(x, y)D (3.1)

where ½
3
(x, y) and ½

#
(x, y) are the low-pass filtered

luminance level of the reference and decoded pic-
tures, respectively. Due to spatial masking effect,
error occurring at sharp luminance transitions are
less perceptible. This could be countered for by
masking the error signal e(x, y) using the context
information from the reference picture. A mask is
constructed by first detecting the horizontal and
vertical sharp luminance transitions in the refer-
ence picture using 3]3 Sobel filters all over the
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Fig. 7. Local spatial masking function, m(x,y,d).

reference picture:

e
)
(x, y)"sobel

)
(x, y),

e
7
(x, y)"sobel

7
(x, y), (3.2)

where e
)
(x, y) and e

7
(x, y) are the horizontal and

vertical luminance gradients at point (x, y) in the
reference picture, respectively. These orthogonal
gradients at each pixel are then combined to give
a single gradient image, e

3
(x, y):

e
3
(x, y)"Je

)
(x, y)2#e

7
(x, y)2. (3.3)

Note that e
3
(x, y) should be clipped to 255. After

acquiring the luminance gradient information of
each pixel in the picture, the mask could then be
constructed as follows:

m(x,y,d)"G C
255!e

3
(x, y) K

5!d
5 KD

for e
r
(x, y)*100,

255 else,

(3.4)

where m(x, y,d) is the local spatial-masking function
at point (x, y), and d is the distance (in pixels) from
the luminance transition. There is no masking effect
if the luminance gradient is below 100. This mask-
ing function is a simple simulation of the spatial-
masking effect. The reader is referred to [16] for
more accurate masking function. Fig. 7. shows the
‘cross section’ of the masking function. The mask-
ing effect is maximum (smallest m(x, y,d)) at the
point (x, y), i.e. d"0, where the sharp luminance
transition occurs, and gradually decreases as it gets
farther from the sharp edge. According to [16], the
masking typically spreads across 5 arc of degree,
which is equivalent to 5 pixels when viewing the

picture at a distance of six times the height of
the broadcast picture. Therefore. the effective
masking region is made $5 pixels from the
centre of the luminance transition (hence
d"!5, !4, 2, 4, 5).

For each pixel in the gradient image, the corre-
sponding local masking function is computed. After
the masking function of each pixel is obtained,
a global mask m@(x, yN which is the combination of
the local masking functions m(x, y, d) for all (x, y), is
constructed. Where there is an overlapping of local
masking functions (e.g. adjacent pixels in gradient
image having large luminance gradients), the result-
ant masking equals to the stronger masker. This is
best explained by Eq. (3.5), where MINM )N returns
the lowest value of the elements enclosed by the
brackets.

m@(x, y)"MINMm(x#k, y!k),

m(x, y, 0), m(x, y#k, !k)N,

where k"!5,!4,2,!1,1,2,25. (3.5)

Superimposing the global masking function onto
the error signal e(x,y), we yield the masked error
signal:

e@(x, y)"
m@(x, y)]e(x, y)

255
, (3.6)

in which we divide m@(x, y) by 255 to normalise the
masking function to 1.0 before applying it onto the
error signal. Finally, the peak-to-peak signal-to-
noise ratio is computed over the whole picture area,
of width w and height h,

PSNR"10]log
2552

(+
w
+

h
e@(x, y)2/(w]h))

. (3.7)

Since the final aim is to map the PSNR to visual
rating, where the former is in dB and the latter is a
mean opinion score, the PSNR had to be normalised
for this purpose. The output of the distortion weight-
ing stage is converted into another metric, the instru-
mental picture quality (IPQ), derived from the
PSNR by its proper normalisation as below:

IPQ"

PSNR!20

50!20
. (3.8)

The normalisation boundaries were set to 20 and
50 dB, as we found these values gave the best fit to
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Fig. 9. Merging of responses results in the smoothing effect.

Fig. 8. Block diagram of the cognitive emulator.

the subjective results. IPQ is also clipped within
a range of 0.0 to 1.0, to be mapped to the mean
opinion score of SSCQE.

3.2. Cognitive emulator

The ultimate goal of the video distortion meter is
to predict the results of subjective quality evalu-
ation on video sequences that would be obtained
from the SSCQE tests. The decision making and
judgement process involved in SSCQE tests are
very much different from those involved in quality
evaluation of still images. Decision making tasks
have four essential components: receiving of in-
formation (stimuli) from the external environment
by the decision-maker; assimilation of the informa-
tion in relation to some working hypothesis; action
activated; and finally, making a response. In other
words, decision-making is a very cognitive-de-
manding task, and very often necessitates selective
processing of the input stimuli. Consequently, the
decision, and hence response could be biased. In
evaluating video quality, the variation of picture

quality could be very frequent, demanding very
rapid decision making from the human evaluator.
As a result, biased judgement could be expected.

We try to identify and understand these biases,
and if possible, model them with mathematical
equations. We group these models into a block
which we call the cognitive emulator. Fig. 8 shows
the cognitive emulator we are proposing. It
contains four elements: smoothing, perceptual
saturation, asymmetric tracking and delay. These
functions are explained in the following sections.

3.2.1. Smoothing effect
At a frame rate of 25 frames/s, the variation of

picture quality in a video sequence is too fast for the
human observer to segregate the individual video
frame distortions. Depending on the bit-rate and
picture activity (texture for spatial and motion for
temporal), each frame will have different degree of
impairments. For each variation in picture quality,
a stimulus is sent to the human observer, and an
associated response is generated (see the first case in
Fig. 9(a)). Due to short-term human memory, the
influence of a strong stimulus persists for a short
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Fig. 10. Illustration of perceptual saturation.

while, and fades out gradually. When two stimuli
occur within an interval shorter than the memory
duration, responses to these two stimuli may
merge, as depicted in the second case in Fig. 9(a).

In terms of picture quality evaluation, when
short durations of unimpaired frames interleave
with distorted ones, all frames appear distorted.
This implies some smoothing effect. It is believed,
however, that the merging effect is limited to mask-
ing of undistorted frames by impaired ones, but not
vice versa. Further validation on this phenomenon
is necessary. The impact of this phenomenon on the
picture quality judgement process is the quality
metric (IPQ) from the preceding distortion weight-
ing stage goes through some sort of smoothing. The
implementation of this smoothing process is dem-
onstrated in Fig. 9(b). Consider three consecutive
IPQ data a, b and c, corresponding to three frames
A, B and C, respectively. Since frames A and C are
more impaired than frame B, the relatively better
quality frame B is masked. Effectively the IPQ for
frame B is modified from b to b@. Mathematically,
this means

IPQ
4
(n)"G

1
2
(IPQ(n!1)#IPQ(n#1)),

if [IPQ(n)'IPQ(n!1)

and IPQ(n)'IPQ(n#1)],

IPQ(n), else.

(3.9)

Taking the average of two adjacent points is the
simplest approach to simulate the smoothing pro-
cess. Iterative averaging may be employed to reflect

a longer masking duration, which at this stage is
still unclear.

3.2.2. Perceptual saturation
In many distortion meters, the dynamic range of

the picture distortion (and fidelity) that humans can
observe is not taken into consideration. A common
assumption is that the picture quality perceived by
the viewers is directly proportional to that esti-
mated by the distortion meter (i.e., proportional to
the IPQ) . However, our SSCQE test results suggest
that this relation does not hold true if the picture
quality goes to the extreme limits, either severely
distorted, or with very high fidelity. In other words
there are limitations in viewers’ ability to observe
any further changes in the picture quality after it
exceeds certain thresholds, either towards better or
worse quality. It is therefore anticipated that the
perceived distortion can be related to the IPQ with
a straight-line function in the middle region, but
with non-linear characteristics at the boundary re-
gions, as depicted in Fig. 10(a).

Fig. 10(b) shows the straight-line approximation
we use in our model. This transformation could be
integrated with the normalisation process per-
formed at the distortion weighing stage, thus reduc-
ing the number of parameters. However, to make
the cognitive emulator easier to be cascaded to
other models besides the distortion weighting, the
normalisation and transformation are done separ-
ately. The signal after the perceptual saturation
process is therefore

IPQ
44
(n)"PS(IPQ

4
(n)), (3.10)

286 K.T. Tan et al. / Signal Processing 70 (1998) 279–294



Fig. 11. The asymmetric nature of Kaheman and Tversky’s value function.

where PS( ) is the transfer function emulating the
perceptual saturation. We use straight-line approx-
imation in our model for simplicity. All the para-
meters were chosen empirically, hence validation of
this transfer function using DSCQS is necessary in
the future.

3.2.3. Asymmetric tracking
In general, humans are better able to remember

unpleasant experiences than pleasant moments,
and also experience greater intensity of feelings
from disliked situations compared to favourable
situations. This could be described by a value func-
tion proposed by Kahneman and Tversky [12],
graphically presented in Fig. 11(a).

This function illustrates the way in which people
experience the displeasure of a loss more intensely
than the pleasure of an objectively equivalent gain.
Interpreting this behaviour in terms of subjective
image quality assessment means that viewers are
more sensitive to degradation than to improvement
in picture quality. This phenomenon results in an
asymmetric tracking ability of observers in trailing
the variation of picture quality during the assess-
ment process of video quality. The viewers respond
decisively (and hence quickly) to degradation in
picture quality, but hesitate (and thus slowly) in the
cases of picture improvement.

In our model, we equate the gain to improve-
ment in picture quality and the loss to drop in
picture quality. Pleasure, in our case, is the subjec-
tive picture quality gain, and displeasure is trans-
lated into losses in subjective picture quality. We

relate the instrumental gains/losses to the subjec-
tive gains/losses by Eq. (3.11):

g
4
"G

a[1!(1!g
*
)1.5] for g

*
*0,

!b[1!(1#g
*
)1.5] for g

*
(0,

(3.11)

where g
4
is the subjective gain, g

*
is the instrumental

gain, and a and b are the parameters controlling the
degree of asymmetry between gain and loss. Note
that a(b, gives the value function shown in
Fig. 12(b). Using this transfer function, we model
how human evaluators respond to variation in pic-
ture quality. Let us assume that the current output
of the distortion meter (which is also the present
position of the slider) is VDM(n!1), as illustrated
in Fig. 12. During the SSCQE test, subjects try to
track the temporally varying picture quality. At
t"nq, where s is the interval between IPQ

44
data

samples (0.04 s for 26 frame/s sequences), the pic-
ture quality perceived by the subjects is IPQ

44
(n).

Trying to track the picture quality, the subjects
estimate the error between the current slider posi-
tion and the previous picture quality to be

g
*
"IPQ

44
(n)!VDM(n!1). (3.12)

Due to asymmetric tracking capability, the picture
quality variation perceived by the subject is modi-
fied by the value function, and consequently the
error g

*
becomes g

4
, according to Eq. (3.11).

The subject then attempts to reposition the slider
to compensate for this quality change. To simulate
the process of adjusting the slider mechanism,
we introduce another transfer function given in
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Fig. 12. Effect of value function on judgement of quality change.

Eq. (3.13). S(g
4
) represents the amount of slider

movement due to subjective gain g
4
. Since the

slider’s moving speed is limited by the friction,
the change in the slider position is scaled down by
the factor j, where j is normally @1.0. To avoid
having too many adjustable parameters in this
video distortion meter, the parameter k, which con-
trols the sensitivity of the slider, is set to 1.0, hence
S(g

4
) is simplified to Eq. (3.14).

S(g
4
)"G

j(1!(1!g
4
)k) for g

4
*0,

!j(1!(1#g
*
)k) for g

4
(0,

(3.13)

S(g
4
)"j]g

4
, (3.14)

S(g
4
) is indeed the displacement of the slider. There-

fore, the slider position is updated according to this
distance, and the new position of the slider (video
distortion meter output) is given by

VDM(n)"VDM(n!1)#S(g
4
). (3.15)

The process of computing the weighted noise,
smoothing and non-linear transformations (percep-
tual saturation and asymmetric tracking) is repeat-
ed for each pair of reference and coded frames, and
at the output of the asymmetric tracking stage, we
obtain a 25 samples/s discrete-time signal reporting
the variation of picture quality that would be per-
ceived by the human observers.

3.2.4. Response time
The output of the asymmetric tracking stage is

synchronised to the input frames, but it is not the
case in SSCQE. The human observers make deci-
sions responding to every slight variation of picture

quality and displace the slider to reflect their opin-
ion. As mentioned earlier, decision-making is a very
demanding cognitive process, taking finite time to
yield the response. The consequence is a delay
between the moment the stimulus is captured by
the subject and the moment the slider is brought to
its right position. We need to delay the objective
measurement result by the same amount in order to
have the objective and subjective results syn-
chronised. Unfortunately, this delay is not con-
stant, depending on many factors to be identified.
However, de Ridder and Hamberg [9] estimate the
human response time to variation in picture quality
to be about 1 s. This includes both the time needed
to respond to stimuli as well as the delay due to the
finite movement speed of the slider mechanism used
in SSCQE. Therefore, the asymmetric tracking
stage output is delayed by the same amount to
provide a very crude temporal alignment between
video distortion meter output and the SSCQE data.

4. Experimental set-up

This two-stage video distortion meter has been
evaluated using three broadcast standard
(720]576 pixels) MPEG-2 MP@ML coded video
sequences, containing short scenes (Playground,
Wind Machine and Photocopier) from a feature
programme ‘‘Exam Conditions’’. The quality of the
digitally coded video was controlled by varying the
encoding bit-rate, according to the setting shown in
Fig. 13. The first sequence, ‘‘Playground’’, was
coded at 7.5 Mbits/s for first 35 s, followed by an-
other 44 s coded at 4 Mbits/s. The bit rate is further
reduced to 2 Mbits/s during the 79—128 s, and
finally very low bit-rate (1 Mbits/s) is used for the
last 52 s. The second sequence, ‘‘Wind Machine’’, is
divided almost equally into three sections. The be-
ginning and ending sections were coded at
4 Mbits/s, while the middle section used 2 Mbits/s.
The last sequence, ‘‘Photocopier’’, is also divided
into three sections, using 7.5, 1 and 4 Mbits/s for
each section, respectively. These three sequences
had earlier been used in a subjective test involving
a panel of 15 subjects using the SSCQE method. An
average result was obtained from these subjects
to produce the SSCQE curves, and these were
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Fig. 13. Coding bit-rates of test sequences.

subsequently used to assess the performance of the
video distortion meter.

For the cognitive emulation stage, parameters
have been set empirically. Assuming that the dis-
pleasure due to losses is double the intensity of
pleasure due to gains, we set a to 0.5 and b to 1.0.
The slider sensitivity, j is set to 0.03, which implies
moving speed of 75% of the whole scale per sec.

We have also investigated the performance of
our model without weighting the coding distortions
with the low-level vision of the first stage. We fed
the normalised PSNR computed directly from
MSE data to the cognitive emulator and compared
its output with the result obtained from using IPQ
as the input to the second stage. This comparison
demonstrates the role and significance of the cogni-
tive emulator in the distortion meter. The nor-
malisation of the PSNR in this case uses different
boundaries: 12 and 42 dB. This is, in fact, derived
from the average shift of 8 dB between the PSNRs
computed from unweighted (MSE only) and
weighted (distortion weighting stage) noise, respec-
tively.

5. Results and discussions

Fig. 14(a—d) shows the PSNR, IPQ, video distor-
tion meter output with noise weighting, and video
distortion meter output without noise weighting,
together with associated SSCQE results in
Fig. 14(e). Conventional analysis might suggest the
computation of mean-square error between the
SSCQE and the other approximations to it as
a performance indicator. The problem with this
approach is the variable delay between as subject

seeing the distortion and moving the lever which
records his or her SSCQE response. In the absence
of a reliable metric, we simply present the graphs
here for visual inspection and interpretation.

Comparing the five charts, it is obvious that the
video distortion meter output with noise weighting
provides the closest approximation to the SSCQE
graph. As expected, PSNR does not correlate well
with SSCQE. The IPQ (Fig. 14(b)), output of the
distortion weighting stage, shows some slight im-
provement compared to PSNR, but yet the correla-
tion with SSCQE is unsatisfactory. By passing the
IPQ through the cognitive emulator for further
processing, the data have been transformed to
closely follow the SSCQE result, as illustrated in
Fig. 14(c).

Using PSNR computed from unweighted noise
as the input to the cognitive emulator produces the
objective picture quality curve given in Fig. 14(d).
Although it does not follow the SSCQE curve as
well as in Fig. 14(c) (in which weighted noise was
used to compute the PSNR), its tracking is, never-
theless, much better than PSNR (Fig. 14(a)) alone.
This demonstrates the effectiveness of the cognitive
emulator in transforming raw difference into a sig-
nal that approximates SSCQE.

Similar observations can be made from Fig. 15.
Comparing Fig. 15(a,b,e) we can see the advantage
of having the distortion weighting stage. Despite of
the high-frequency variation, the outline of the
graph in Fig. 15(b) resembles the SSCQE result in
Fig. 15(e) much better. After the cognitive emula-
tion, the video distortion meter tracks the SSCQE
data even more accurately.

Fig. 16(a—e) shows the results from the most
stringent test sequence. The picture quality varies
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Fig. 14. Results for test sequence ‘‘Playground’’.
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Fig. 15. Results for test sequence ‘‘Wind Machine’’.
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Fig. 16. Results for test sequence ‘‘Photocopier’’.
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violently, due to the low coding bit-rate (1 Mbits/s)
during the 46th to the 90th sec.

Cascaded to the cognitive emulator, both the
PSNR and distortion weighting stage produce
an output trace closely following the SSCQE
curve for most of the 120 s period. The disagree-
ment between the SSCQE data and the video
distortion meter during the 65—75 s could be
due to the rapid picture quality fluctuation, to-
gether with frequent scene cuts, giving the subjects
great difficulty in synchronising the slider move-
ment with the picture quality variation. It could
be also due to the domination of tiling effect
in the coded pictures as a result of the low bit-
rate and violent motions, causing the distortion
weighting stage to underestimate the subjective
picture quality. Both the possibilities remain to be
investigated, prompting the area for future im-
provement.

6. Conclusions

We have presented an objective measurement
model suitable for assessing the temporal quality
variations in long MPEG-2 video sequences. The
model has been tested using a variety of coded
video sequences of 2 and 3 min duration, and the
performance of the complete two-stage meter was
compared with the PSNR and SSCQE graphs. It is
clear that the meter provides a closer approxima-
tion to SSCQE than either weighted or unweighted
PSNR.

These results highlight the importance of
having a cognitive emulation stage to simulate
the decision-making process of humans during
subjective assessment, an aspect which has been
neglected in many other models. Although the
parameter settings are not yet optimum pending
further experimental investigations, the second
stage of the model does illustrate the potential
to enhance the performance of low-level models
which give a single rating for overall video quality.
Our method provides important details of the
picture quality variations, hence making it a
more suitable tool for assessing moving picture
quality.
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