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Abstract—Wavelet-domain hidden Markov models have proven
to be useful tools for statistical signal and image processing. The
hidden Markov tree (HMT) model captures the key features of the
joint probability density of the wavelet coefficients of real-world
data. One potential drawback to the HMT framework is the need
for computationally expensive iterative training to fit an HMT
model to a given data set (e.g., using the expectation-maximization
algorithm). In this paper, we greatly simplify the HMT model by
exploiting the inherent self-similarity of real-world images. The
simplified model specifies the HMT parameters with just nine
meta-parameters (independent of the size of the image and the
number of wavelet scales). We also introduce a Bayesian universal
HMT (uHMT) that fixes these nine parameters. The uHMT
requires no training of any kind. While extremely simple, we show
using a series of image estimation/denoising experiments that these
new models retain nearly all of the key image structure modeled by
the full HMT. Finally, we propose a fast shift-invariant HMT esti-
mation algorithm that outperforms other wavelet-based estimators
in the current literature, both visually and in mean square error.

Index Terms—Hidden Markov tree, statistical image modeling,
wavelets.

I. INTRODUCTION

I N statistical image processing, we view an imageas a real-
ization of a random field with joint probability density func-

tion (pdf) .Viewing as randomallowsus to takeaBayesian
approach to image processing: we can incorporate knowledge of
an image’s characteristics into . Solutions to problems such
as estimation, detection, and compression rely on; the more
accurately it can be specified, the better the solutions. Of course,
we rarely have enough information to specify the joint pdf ex-
actly. Our goal is to construct a realisticmodelthat approximates

and allows efficient processing algorithms.
There have been several approaches to modeling the local

joint statistics of image pixels in the spatial domain, the Markov
random field model [1] being the most prevalent. However, spa-
tial-domain models are limited in their ability to describe large-
scale image behavior. Markov random field models can be im-
proved by incorporating a larger neighborhood of pixels, but this
rapidly increases their complexity.
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Transform-domain models are based on the idea that often a
linear, invertible transform will “restructure” the image, leaving
transform coefficients whose structure is “simpler” to model.
Real-world images are well characterized by theirsingularity
(edge and ridge) structure. For such images, the wavelet trans-
form provides a powerful domain for modeling [2].

The wavelet transform records the differences in the image
at different scales (resolutions). As such, the portions of the
image which do not vary significantly from scale to scale (the
“smooth” regions) will be captured by a few large values at
coarse scales. The portions of the image that do vary from scale
to scale are typically regions around edges and are represented
by large values at each scale in the wavelet transform.

The following primary propertiesof the wavelet transform
make wavelet-domain statistical image processing attractive [2],
[3].

P1. Locality: Each wavelet coefficient represents image
content local in space and frequency.
P2. Multiresolution: The wavelet transform represents the
image at a nested set of scales.
P3. Edge Detection:Wavelets act as local edge detectors.
The edges in the image are represented by large wavelet
coefficients at the corresponding locations.

PropertiesP1 andP2 lead to a natural arrangement of
the wavelet coefficients into three subbands representing
the horizontal, vertical, and diagonal edges. Each of these
subbands has aquad-treestructure; regions of analysis in
the image at one scale are divided up into four smaller
regions at the next (finer) scale (see Fig. 1).

PropertiesP1–P3induce two properties for the wavelet
coefficients of real-world images:
P4. Energy Compaction:The wavelet transforms of real-
world images tend to be sparse. A wavelet coefficient is
large only if edges are present within the support of the
wavelet.
P5. Decorrelation:The wavelet coefficients of real-world
images tend to be approximately decorrelated.

The Compaction propertyP4follows intuitively from two ob-
servations.1

1) Edges constitute only a very small portion of a typical
image.

2) A wavelet coefficient is large only if edges are present
within the support of the wavelet.

Consequently, we can closely approximate an image using just a
few (large) wavelet coefficients. Finally, the Decorrelation prop-

1While P4 and P5 can be made precise mathematically (see [4]), we present
them here using intuitive arguments based on the nature of images.
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Fig. 1. (a) “Cameraman” image [5]. (b) The two-dimensional wavelet transform represents an image in terms of (lowpass) scaling coefficients and three subbands
of (bandpass) wavelet coefficients that detect edges in the horizontal (LH), vertical (HL), and diagonal directions (HH). (c) The wavelet subbands form three
multiscale quad-trees, with each (parent) coefficient having four child coefficients in the next finer scale band. The child wavelets divide the support of the parent
wavelet in four.

erty (P5) indicates that the dependencies between wavelet coef-
ficients are predominantly local.

The primary properties give the wavelet coefficients of nat-
ural images significant statistical structure, which we codify in
the followingsecondary properties[6].

S1. Non-Gaussianity: The wavelet coefficients have
peaky, heavy-tailed marginal distributions [7], [8].
S2. Persistency: Large/small values of wavelet co-
efficients tend to propagate through the scales of the
quad-trees [9], [10].

Non-Gaussianity is simply a statistical restatement of Energy
Compaction (P4). Persistency is a consequence of the Edge De-
tection (P3) and Multiresolution (P2) properties.

These secondary properties give rise to joint wavelet sta-
tistics that are succinctly captured by the wavelet-domain
hidden Markov tree (HMT) model [6]. The HMT models the
non-Gaussian marginal pdf (S1) as a two-component Gaussian
mixture. The components are labeled by a hidden state signi-
fying whether the coefficient is small or large. The Gaussian
component corresponding to the small state has a relatively
small variance, capturing the peakiness around zero, while the
component corresponding to the large state has a relatively
large variance, capturing the heavy tails.2 The persistence of
wavelet coefficient magnitudes across scale (S2) is modeled
by linking these hidden states across scale in a Markov tree
(see Fig. 4). A state transition matrix for each link quantifies
statistically the degree of persistence of large/small coeffi-
cients. Given a set of training data (usually in the form of one
or more observed images), maximum likelihood estimates of
the mixture variances and transition matrices can be calculated
using the Expectation-Maximization (EM) algorithm [6]. These
parameter estimates yield a good approximation of the joint
density function of the wavelet coefficients and thus

.
In its most general form, the HMT model for an-pixel
image has approximately parameters, making it too cum-

bersome for almost all applications. In [6], the number of pa-
rameters was reduced to approximately, with the number

2Of course, no Gaussian density has heavy tails in the strict sense. Here a
Gaussian with a large variance captures the shape of the heavy-tailed density in
the region where large values are likely.

of wavelet scales ( , typically 4–10), by assuming that
the model parameters are the same at each scale. This reduction
makes it feasible, but still computationally costly, to fit a model
to one -pixel training image.

In this paper, we leverage additional wavelet-domain image
structure not yet exploited by the HMT to obtain a reduced-
parameter HMT model. This new model is constructed using
two empiricaltertiary propertiesof image wavelet coefficients.
These tertiary properties reflect theself-similarnature of images
and their resulting generalized spectral behavior [11], [12].

T1. Exponential decay across scale:The magnitudes of
the wavelet coefficients of real-world images decay expo-
nentially across scale [2].
T2. Stronger persistence at fine scales:The persistence
of large/small wavelet coefficient magnitudes becomes ex-
ponentially stronger at finer scales.

UsingT1 andT2, we will develop a reduced-parameter HMT
model that is described with just nine meta-parameters indepen-
dent of the size of the image and the number of wavelet scales.
As an added bonus, we will observe that these nine parame-
ters take similar values for many real-world images, allowing
us to fix a “universal” set of parameters, resulting in a uni-
versal HMT (uHMT). Using the uHMT model, the parameter
values are completely determined, giving us a prior for the
wavelet transforms of real-world images. With the prior speci-
fied, we avoid the costly image specific training required with
an empirical Bayesian approach (as in [6] and Section III-E),
making HMT-based processing practical in more settings.

While the uHMT is certainly less specific in its modeling of
a particular image, it captures the statistics of a broad class of
real-world images sufficiently for many applications. Fig. 2,
which compares denoising results using algorithms based on
the uHMT to other methods in the literature, demonstrates the
effectiveness of the uHMT. We observe in Fig. 2 that the image
estimation (denoising) performance of the uHMT model is
extremely close to the more complicated HMT model. Further-
more, the simplicity of the uHMT model allows us to apply it
in situations where the cost of the HMT would be prohibitive.
For instance, we will develop an shift-invariant
uHMT based estimation scheme in Section V below that offers
state-of-the-art denoising performance, as seen from Fig. 2 and
column 1 of Tables I–III.
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Fig. 2. Images from the denoising experiment corresponding to the third row of Table II. (a) Original256� 256 “boats” image [5]. (b) Noisy boats image, with
� = 0:1, PSNR= 20 dB. Boats image denoised using (c) spatial domain3 � 3 Wiener filter (wiener2 command in MATLAB), PSNR= 26:1 dB; (d) soft
thresholded discrete wavelet transform with threshold in [13], PSNR= 22:5 dB; (e) hard thresholded RDWT with threshold chosen in [13], PSNR= 26:3 dB;
(f) the empirical Bayesian HMT estimator of Section III-E [6], PSNR= 26:5 dB; (g) uHMT estimator of Section IV-C, PSNR= 26:4 dB; (h) shift-invariant
uHMT estimator of Section V, PSNR= 27:4 dB.

In contrast to other hidden Markov model (HMM) techniques
in the literature, the uHMT is simple and easy to use. The uHMT
offers the performance of a complicated model with the com-
putational efficiency of a simple model. In [7], shrinkage rules
are introduced using a two-state independent Gaussian mixture
model for the prior on the wavelet coefficients. A generalized
Gaussian distribution (GGD) with auto-regressive dependen-
cies between neighboring coefficients (both within and across
scales) is used to model wavelet coefficients in [8]. In [14], max-
imum a posteriori estimation for GGD models and its equiv-
alence to hard thresholding and MDL estimation is discussed.

An independent two-state mixture model, where the “low” state
is a point mass at zero, is analyzed in [15] with relations be-
tween realizations of this model to functions in Besov spaces.
In [16], the wavelet coefficients are modeled as Gaussian, with
the variance estimated from neighbors at the same scale. Finally,
an HMT model with parameters estimated from a noisy obser-
vation of an image is used in [6].

After reviewing the wavelet transform in Section II and the
HMT model in Section III, we introduce the HMT meta-param-
eters and the uHMT in Section IV. Bayesian estimation with the
HMT is reviewed in Section III-E and revisited in Section IV-C
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TABLE I
IMAGE ESTIMATION RESULTS FOR256 � 256 IMAGES CORRUPTED

WITH ADDITIVE WHITE GAUSSIAN NOISE OF� = 0:05. ENTRIES

ARE THE PEAK SIGNAL-TO-NOISE RATIO (PSNR)IN DECIBELS,
PSNR := �20 log (kx � xk =N) (LARGER NUMBERS MEAN BETTER

PERFORMANCE). PIXEL INTENSITY VALUES WERE NORMALIZED BETWEEN 0
AND 1. ALL RESULTSUSE THEDAUBECHIES-8 WAVELET. “SI-HMT” I S

THE SHIFT-INVARIANT ESTIMATOR OF SECTION V; “ UHMT” U SES THE

“UNIVERSAL” PARAMETERS PRESENTED INSECTION IV-C; “EMP-HMT”
USES THEEMPIRICAL BAYESIAN ESTIMATOR OF SECTION III-E;

“RDWT-THRESH” USES AHARD THRESHOLDEDREDUNDANT WAVELET

TRANSFORMUSING THE THRESHOLDS IN[13]; “DWT-THRESH” USES A

THRESHOLDEDORTHOGONAL WAVELET TRANSFORMUSING THETHRESHOLDS

IN [13]; AND “WIENER2” IS THE 2-D SPATIALLY ADAPTIVE WIENER FILTER

COMMAND FROM MATLAB

TABLE II
ESTIMATION PSNR RESULTS FORIMAGES CORRUPTED WITH� = 0:1

TABLE III
ESTIMATION PSNR RESULTS FORIMAGES CORRUPTED WITH� = 0:2

with the uHMT. Section V develops the new redundant wavelet
estimation technique. We close in Section VI with a discussion
and conclusions.

II. DISCRETEWAVELET TRANSFORM

The two-dimensional (2-D) discrete wavelet transform
(DWT) represents an image in terms of a set
of shifted and dilated wavelet functions
and scaling function [17]. When these shifted and dilated
functions form an orthonormal basis for , the image can
be decomposed as

(1)

with , , and
. The , , and denote the

subbandsof the wavelet decomposition. The expansion coeffi-
cients, called thescaling coefficientsandwavelet coefficients,
respectively, are given by

(2)

(3)

To keep the notation manageable, we will use an abstract index
for the DWT coefficients and the basis functions,
and , unless the full notation is required.

In practice, the image will be discretized on an grid.
This imposes a maximal level of decomposition

, with wavelet coefficients in each subband and
scaling coefficients at each scale. The scaling

and wavelet coefficients in (2) and (3) for an discrete
image can be calculated using a 2-D separable filter bank [18]
in computations.

A wavelet coefficient at a scale represents information
about the image in the spatial region around [2].
At the next finest scale , information about this region is rep-
resented by four wavelet coefficients; we call these thechildren
of . This leads to a natural quad-tree structuring of each of
the three subbands, as shown in Fig. 1 and Fig. 4(a) [19]. In light
of this natural tree structure, we will often refer to the wavelet co-
efficients as aDWT treewith as anodein the tree. We also
denote as the parent and as the set of children of node
. As increases, the child coefficients add finer and finer details

into the spatial regions occupied by their ancestors [19].
The Haar wavelet basis functions at a given scale are disjoint

square waves [17]. In this case, the spatial divisions made by the
wavelet quadtrees are exact [see Fig. 4(a)]. For longer wavelets,
the supports of adjacent wavelets at a given scale overlap. How-
ever, the wavelet coefficients still represent information in the

dyadic squares to a good approximation.
The orthogonal wavelet transform is not shift-invariant. In

fact, the wavelet coefficients of two different shifts of an image
can be very different [13], with no simple relationship between
them. We will find it useful to analyze and process the wavelet
coefficients for each shift of the image. The resulting represen-
tation is called the redundant wavelet transform (RDWT) [19].
The RDWT is overcomplete, with wavelet and scaling
coefficients for an -pixel image.
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Fig. 3. (a) Histogram and (b) log-histogram of the wavelet coefficients in one subband of the “fruit” image [5]. The dotted line is a generalized Gaussian
approximation(v = 0:5). The solid line is a two-component Gaussian mixture model fitted to the data. Although the generalized Gaussian density is a better fit,
by using only two states in the Gaussian mixture model, we achieve a close fit to the histogram. The Gaussian mixture model is not exact, but it allows simple and
efficient algorithms, especially for capturing dependencies between wavelet coefficients.

Fig. 4. (a) Quad-tree organization of the wavelet coefficients (black nodes) in one subband of the wavelet transform. Four children wavelet coefficients divide the
spatial localization of the parent coefficient. (b) Two-dimensional HMT model. Each black node is a wavelet coefficientw ; each white node is the corresponding
hidden state [S in (6) and (7)]. Links represent dependencies between states [quantified by (9)].

III. W AVELET-DOMAIN HIDDEN MARKOV TREEMODELS

In Section I, we made the notion of real-world image wavelet-
domain structure precise with the secondary propertiesS1and
S2. The HMT model, introduced by Crouseet al. in [6] and re-
viewed in this section, captures these properties simply and ac-
curately. To match the non-Gaussian nature of the wavelet co-
efficients (S1), the HMT models the marginal pdf of each co-
efficient as a Gaussian mixture density with a hidden state that
dictates whether a coefficient is large or small. To capture the
dependencies between the wavelet coefficients, the HMT uses
a probabilistic tree to model Markovian dependencies between
the hidden states. UsingS2 above, this graph connects each
parent to its four children and has the same quad-tree topology
as the DWT tree discussed in Section II.

A. Capturing Non-Gaussianity: Mixture Models

The form for the marginal distribution of a wavelet coeffi-
cient comes directly from the efficiency of the wavelet trans-
form in representing real-world images: a few wavelet coeffi-
cients are large, but most are small. Gaussian mixture modeling
runs as follows. Associate with each wavelet coefficientan
unobservedhidden statevariable . The value of

dictates which of the two components in the mixture model
generates . State corresponds to a zero-mean, low-variance
Gaussian. If we let

(4)

denote the Gaussian pdf, then we can write

(5)

State , in turn, corresponds to a zero-mean, high-variance
Gaussian

(6)

with . The marginal pdf is obtained by a convex
combination of the conditional densities

(7)

with . Let

(8)

be the state value probability mass function for. The and
can be interpreted as the probability thatis small or large

(in the statistical sense), respectively. The independent Gaussian
mixture model (IM) is parameterized by a triad
for each wavelet coefficient .

Wavelet coefficients have often been modeled as realizations
from a zero-mean GGD [8], [14]. In fact, the GGD models the
marginal densities of the wavelet coefficients more accurately
than the Gaussian mixture, as shown in Fig. 3, especially in the
tails of the distribution. However, the Gaussian mixture model
discussed above can approximate the generalized Gaussian den-
sity arbitrarily well by adding more hidden states. Of course, as
the number of states in the model increases, the model becomes



ROMBERGet al.: BAYESIAN TREE-STRUCTURED IMAGE MODELING 1061

more computationally complex and less robust. As can be seen
in Fig. 3, we are matching the marginal histogram very closely
using only two states. We can think of this two-state mixture
model as an approximation to the generalized Gaussian model
and will see that it is realistic enough for our purposes. The pri-
mary advantage of the Gaussian mixture model, as we will see in
the next section, is that it sets up a framework for conveniently
modeling the dependencies between wavelet coefficients. Al-
though independence is a reasonable first-order approximation
to the structure of the wavelet coefficients, significant gains are
realized by modeling the dependencies between coefficients.

B. Capturing Persistence: Markov Trees

Secondary propertyS2 states that the relative magnitude of
a wavelet coefficient is closely related to the magnitude of its
parent. This implies a type of Markovian relationship between
the wavelet states, with the probability of a wavelet coefficient
being “large” or “small” affected only by the size of its parent.
The HMT models the dependence as Markov-1: given the state
of a wavelet coefficient , the coefficient’s ancestors and de-
scendents are independent of each other.

The HMT captures these dependencies by using a prob-
abilistic tree that connects the hidden state variable of each
wavelet coefficient with the state variable of each of its children.
This leads to the dependency graph having the same quad-tree
topology as the wavelet coefficients (see Fig. 4). Each subband
is represented with its own quad-tree; this assumes that the
subbands are independent.

Each parent child state-to-state link has a corresponding
state transition matrix3

(9)

with and .
The parameters ( ) can be read as “the probability

that wavelet coefficient is small (large) given that its parent
is small (large).” We call these thepersistency probabilities. We
call and thenovelty probabilities, for they give the
probabilities that the state values will change from one scale to
the next. Having large and small wavelet coefficient values prop-
agate down the quad-tree (recallS2) requires more persistence
than novelty, that is, and .

The idea of persistency follows from our interpretation of the
wavelet basis functions as local edge detectors. If there is an edge
inside the spatial support of the basis function, then the corre-
sponding wavelet coefficient tends to be large (in magnitude).
Since the same edge is within the spatial support of at least one
of the child basis functions, we have large values propagating
down through scale. If, however, there are two edges inside the
spatial support of a wavelet basis function, then their effects
can cancel out, making the corresponding wavelet coefficient
small. At some fine scale down the tree, however, the two edges
are guaranteed to bifurcate, since the spatial resolution will be
fine enough so that each edge is represented by its own (large)
wavelet coefficient [9]. These wavelet coefficients will be large
even though their parent is small. This is the idea behind novelty.

3This state transition matrix is the transpose of that presented in [20].

C. HMT Parameters

An HMT model is specified in terms of:

1) the mixture variances and ;
2) the state transition matrices ;
3) the probability of a large state at the root node for each

in the coarsest scale .
Grouping these into a vector , the HMT provides a para-

metric model for the joint pdf of the wavelet coeffi-
cients in each of the three subbands (we treat the subbands as
statistically independent [21]).

In general, the variance and transition parameters can be dif-
ferent for each wavelet coefficient. However, this makes the
model too complicated for some applications. For example, if
there is only one observation of an-pixel image, then we are
faced with the impossible task of fitting parameters to data
points. To reduce the HMT complexity, we can make the simpli-
fying assumption that each parameter is the same at each scale
of the wavelet transform

(10)

This processes is referred to astying within scale[6]. Parameter
invariance within scale makes a tied HMT model less image-
specific, since it prevents the model from expecting smooth re-
gions or edges at certain spatial locationsa priori.

D. HMT Algorithms

The HMT is a tree-structured HMM. Thus, the three standard
problems of HMMs [22] apply equally well to the HMT:

1) Likelihood Determination.While the HMT is a model for
the joint pdf of the wavelet coefficients, the closed form
expression for is prohibitively complicated.
Fortunately, there is a fast algorithm to compute

for a given and called the Upward–Down-
ward algorithm [6], [22]–[24], involving a simple sweep
through the tree.

2) State Path Estimation.Given a set of observations and
a model , we can determine the probability that node

is in a given state (large or small) and the most likely
sequence of hidden states. Using by-products of the up-
ward–downward algorithm, we can calculate the proba-
bility that an observed wavelet coef-
ficient has corresponding hidden state .
TheViterbi algorithm[22], [23], also of complexity,
finds the most likely state sequence that produced the ob-
served wavelet coefficients.

3) Model Training.In many situations, we would like to fit
the HMT parameters to a given set of training data. For
example, we could desire themost likely that could give
rise to the training observations (the ML estimate)

(11)
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Since the state values are unknown (hidden), finding the
ML estimate directly is intractable. However, if the states
are known, finding is easy, since the coefficients are
merely independent Gaussian random variables.

The EM algorithm attacks this sort of “hidden data” problem
[6], [22]–[24]. We start with an initial guess of the
model parameters, and then for each iterationwe calculate

. Finding this expectation, called
the “E step,” amounts to calculating the state probabilities

, for which we use the upward-downward
algorithm. The maximization, or “M step” consists of relatively
simple, closed form updates of the parameters into obtain

. As , approaches a local maximum of the
likelihood function [25]. The EM algorithm is
per iteration.

While simple, EM training for the HMT has several draw-
backs. Being a hill-climber, the EM algorithm is guaranteed to
convergence only to a local maximum of . Neverthe-
less, we obtain reasonable estimates in general. More impor-
tantly, convergence can be relatively slow. For large images, this
can make training very computationally expensive. Even though
each iteration of the algorithm is , there is nothing to limit
the number of iterations it takes to converge. For example, con-
vergence on a image can take anywhere from minutes
to hours on a standard workstation.

E. Application: Empirical Bayesian Estimation

To demonstrate the effectiveness of the HMT as a model for
an image’s wavelet coefficients, we estimate an imagesub-
merged in additive white Gaussian noise. This is a straightfor-
ward extension to 2-D of the work in [6]. Given a noisy obser-
vation

(12)

with a Gaussian random field whose components are indepen-
dent and identically distributed (iid) with zero mean and known
variance , we wish to estimate the underlying image. Trans-
lated into the wavelet domain, the problem is as follows:

given estimate (13)

where is again Gaussian iid with variance .
Since we are viewing as a realization of a random field

whose joint pdf is modeled by the HMT, we take a
Bayesian approach to this estimation problem. The conditional
density is given by the problem; it is an independent,
Gaussian random field with mean. Using the HMT model
for , we can solve the Bayes equation for the posterior

.
To obtain the parameters for the prior , Crouseet

al. [6] take anempirical Bayesianapproach. The HMT parame-
ters used to model are first estimated from the observed
noisy data and then “plugged-in” to the Bayes equation (after
accounting for the noise). A strictly Bayesian approach would
require that we take the parameters as known (see Section IV-C)
or assign them a hyper-prior [7], [26].

For the Bayes estimator, we calculate the conditional mean of
the posterior using the pointwise transformation

(14)

to obtain the minimum mean-square estimate (MMSE) of.
The results of this procedure for a number of test images are

summarized in the third column of Tables I–III, and an example
is shown in Fig. 2(f). The HMT empirical Bayesian estimator
outperforms other DWT wavelet shrinkage techniques in terms
of mean square error (MSE), and in visual terms it is far supe-
rior, boasting estimates with sharper and more accurate edges. In
fact, its MSE and visual performance are quite competitive with
RDWT wavelet shrinkage [13], [27] (the current state-of-the-art
in performance).

The estimator (14) is just one of the possible approaches to
denoising using the HMT. Although (14) gives the estimate
with the MMSE under the HMT model, the choice of squared
error loss is somewhat arbitrary. Another Bayes estimator, e.g.,
a MAP estimator for 0/1 loss, could be used in its place. Alter-
natively, the model could be used outside the strict Bayesian
framework. For instance, a thresholding technique based on the
Viterbi algorithm can be used to determine which large wavelet
coefficients are likely a part of the edge structure and should
be kept (coefficients with associated hidden state) and which
ones are due to noise and should be killed [28].

IV. A REDUCED-PARAMETER HMT IMAGE MODEL

By design, the HMT model captures the main statistical
features of the wavelet transforms of real-world images. In
its raw form, however, the parameters needed to model an
image can make it unwieldy, even when tying within scale.
This poses a number of problems. Directly specifying
parameters requires a tremendous amount ofa priori. infor-
mation about the image, but without this information we run
the risk of over-fitting the model. Training the parameters can
be time consuming and may not be robust under unfavorable
conditions. The empirical Bayes estimator of Section III-E
works well, but requires the use of the EM algorithm, which
at computational complexity per iteration, can be very
time consuming. All of these make the HMT inappropriate for
applications with minimal availablea priori information or that
require rapid processing.

To address these problems, we must reduce the number of pa-
rameters in the HMT model. Because of this reduction in com-
plexity, lessa priori information will be needed to specify the
model parameters. However, the HMT model will become less
accurate: two images that have different parameterizations in the
general form of the HMT may have the same parameterization
in a reduced-parameter model.

The amount of parameter reduction that is appropriate de-
pends on the application and the amount of information known
about the images to be modeled. For example, in estimation/
denoising the assumptions are usually very broad; that is, the
noise-corrupted image is assumed “photograph-like.” The es-
timator needs only to differentiate between image and noise.
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These entities have very different structure and hence can be
modeled by very different HMTs (and thus differentiated using
only a small set of parameters). In detection and classification,
on the other hand, the differences in structure between the hy-
potheses may be more subtle, and the models may need to be
more specific and thus described by more parameters.

In [6] and in Section III, the modeling paradigm was to assign
a different set of HMT parameters to each image, with the
parameters being specified by training on an observation. In this
section, we take a different approach. By taking advantage of
image properties not yet explicitly recognized by the HMT, we
will specify a set of (only nine) meta-parameters that determine
the HMT parameters.

These additional properties, introduced as thetertiary prop-
erties of wavelet coefficients(T1,T2) in the Introduction, are
motivated by examining one-dimensional (1-D) cross sections
(slices) of images (similar to the approach of [29]). These 1-D
slices consist of piecewise smooth regions separated by a finite
number of discontinuities. The extension of these properties to
2-D is not exact—they hold for images with only vertical, hor-
izontal, and 45 diagonal edges—but still remains a good ap-
proximation.

A. Incorporating the Tertiary Properties of the Wavelet
Coefficients into the HMT

The wavelet transforms of real-world images exhibit addi-
tional strong statistical properties in addition to the primary
(P1–P5) and the secondary (S1,S2) properties. In designing our
reduced-parameter HMT model, we will use the observed ter-
tiary properties of the wavelet coefficients stated in the Introduc-
tion: as the scale becomes finer, the magnitude of the wavelet
coefficients decreases exponentially (T1) and persistence be-
comes stronger (T2). The tertiary properties reflect the statis-
tical self-similarityacross scale observed in real images [11].
Zooming in on an image adds detail at every step, and since the
statistics of these new details have predictable properties, we
can use this fact to reduce the model complexity.

Based on the tertiary properties of the wavelet coefficients,
we can specify functional forms for the parameters of an HMT
model. The coefficient decay and change in coefficient persis-
tence are easily modeled by imposing patterns how the mix-
ture variances and state transition probabilities change across
scale. Because the characterized tertiary properties are common
to many real-world images, the resulting model describes the
common overall behavior of real-world images in the wavelet
domain.

1) Modeling Wavelet Coefficient Decay:The wavelet coef-
ficient exponential decay property (T1) stems from the overall
smoothness of images. Roughly speaking, a typical grayscale
image consists of a number of smooth regions separated by dis-
continuities. This results in a generalized -type spectral be-
havior [11], which leads to an exponential decay of the wavelet
coefficients across scale [2].

We can easily model the exponential decay of wavelet coeffi-
cients (T1) through the mixture variances of the wavelet HMT
model. Since the HMT mixture variances characterize the mag-

nitudes of the wavelet coefficients, we will require that they
decay exponentially across scale as well (see also Fig. 5)

(15)

(16)

Since the wavelet coefficients representing edges in an image
decay slower than those representing smooth regions, we need

for all scales, and thus require . The result
is an HMT for images with a generalized power spectrum.

The four meta-parameters , , , and charac-
terize the marginal densities of the wavelet coefficients. Having
marginals of this form not only meshes with the statistical self-
similarity of images, but is also related to smoothness charac-
terization using Besov spaces [15], [30]. Roughly speaking, a
Besov space contains functions with derivatives in

, with making finer smoothness distinctions [31]. For ,
contains functions that are uniformly regular but have

isolated discontinuities [2]. These properties are similar to those
of real-world images; Besov spaces have been successfully used
as image models for several applications [31], [32].

The fact that wavelets form an unconditional basis for all
Besov spaces means that the Besov norm can be com-
puted equivalently (subject to the constraint that the analysis
wavelet is smoother than the image) as a simple sequence
norm on the wavelet coefficients [33]

(17)
where “ ” denotes equivalent norm, ,
and . We say if .

For (17) to be finite, the-norm of the wavelet coefficients at
each scale must fall off exponentially. The exponential decay of
the variances in the HMT model captures this fact. In fact, it has
been shown in [34] that a realization from an IM having variance
parameters of the form (15) and (16) lies in ,

, with probability 1 (a proof for a very similar statement
can be found in [15] and [35]). The equivalence between Besov
spaces and wavelet domain statistical models is discussed in
[30].

This connection between the form of the marginals of the
wavelet coefficients and Besov spaces leads us to an important
point. Modeling an image as lying in a certain Besov space
places restrictions on the form of the wavelet coefficient
marginals, but not on their dependency structure. By charac-
terizing the dependencies between the wavelet coefficients,
as done in the next section, we are essentially refining the
Besov model to consider only images that have a similar edge
structure to photograph-like images.

2) Modeling Coefficient Persistence:The edge structure of
images manifests itself as dependencies between the wavelet
coefficients. These dependencies are represented in the HMT
model by the state transition matrix (9). In this section, we take
advantage of the observation that these dependencies also ex-
hibit self-similar structure from scale to scale, codified inT2),



1064 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 7, JULY 2001

Fig. 5. Universal HMT parameters against trained parameters for images. The solid lines are the parameters for the “baby,” “cameraman,” “fruit,” and“Lenna”
images [5] plotted across scale. The dotted lines represent the uHMT parameters presented in Section IV-B. Reliable estimates forp L require more data than
the other three parameters, so the behavior is shown from scalej = 5 onwards.

to simplify the HMT model further by assigning an exponential
form to the transition matrix.

We can obtain intuition behind the persistence propertyT2) by
considering a piecewise smooth 1-D image slice containing a fi-
nite number (say ) of discontinuities. Since there are a finite
numberofdiscontinuitiesandthespatial resolutionof thewavelet
coefficients becomes finer as the scaleincreases (P2), there ex-
ists a scale such that for all each waveletbasis func-
tion has at most one discontinuity inside its spatial support. We
call thisconditionisolationofedges.RecallingP3,weexpect that
for fine scales such that there will be approximately
wavelet coefficients that are “large” when compared to other co-
efficients at the same scale (exactly if we are using the Haar
wavelet). Each of these large coefficients will also have a large
child, since the children wavelet basis functions simply divide up
the spatial support of the parent. Each of the small coefficients’
children will have small children, since there is no chance for any
of them to encounter an edge. We can combine these facts into
a grammar for the magnitudes of wavelet coefficients at scales

: a small parent has two children that are also small, a
large parent has one small child and one large child. As the scale
increases, more of the edges become isolated, and the coefficient
magnitudes follow the grammar more closely as a whole.

In 2-D, the situation is similar except that instead of disconti-
nuities at points, we now have discontinuities along curves. At

, all wavelet basis functions that have spatial support inter-
secting this curve will be “large.” Now each of these coefficients
will have between one and four large children, while the small
coefficients will spawn small children.

To incorporate (T2) into the HMT model, we examine how
the isolation of edges at fine scales controls the persistency and
novelty probabilities (and hence the form of the transition ma-
trix).

The persistence of small values is intuitive. If each of the
edges in the 1-D slice is isolated, then there is no opportunity
for a novel large coefficient to come from a small parent; the
only way a coefficient can be large is if its parent is large. Thus,

as . In other words, , since once a
basis function lies over a smooth region, all of its children also
lie over that smooth region.

The persistence of large values is somewhat more compli-
cated. Consider a 1-D wavelet coefficient(for “parent”) lying
over an isolated edge ( ) in the 1-D slice at scale .
Call ’s children and . Since the edge is perfectly localized
in space, one and only one of and will be large, since the
Haar basis functions corresponding toand have disjoint
supports. This means that

(18)

(19)

(20)

(21)
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Because the HMT does not jointly model the state values of
the children given the state of the parent, it cannot capture the
property that exactly one and only one ofand is large. In
fact, given , under the HMT and are independent.
Instead of modeling the joint distribution of and given

(18)–(21) exactly, the HMT approximates it as the product
of the marginals and with

(22)

(23)

As a result, the HMT persistency probability as
. Admittedly, this is an imperfect model, since for all

values of , there is a chance that the edge will disappear (since
under the HMT) or

bifurcate [2] (since ).
However, capturing the exact behavior of (18)–(21) would ne-
cessitate the use of a more complicated joint model for the states
of the children coefficients given the state of the parent coeffi-
cient. For wavelets other than the Haar, the supports of the basis
functions of the children are not necessarily disjoint. However,
(18)–(21) hold within a reasonable approximation.

Extension of this analysis to 2-D is also not exact, except for
horizontal, vertical, and diagonal edges. In 2-D, edges lie on
curves in space, and the curve could conceivably intersect the
spatial support of the basis functions of any of the children of
a coefficient that has isolated the curve. However, the curves
become straight lines asymptotically inside the support of the
wavelet and so they encounter only two children in the limit.

We have observed for a number of grayscale images that
the transition matrix entries approach their asymptotic values
in a roughly exponential manner (see Fig. 5). This observation
makes sense, since the transition probabilities rely on the edges
being isolated, which becomes (approximately) exponentially
more likely as scale increases. We therefore impose the fol-
lowing exponential form on the state transition matrix (9) spec-
ified by four parameters

(24)

The transition matrix has the asymptotic form

(25)

3) HMT Meta-Parameters:The only parameter in the HMT
not yet accounted for is the probability mass function on the
hidden state value of the root coefficients (just one number in
our case, , since the hidden state can only take two different
vales). Taking this parameter as is, we can specify all of the
HMT parameters with nine meta-parameters:

(26)

The self-similarity of images is reflected in the self-similarity
of the HMT model parameters. The fact that the model param-
eters can be captured by these functional forms means that sta-
tistical behavior of images at a fine scale is predictable from the
statistical behavior at a coarser scale. Not only does the intro-
duction of the HMT meta-parameters reduce the complexity of
the model, but it integrates a key property of real-world images.

B. A “Universal” Grayscale Image Model: The uHMT

Now that we have an image model specified by a small set of
meta-parameters , we must find a way of specifying them.
The first possibility would be to derive a constrained EM algo-
rithm to give pseudo-MLE estimates of given an observa-
tion. Deriving the steps for this algorithm is difficult, and there
is no guarantee that the training would be any faster than in the
unconstrained case.

Another possibility is to fix the meta-parameters directly. This
yields an HMT model for a class of images, with each member
in the class being treated as statistically equivalent. To see how
much variation in the HMT meta-parameters there is across pho-
tograph-like images, we trained HMT models for a set of wavelet
transforms (using the Daubechies-8 wavelet) of normalized pho-
tograph-like images and examined their parameters. The vari-
ance and persistence decays were measured by fitting a line to the
log of the variance versus scale for each state. The decays were
very similar for many of the images (see Fig. 5). Since the images
were normalized, the range over which the variances decayed
was similar as well. These observations confirm that we can use
a specific “universal” set of HMT meta-parameters to reasonably
characterize photograph-like images.

The universal parameters obtained by (jointly) fitting lines to
the HMT parameters of four images (see Fig. 5) are given by

(27)

The lines were fit to the HMT parameters starting at scale
( for the measurement). There are two reasons for
this, as follows:

1) Before this scale, there is not enough data for an accurate
estimate of the decays.

2) These decay rates are really asymptotic properties. The
parameter that is the most similar across all images is.
This is to be expected, since corresponds to the decay
rate of the wavelet coefficients lying over an edge, and
hence is automatically independent of the image we are
analyzing.

Of particular interest is the result . As mentioned in
[34], it is shown that a realization from a independent mixture
model is almost surely in a Besov space if and only
if . Therefore, a realization from the uHMT
model is almost surely in if and only if .
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Fig. 6. (a) DWT tree and (b) DWT tree at one shift (shift 6) embedded into the 1-D RDWT graph. Note that the DWT trees overlap—the same coefficient appears
in more that one tree. There are(n logn) unique coefficients for a length-n signal. Also note that each node now has two parents as well as two children, and
is included in2 different trees. In 2-D, the RDWT graph consists of overlapping quad-trees; each node has four parents and four children and is included in4
different trees.

This closely agrees with [31], where DeVoreet al. found that
real-world images lie in Besov spaces with .

Although we clearly lose accuracy by viewing all images we
are interested in as statistically equivalent, this process totally
eliminates the need for training. This can save a tremendous
amount of computation, making real-time HMT processing pos-
sible.

C. Application: Bayesian Estimation with the uHMT

With the uHMT parameters, we have a fixed prior on the
and the estimation problem in Section III-E can be approached
from a purely Bayesian standpoint. To find the conditional mean
vector, the state probabilities are calculated
using the upwards-downwards algorithm and used to evaluate
(14). Since we have eliminated training, the estimation algo-
rithm is truly and takes only a few seconds to run on a
workstation, slightly longer than simple wavelet thresholding
algorithms but much faster than the empirical Bayesian algo-
rithm of Section III-E [6].

To test this new Bayesian estimator, we denoised the test im-
ages using the uHMT parameters presented in the last section.
The estimation results are summarized in the second column of
Tables I–III, and an example is given in Fig. 2(g). The results are
almost identical to the much more complicated empirical Bayes
HMT approach, suggesting that we have lost almost nothing by
completely eliminating training.

V. SHIFT-INVARIANT HMT IMAGE ESTIMATION

Image estimates based on orthogonal wavelet transforms
(DWTs) often exhibit visual artifacts, usually in the form of
ringing around the edges. These artifacts result from the lack
of shift-invariance in the DWT [27]. As we mentioned before,
two different shifts of an image can have very different wavelet
transforms. In particular, the wavelet domain characteristics of
a singularity change as it shifts around.

For a shift-invariant estimation algorithm, we turn to the
RDWT. Ideally, we would like to model the RDWT coeffi-
cients using an HMT in a similar fashion as in the orthogonal
case. Unfortunately, the redundant transform does not have a
tree-like structure, and capturing all of the important depen-
dencies would require a complicated graph that would make
Bayesian inference hard or impossible [6], [36].

Another way to make the image estimate shift-invariant is to
follow the “cycle-spinning” program proposed by Coifman and

Donoho [27]. The estimation algorithm is applied to all shifts of
the noisy image, and the results are averaged. The shift-invariant
estimate of an ( -pixel) image that has been corrupted
by noise, , is given by

(28)

where is the estimate of using the shift of (there
are possibilities, one for each pixel in the image). To calcu-
late the estimate , shift the observation by , apply
the estimator, and unshift the result

(29)

where is the 2-D shift operator and
denotes the estimator of Section III-E or Section IV-C.
This approach fits directly into the Bayesian framework.

Since the estimate depends on the shift of the data,
can be viewed as an unknown random variable.

Since we have no a prior information about except
that , we use a noninformative prior

, meaning each possible shift is equally likely.
Then the Bayes-optimal estimator becomes a weighted average
over all shifts [26]

(30)

Since (28) makes the additional assumption that is
uniform, the estimator derives no information about the under-
lying shift given the observed data; equal weight to the estimates
at each shift. If we calculated , we could use (30) and
weight the estimate at each shift by its likelihood, but this is an
expensive operation that led to no significant gains in our exper-
iments.

The algorithm (28), if implemented directly, would be com-
putationally expensive, . However, if we assume that the
same HMT model applies to all shifts (an assumption tacitly
made in deriving the uHMT parameters), then the complexity
can be reduced substantially. While the DWT tree for each shift
of the image is unique, wavelet coefficients are shared between
trees. There are unique wavelet coefficients among the

DWT trees of an -pixel image [27]. These unique
coefficients are the RDWT coefficients, as mentioned in Sec-
tion II, and can be indexed by scale and shift. The DWT tree of
a particular shift is embedded into the RDWT coefficients (see
Fig. 6 for a 1-D example).
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From Fig. 6, we see that the RDWT coefficients do not retain
the same tree structure as the DWT; each node now hastwo par-
entsand two children (in 1-D) with each parent coming from a
different DWT tree (in the 2-D case, each node will have four
parents and four children). Averaging the estimates of the image
at different shifts in the spatial domain is equivalent to averaging
together the estimates for each node from all trees in which it is
included. Since each node still has two children, the downwards
binary tree structure is preserved, and an algorithm
can be obtained by a modification to the upward-downward al-
gorithm (see [28] for details).

Our results using the uHMT parameters from Section IV-C in
the shift-invariant estimator are summarized in the first column
of Tables I–III, with an example shown in Fig. 2(h). As we see
in the figure, the shift-invariant transform smooths the visual
artifacts in the smooth regions of the image while keeping the
edges sharp. We have also picked up an extra1 dB MSE per-
formance over the uHMT and empirical Bayesian HMT models.

VI. CONCLUSIONS

Modeling lies at the core of any statistical image processing
problem. An accurate model is of paramount importance for ap-
plications such as estimation, detection, compression and seg-
mentation. Not only are models of great practical importance,
but they also offer insight into the underlying natural structure
of images.

Hidden Markov trees capture the primary aspects of image
structure in the wavelet domain. In this paper, we have shown
that the HMT parameters themselves have a certain form, de-
scribed by the nine HMT meta-parameters, derived from the
self-similar nature of real-world images. By constraining the
HMT with these meta-parameters, we not only have a simpler,
more concise image model, but we also incorporate morea
priori information about the structure of images into the model.

The form of the HMT parameters not only agrees with the
Besov space model of images, it expands on it. Besov space
models capture the overall smoothness of images, a property
which is reflected by the exponential decay of the mixture vari-
ances in the HMT. By including a characterization of depen-
dencies between wavelet coefficients, the HMT also captures
the edge structure of images, thus narrowing down the space of
images represented by the model.

The uHMT parameters arise naturally from the form of the
HMT and accurately model a wide range of images. These nine
numbers completely specify an HMT model for a large class
of real-world images, eliminating any need for training and
thus greatly simplifying processing algorithms and allowing
real-time implementations.

With the uHMT parameters, we have specified a prior for
photograph-like images. This allows us to take a Bayesian ap-
proach to statistical image processing problems; specifically, es-
timation in the presence of noise. Using a Bayesian approach,
we are able to incorporate our knowledge of image structure into
a “smart” wavelet shrinkage rule that takes into account coarse
scale information while processing fine scale wavelet coeffi-
cients. The model helps predict which wavelet coefficients rep-
resent key features in the image (and thus should not be affected)
and which ones represent noise (and thus should be shrunk).

Finally, the uHMT model also allows us to implement a shift-
invariant estimator; a task that would be too computationally in-
tensive if we had to train a model for every shift of the image.
The shift-invariant uHMT estimator offers state-of-the-art per-
formance in MSE and visual quality.

MATLAB code for the HMT-based denoising algorithms
and the test images used for Tables I–III can be found at
dsp.rice.edu/software/WHMT.
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