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Abstract—Wavelet-domain hidden Markov models have proven  Transform-domain models are based on the idea that often a
to be useful tools for statistical signal and image processing. The |inear, invertible transform will “restructure” the image, leaving
hidden Markov tree (HMT) model captures the key features of the  yansform coefficients whose structure is “simpler” to model.

joint probability density of the wavelet coefficients of real-world _ . . 3 .
data. One potential drawback to the HMT framework is the need Real-world images are well characterized by thegularity

for computationally expensive iterative training to fit an HMT  (€dge and ridge) structure. For such images, the wavelet trans-
model to a given data set (e.g., using the expectation-maximization form provides a powerful domain for modeling [2].

algorithm). In this paper, we greatly simplify the HMT model by The wavelet transform records the differences in the image
exploiting the inherent self-similarity of real-world images. The gt different scales (resolutions). As such, the portions of the
simplified model specifies the HMT parameters with just nine image which do not vary significantly from scale to scale (the
meta-parameters (independent of the size of the image and the , N . .

number of wavelet scales). We also introduce a Bayesian universal SMOOth” regions) will be captured by a few large values at
HMT (uHMT) that fixes these nine parameters. The uHMT coarse scales. The portions of the image that do vary from scale
requires no training of any kind. While extremely simple, we show to scale are typically regions around edges and are represented
using a series of image estimation/denoising experiments that thesepy large values at each scale in the wavelet transform.

new models retain nearly all of the key image structure modeled by ~The following primary propertiesof the wavelet transform

the full HMT. Finally, we propose a fast shift-invariant HMT esti- ) . c . .
mation algorithm that outperforms other wavelet-based estimators make wavelet-domain statisticalimage processing attractive [2],

in the current literature, both visually and in mean square error. [3].
Index Terms—Hidden Markov tree, statistical image modeling, P1. Locality. .EaCh wavelet coefficient represents image
wavelets. content local in space and frequency.
P2. Multiresolution: The wavelet transform represents the
image at a nested set of scales.

. INTRODUCTION P3. Edge Detection\Wavelets act as local edge detectors.
N statistical image processing, we view an images a real- The edges in the image are represented by large wavelet
ization of a random field with joint probability density func- ~ coefficients at the corresponding locations.
tion (pdf) f(z). Viewingz as random allows us to take a Bayesian PropertiesP1 andP2 lead to a natural arrangement of

approach to image processing: we can incorporate knowledge of the wayelet coefflcllents into Fhree subbands representing
animage’s characteristics inféz). Solutions to problems such ~ the horizontal, vertical, and diagonal edges. Each of these
as estimation, detection, and compression relf(ar); the more subbands has quad-treestructure; regions of analysis in
accurately it can be specified, the better the solutions. Of course, € image at one scale are divided up into four smaller
we rarely have enough information to specify the joint pdf ex- regions at. the next -(flner) scale (see F,'g' 1).

actly. Our goal is to construct a realistitodelthat approximates Pr_operhe?l—PBmducg two prppemes for the wavelet
f(z) and allows efficient processing algorithms. coefficients of real-wgrld. Images.

There have been several approaches to modeling the local P4. En_ergy Compaction:The wavelet transforms OT r.eal-_
joint statistics of image pixels in the spatial domain, the Markov world Images tend to be sparse. A yvavelet coefficient is
random field model [1] being the most prevalent. However, spa- Iargelonly if edges are present within the support of the
tial-domain models are limited in their ability to describe large- \ggvgggorrelation'The wavelet coefficients of real-world
scale image behavior. Markov random field models can be im- ) i

? : ) : . images tend to be approximately decorrelated.
F;gﬁs it;])grr;(;c;rg:Eﬁgﬂgc";ﬁ;?s)r(i?;|ghborhood of pixels, but this The Compaction proper®4follows intuitively from two ob-

servations.

1) Edges constitute only a very small portion of a typical
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Fig.1. (a)“Cameraman”image [5]. (b) The two-dimensional wavelet transform represents an image in terms of (lowpass) scaling coefficieptsidrizhiinle
of (bandpass) wavelet coefficients that detect edges in the horizontal (LH), vertical (HL), and diagonal directions (HH). (c) The wavelet subb#dmnée f
multiscale quad-trees, with each (parent) coefficient having four child coefficients in the next finer scale band. The child wavelets dividerttaf wgparent
wavelet in four.

erty (P5) indicates that the dependencies between wavelet coefwavelet scales~ log, N, typically 4-10), by assuming that
ficients are predominantly local. the model parameters are the same at each scale. This reduction

The primary properties give the wavelet coefficients of natnakes it feasible, but still computationally costly, to fit a model
ural images significant statistical structure, which we codify ito onen-pixel training image.

the following secondary propertief§]. In this paper, we leverage additional wavelet-domain image
S1. Non-Gaussianity: The wavelet coefficients havestructure not yet exploited by the HMT to obtain a reduced-
peaky, heavy-tailed marginal distributions [7], [8]. parameter HMT model. This new model is constructed using

S2. Persistency: Large/small values of wavelet co-two empiricaltertiary propertiesof image wavelet coefficients.

efficients tend to propagate through the scales of tHdese tertiary properties reflect thelf-similarnature ofimages
quad-trees [9], [10]. and their resulting generalizéd f spectral behavior [11], [12].

Non-Gaussianity is simply a statistical restatement of Energy T1. Exponential decay across scaléThe magnitudes of
Compaction P4). Persistency is a consequence of the Edge De-  the wavelet coefficients of real-world images decay expo-
tection P3) and Multiresolution P2) properties. nentially across scale [2].

These secondary properties give rise to joint wavelet sta- T2. Stronger persistence at fine scalesthe persistence
tistics that are succinctly captured by the wavelet-domain Of large/small wavelet coefficient magnitudes becomes ex-
hidden Markov tree (HMT) model [6]. The HMT models the ~ ponentially stronger at finer scales.
non-Gaussian marginal pds{) as a two-component Gaussian UsingT1 andT2, we will develop a reduced-parameter HMT
mixture. The components are labeled by a hidden state sigfiodel thatis described with just nine meta-parameters indepen-
fying whether the coefficient is small or large. The Gaussig#ent of the size of the image and the number of wavelet scales.
component corresponding to the small state has a relativél§y an added bonus, we will observe that these nine parame-
small variance, capturing the peakiness around zero, while RS take similar values for many real-world images, allowing
component corresponding to the large state has a relativefy to fix a “universal” set of parameters, resulting in a uni-
large variance, capturing the heavy tailghe persistence of versal HMT (UHMT). Using the uHMT model, the parameter
wavelet coefficient magnitudes across scé#¢) (is modeled Vvalues are completely determined, giving us a pfiow) for the
by linking these hidden states across scale in a Markov tr@@velet transforms of real-world images. With the prior speci-
(see Fig. 4). A state transition matrix for each link quantifiebed, we avoid the costly image specific training required with
statistically the degree of persistence of large/small coef@n empirical Bayesian approach (as in [6] and Section IlI-E),
cients. Given a set of training data (usually in the form of on@aking HMT-based processing practical in more settings.
or more observed images), maximum likelihood estimates ofWhile the uHMT is certainly less specific in its modeling of
the mixture variances and transition matrices can be calculagegarticular image, it captures the statistics of a broad class of
using the Expectation-Maximization (EM) algorithm [6]. Thes¢geal-world images sufficiently for many applications. Fig. 2,
parameter estimates yield a good approximation of the joiwhich compares denoising results using algorithms based on
density function f(w) of the wavelet coefficients and thusthe uHMT to other methods in the literature, demonstrates the
f(x). effectiveness of the uHMT. We observe in Fig. 2 that the image

In its most general form, the HMT model for anpixel (N x estimation (denoising) performance of the uHMT model is
N)image has approximately, parameters, making it too cum-extremely close to the more complicated HMT model. Further-
bersome for almost all applications. In [6], the number of p&nore, the simplicity of the UHMT model allows us to apply it

rameters was reduced to approximately; with J the number in situations where the cost of the HMT would be prohibitive.
For instance, we will develop a®(nlogn) shift-invariant

_ . . ) UHMT based estimation scheme in Section V below that offers
20f course, no Gaussian density has heavy tails in the strict sense. Here a f-th d . . f f Fig. 2 and
Gaussian with a large variance captures the shape of the heavy-tailed densigtte-0f-the-art denoising performance, as seen from Fig. 2 an

the region where large values are likely. column 1 of Tables I-lII.
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(d) DWT-thresh {e) ROWT-thresh

Fig. 2. Images from the denoising experiment corresponding to the third row of Table II. (a) Ozigthal 256 “boats” image [5]. (b) Noisy boats image, with
o, = 0.1, PSNR= 20 dB. Boats image denoised using (c) spatial don3ai 3 Wiener filter #iener2 command in MATLAB), PSNR= 26.1 dB; (d) soft
thresholded discrete wavelet transform with threshold in [13], PSN&.5 dB; (e) hard thresholded RDWT with threshold chosen in [13], PSNR6.3 dB;
(f) the empirical Bayesian HMT estimator of Section IlI-E [6], PSNR26.5 dB; (g) uHMT estimator of Section IV-C, PSNR 26.4 dB; (h) shift-invariant
UHMT estimator of Section V, PSNR- 27.4 dB.

In contrast to other hidden Markov model (HMM) techniqueén independent two-state mixture model, where the “low” state
in the literature, the uUHMT is simple and easy to use. The uUHM$ a point mass at zero, is analyzed in [15] with relations be-
offers the performance of a complicated model with the corntween realizations of this model to functions in Besov spaces.
putational efficiency of a simple model. In [7], shrinkage rulek [16], the wavelet coefficients are modeled as Gaussian, with
are introduced using a two-state independent Gaussian mixttire variance estimated from neighbors at the same scale. Finally,
model for the prior on the wavelet coefficients. A generalizean HMT model with parameters estimated from a noisy obser-
Gaussian distribution (GGD) with auto-regressive dependeration of an image is used in [6].
cies between neighboring coefficients (both within and acrossAfter reviewing the wavelet transform in Section Il and the
scales) is used to model wavelet coefficients in [8]. In [14], maxdMT model in Section Ill, we introduce the HMT meta-param-
imum a posteriori estimation for GGD models and its equiveters and the uHMT in Section IV. Bayesian estimation with the
alence to hard thresholding and MDL estimation is discussddMT is reviewed in Section IlI-E and revisited in Section IV-C
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TABLE | [I. DISCRETEWAVELET TRANSFORM
IMAGE ESTIMATION RESULTS FOR256 X 256 IMAGES CORRUPTED ] ] )
WITH ADDITIVE WHITE GAUSSIAN NOISE OF,, = 0.05. ENTRIES The two-dimensional (2-D) discrete wavelet transform
ARE THE PEAK SIGNAL-TO-NOISE RATIO (PSNR)IN DECIBELS, - 2(@2\
PSNR-— —20Tog.. (I[7 — ]la/N) (LARGER NUMBERS MEAN BETTER (DWT) represents an imaggs) € L*(R-) in terms of a set

; ; ; LH , HL  HH

PERFORMANCE. PIXEL INTENSITY VALUES WERE NORMALIZED BETweenO  Of Sh'fteq and d”_ated wavelet functlor{&/; .71/) P _ }

AND 1. ALL RESULTS USE THE DAUBECHIES-8 WAVELET. “SI-HMT” | s and scaling functiom”™* [17]. When these shifted and dilated

THE SHIFT-INVARIANT ESTIMATOR OF SECTION V; “UHMT” U SES THE H H 2 ;

" NIVERSAL" PARAMETERS PRESENTED INSECTION IV-C: “EMP-HMT" functions form an orthonormal basis fof (R?), the image can

USES THEEMPIRICAL BAYESIAN ESTIMATOR OF SECTION III-E; be decomposed as
“RDWT-THRESH' USES AHARD THRESHOLDED REDUNDANT WAVELET
TRANSFORM USING THE THRESHOLDS IN[13]; “DWT-THRESH' USES A
THRESHOLDEDORTHOGONAL WAVELET TRANSFORMUSING THE THRESHOLDS x(s) = Z uJOdeJLOLk(s) + Z Z Z wsz/)fk(s) 1)
IN [13]; AND “WIENER2” | S THE 2-D SPATIALLY ADAPTIVE WIENER FILTER kCZ2 bEB j>jo kCZ2
COMMAND FROM MATLAB =

Image si-HMT | uHMT | emp-HMT | RDWT-Thresh | DWT-Thresh | wiener2 with d)LL =27 ¢LL(2]OS - ) r(/} = 211/} (2J$ - ) and
oty 351 | 222 520 o o 21 beB:={LH,HL,HH}. TheLH HL andH H denote the '
brthday | 2006 | 289 o1 e i o sybbandsaf the wavelet decomposﬂmn. The expan5|_or_1 coeffi-
boate a2 | oa 00 303 5 08 cients, ealled thesc_allng coefficientand wavelet coefficients
bridge 28.9 28.1 28.3 26.2 23.1 270 respectlvely, are glven by
buck 33.7 32.5 32.8 33.8 27.8 33.0 .
building 30.4 29.7 30.0 29.0 24.8 289 . R .
camera || 311 | 303 305 208 25.4 2038 Yook 1= /SeRz #(5)d50.4(s) ds )
clown 31.7 30.6 30.9 30.6 25.8 30.7
frui 33.3 | 322 326 32.8 27.8 32.6 wz)k :/Sch a:(s)z/)j’k(s) ds. ©)
kgirl 32.6 316 31.8 315 27.5 31.7
lenna 31.3 | 304 30.5 29.7 25.6 30.2 To keep the notation manageable, we will use an abstract index
for the DWT coefficients and the basis functiomz,j%,yk — w;
TABLE |l andz/;jfyk — 1p;, unless the full notation is required.
ESTIMATION PSNR RESULTS FORIMAGES CORRUPTED WITHo,, = 0.1 In practice, the image will be discretized on Ahx N grid.
_ - ; - This imposes a maximal level of decompositidr= log, NV >
Image si-HMT | uHMT | emp-HMT | RDWT-Thresh | DWT-Thresh | wiener2 . . . g . .
j > jo, with 47~1 wavelet coefficients in each subband and
Eia:;;day jzj z:z zzz j:"; zzi z;z 47—1 scaling coefficients at each scale. The= N 2 scaling
— PP v s o s o end wavelet coefficients in (2) and (3) for @n x N discrete
bridee ws [ oas o o s a7 image can be caI_cuIated using a 2-D separable filter bank [18]
buck 29.6 28.4 28.6 29.7 24.2 27.6 n O( ) Compl'Itatlons
uilding | 266 | 259 | 263 P 220 56 A wavelet coefﬂmentu" . at a scalg represents information
camera | 27.0 | 262 26.4 %6.3 927 2.1 about the image in the spatlal region aro@ndk (k € 72)[2].
clown 27.8 | 268 26.8 6.5 228 %5 Atthe nextfinest scalg+ 1, information about this regionis rep-
fruit 297 | 285 28.6 20.0 24.6 27.2 resented by four wavelet coefficients; we call thesecthitlren
kgirl 203 | 283 23.3 284 24.8 26.8 of w - This leads to a natural quad-tree structuring of each of
lenna 26 | 267 26.7 26.3 23.0 26.2 the three subbands, as shown in Fig. 1 and Fig. 4(a) [19]. In light
ofthis natural tree structure, we will often refer to the wavelet co-
TABLE Il efficients as @DWT treewith w; as anodein the tree. We also
ESTIMATION PSNR RESULTS FORIMAGES CORRUPTED WITHo,, = 0.2 denotep(L) as the parent anc{L) as the set of children of node
- - 1. Asj increases, the child coefficients add finer and finer details
Image si-HMT | uHMT | emp-HMT | RDWT-Thresh | DWT-Thresh | wiener2 . N . . . .
into the spatial regions occupied by their ancestors [19].
baby 26.3 25.8 254 26.1 230 21.3 . . . ...
v | 257 | 21 50 e s - The Haar wavelet bas_ls functions at agiven s_cale are disjoint
o TR o p— P, oo square waves [17]. In this case, the spatial divisions made by the
bridee 227 | 220 P P o4 i wavelet quadtrees are exact [see Fig. 4(a)]. For longer wavelets,
hack 28 | 207 | 215 256 71 13 the supports of adjacent wavelets at a given scale overlap. How-
building | 28.5 | 228 2.0 230 190 208 ever, the wavelet coefficients still represent information in the
camera | 23.7 | 23.1 232 23.2 204 208 279 x 27J dyadic squares to a good approximation.
clown 245 | 237 23.6 23.2 20.2 211 The orthogonal wavelet transform is not shift-invariant. In
fruit 26.4 | 253 25.0 5.3 213 213 fact, the wavelet coefficients of two different shifts of an image
kil 26.4 | 254 25.3 25.3 22.4 211 can be very different [13], with no simple relationship between
lenna 245 | 238 238 235 20.7 209 them. We will find it useful to analyze and process the wavelet

coefficients for each shift of the image. The resulting represen-
with the uHMT. Section V develops the new redundant waveltdtion is called the redundant wavelet transform (RDWT) [19].
estimation technique. We close in Section VI with a discussidihe RDWT is overcomplete, with log n wavelet and scaling
and conclusions. coefficients for am-pixel image.
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0 0

Fig. 3. (a) Histogram and (b) log-histogram of the wavelet coefficients in one subband of the “fruit” image [5]. The dotted line is a generalizad Gaussi
approximation(v = 0.5). The solid line is a two-component Gaussian mixture model fitted to the data. Although the generalized Gaussian density is a better fit,
by using only two states in the Gaussian mixture model, we achieve a close fit to the histogram. The Gaussian mixture model is not exact, but filalEvgs sim
efficient algorithms, especially for capturing dependencies between wavelet coefficients.

(b)

Fig. 4. (a) Quad-tree organization of the wavelet coefficients (black nodes) in one subband of the wavelet transform. Four children waveleisatigftieithe
spatial localization of the parent coefficient. (b) Two-dimensional HMT model. Each black node is a wavelet coefficiesath white node is the corresponding
hidden state§; in (6) and (7)]. Links represent dependencies between states [quantified by (9)].

[ll. W AVELET-DOMAIN HIDDEN MARKOV TREE MODELS denote the Gaussian pdf, then we can write

In Section I, we made the notion of real-world image wavelet- flwi|Si=8)=g (wi; 0, 0?:;1) . (5)
domain structure precise with the secondary prope8ieand
S2 The HMT model, introduced by Crous¢al.in [6] and re- State L, in turn, corresponds to a zero-mean, high-variance
viewed in this section, captures these properties simply and &aussian
curately. To match the non-Gaussian nature of the wavelet co- 9
efficients 61), the HMT models the marginal pdf of each co- fwi|S; = L) = g (wi; 0, 0% ©)
efficient as a Gaussian mixture density with a hidden state tRgth 02 > o%. The marginal pdff (w;) is obtained by a convex
dictates whether a coefficient is large or small. To capture thembination of the conditional densities
dependencies between the wavelet coefficients, the HMT uses
a probabilistic tree to model Markovian dependencies between f(wi) =pi g (wz‘; 0, U%;i) +pig (Uh‘% 0, ff%;i) (7)
the hidden states. Usin§2 above, this graph connects eacklNi hoS = 1— ok Let
parent to its four children and has the same quad-tree topology b= P
as the DWT tree discussed in Section II. ’ {pf}

s, =

! ®)

A. Capturing Non-Gaussianity: Mixture Models be the state value probability mass function $or Thep? and
The form for the marginal distribution of a wavelet Coef‘fi-piﬁ can be interpreted as the probab”'ty tbﬁ_us small or |arge
cientw; comes directly from the efficiency of the wavelet trans(in the statistical sense), respectively. The independent Gaussian
form in representing real-world images: a few wavelet coeffinixture model (IM) is parameterized by, o2, 07, } triad
cients are large, but most are small. Gaussian mixture modelidg each wavelet coefficient;. ' '
runs as follows. Associate with each wavelet coefficienin  \wavelet coefficients have often been modeled as realizations
unobservechidden statevariableS; € {S,L}. The value of from a zero-mean GGD [8], [14]. In fact, the GGD models the
S; dictates which of the two components in the mixture modgharginal densities of the wavelet coefficients more accurately
generatesy;. StateS corresponds to a zero-mean, low-variancgyan the Gaussian mixture, as shown in Fig. 3, especially in the
Gaussian. If we let tails of the distribution. However, the Gaussian mixture model
discussed above can approximate the generalized Gaussian den-
1 (x — p)? sity arbitrarily well by adding more hidden states. Of course, as
eXp {_ 252 } ) the number of states in the model increases, the model becomes

2ro
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more computationally complex and less robust. As can be seé@nHMT Parameters

in Fig. 3, we are matching the marginal histogram very closely An HMT model is specified in terms of:
using only two states. We can think of this two-state mixture
model as an approximation to the generalized Gaussian modeg
and will see that it is realistic enough for our purposes. The pri- - )
mary advantage of the Gaussian mgi]xture mogel,gs we will sepe in3) _the probability of a large state at the root node for each
the next section, is that it sets up a framework for conveniently n t.he coarse;t scalef . .

modeling the dependencies between wavelet coefficients. Al_Groupmg these into a vect@, the HMT provides a para-

though independence is a reasonable first-order approximatmﬁtriC model for the joint pdff(w|®) of the wavelet coeffi-

to the structure of the wavelet coefficients, significant gains aplents in each of the three subbands (we treat the subbands as

realized by modeling the dependencies between coefﬁcients?tat'snca”y mdependent [21]). . .
In general, the variance and transition parameters can be dif-
ferent for each wavelet coefficient. However, this makes the

) ) model too complicated for some applications. For example, if
Secondary propert$2 states that the relative magnitude ofj, e is only one observation of anpixel image, then we are

a wavelet coefficient is closely related to the magnitude of i§ceq with the impossible task of fitting: parameters te data
parent. This implies a type of Markovian relationship betwee&thins 1o reduce the HMT complexity, we can make the simpli-

the wavelet states, with the probability of a wavelet coeﬁicietﬁ}mg assumption that each parameter is the same at each scale
being “large” or “small” affected only by the size of its parenty¢ 1he wavelet transform

The HMT models the dependence as Markov-1: given the state
of a wavelet coefficienss;, the coefficient’s ancestors and de-
scendents are independent of each other.

The HMT captures these dependencies by using a prob-
abilistic tree that connects the hidden state variable of each
wavelet coefficient with the state variable of each of its children. A=A
This leads to the dependency graph having the same quad-tree ” !

topology as the wavelet coefficients (see Fig. 4). Each subb dIS rocesses is referred totggg within scalg6]. Parameter
is represented with its own quad-tree; this assumes that the P 589 ]

. Invariance within scale makes a tied HMT model less image-
subbands are independent. e . :
i . .specific, since it prevents the model from expecting smooth re-
Each parent:child state-to-state link has a corresponding: . . . U
" ions or edges at certain spatial locati@ngsriori.
state transition matrix

) the mixture variances?.; ando7.;;
) the state transition matrices;

B. Capturing Persistence: Markov Trees

2 _ 2
IS,k = 9534

03k =00 ¢ Yhe T VbeB. (10)

A, = [pijz pi:;} ) D. HMT Algorithms
b g The HMT is a tree-structured HMM. Thus, the three standard
with p5=L = 1 — p5=5 andpl—5 = 1 — pL—L, problems of HMMs [22] apply equally well to the HMT:

The parametersy —* (pF—1) can be read as “the probability 1) Likelihood DeterminatioriWhile the HMT is a model for
that wavelet coefficients; is small (large) given that its parent the joint pdf of the wavelet coefficients, the closed form
is small (large).” We call these thpersistency probabilitieaVe expression for f(w|®) is prohibitively complicated.
call pF—= andp?—" thenovelty probabilitiesfor they give the Fortunately, there is a fag@(n) algorithm to compute

probabilities that the state values will change from one scaleto  f(w|®) for a givenw and® called the Upward—Down-
the next. Having large and small wavelet coefficient values prop- ~ ward algorithm [6], [22]-{24], involving a simple sweep
agate down the quad-tree (rec&l) requires more persistence through the tree.
than novelty, that isp? —° > p?— L andpF—L > pl—%. 2) State Path EstimatiorGiven a set of observatiorns and

The idea of persistency follows from our interpretation ofthe @ model®, we can determine the probability that node
wavelet basis functions as local edge detectors. Ifthereisanedge ¢ is in a given state (large or small) and the most likely
inside the spatial support of the basis function, then the corre-  sequence of hidden states. Using by-products of the up-
sponding wavelet coefficient tends to be large (in magnitude). ~ ward-downward algorithm, we can calculate the proba-
Since the same edge is within the spatial support of at least one  bility p(S; = glw, ®) that an observed wavelet coef-
of the child basis functions, we have large values propagating ~ficient w; has corresponding hidden statec {5, L}.
down through scale. If, however, there are two edges inside the ~ TheViterbialgorithm[22], [23], also 0ofO(n) complexity,
spatial support of a wavelet basis function, then their effects  finds the most likely state sequence that produced the ob-
can cancel out, making the corresponding wavelet coefficient ~ served wavelet coefficients.
small. At some fine scale down the tree, however, the two edges3) Model Training.In many situations, we would like to fit
are guaranteed to bifurcate, since the spatial resolution will be  the HMT parameter® to a given set of training data. For
fine enough so that each edge is represented by its own (large) €Xxample, we could desire theost likely® that could give
wavelet coefficient [9]. These wavelet coefficients will be large  rise to the training observations (the ML estimate)
even though their parentis small. This is the idea behind novelty.

3This state transition matrix is the transpose of that presented in [20]. Omr. = arg max f(w|©). (11)
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Since the state values are unknown (hidden), finding theFor the Bayes estimator, we calculate the conditional mean of
ML estimate directly is intractable. However, if the statethe posteriotf (w|y, ®) using the pointwise transformation

are known, finding®,, is easy, since the coefficients are )

merely independent Gaussian random variables. W = Elwilv.®] = S — ® a5t ‘
The EM algorithm attacks this sort of “hidden data” problem i€ qc%:L} " . ©) o2 + ag;i 4
[6], [22]-[24]. We start with an initial gues®® of the ’ (14)

model parameters, and then for each iteratiome calculate 0 obtain the mini timate (MMSEVof
Ellog f(w,S|®)|w,®!]. Finding this expectation, called'© 2P'aIn the mNIMUM mean-square es imate ( Byo

the “E step,” amounts to calculating the state probabilitiesThe results of this procedure for a number of test images are

p(S; = qlw,®), for which we use the upward-downwardsummarized in the third column of Tables I-lll, and an example

algorithm. The maximization, or “M step” consists of reIativeI)}S shown in Fig. 2(f). The HMT empirical Bayesian estimator

simple. closed form undates of the parameter®irto obtain outperforms other DWT wavelet shrinkage techniques in terms
@llﬁ AS ! @u?approachesz local maximum ofl theOf mean square error (MSE), and in visual terms it is far supe-
- T . ) rior, boasting estimates with sharper and more accurate edges. In
likelihood function f(w|®) [25]. The EM algorithm isO(n) : P g

) : fact, its MSE and visual performance are quite competitive with
per Iteration. . RDWT wavelet shrinkage [13], [27] (the current state-of-the-art
While simple, EM training for the HMT has several drawsy, performance).
backs. Being a hill-climber, the EM algorithm is guaranteed t0 Thea estimator (14) is just one of the possible approaches to
convergence only to a local maximum pfw|®). Neverthe- gengising using the HMT. Although (14) gives the estimate
less, we obtain reasonable estimates in general. More impgki the MMSE under the HMT model, the choice of squared
tantly, convergence can be relatively slow. For large images, thigor oss is somewhat arbitrary. Another Bayes estimator, e.g.,
can make training very computationally expensive. Even thoughvAp estimator for 0/1 loss, could be used in its place. Alter-
each iteration of the algorithm 3(n), there is nothing to limit natively, the model could be used outside the strict Bayesian
the number of iterations it takes to converge. For example, cGrlamework. For instance, a thresholding technique based on the
vergence on al2 x 512 image can take anywhere from minutesyiterbi algorithm can be used to determine which large wavelet

to hours on a standard workstation. coefficients are likely a part of the edge structure and should
be kept (coefficients with associated hidden siatand which
E. Application: Empirical Bayesian Estimation ones are due to noise and should be killed [28].
To demonstrate the effectiveness of the HMT as a model for
an image’s wavelet coefficients, we estimate an imageib- IV. A REDUCED-PARAMETER HMT IMAGE MODEL

merged in additive white Gaussian noise. This is a straightfor-By design, the HMT model captures the main statistical

ward extension to 2-D of the work in [6]. Given a noisy obsefea1res of the wavelet transforms of real-world images. In

vation its raw form, however, thd.J parameters needed to model an
image can make it unwieldy, even when tying within scale.
This poses a number of problems. Directly specifyihg

with n a Gaussian random field whose components are indepgﬁ_rameters requires a tremendous amourd gfiori. infor-

dent and identically distributed (iid) with zero mean and kno thatlc_)nkak})out thf_ett!ma?he, bUtdW:th_I?Ut. t.hls ;Eformatlontwe run
variancers?2, we wish to estimate the underlying imageTrans- € risk-of over-iitiing the€ mode. fraining the parameters can

| , . . . be time consuming and may not be robust under unfavorable
ated into the wavelet domain, the problem is as follows: o L : .
conditions. The empirical Bayes estimator of Section IlI-E
works well, but requires the use of the EM algorithm, which
at O(n) computational complexity per iteration, can be very
, _ o . time consuming. All of these make the HMT inappropriate for
wheren’ is again Gaussian iid with yarl_anoé. _applications with minimal available priori information or that
Since we are viewingv as a realization of a random f'eldrequire rapid processing.
whose joint pdff(w|®) is modeled by the HMT, we take a  1q aqdress these problems, we must reduce the number of pa-
Bayesian approach to this estimation problem. The conditiongineters in the HMT model. Because of this reduction in com-
density f(y|w) is given by the problem; it is an independenty|exity, lessa priori information will be needed to specify the
Gaussian random field with meam. Using the HMT model model parameters. However, the HMT model will become less
for f(w), we can solve the Bayes equation for the posteriggcurate: two images that have different parameterizations in the
f(wly). general form of the HMT may have the same parameterization
To obtain the paramete® for the prior f(w|®), Crouseet in a reduced-parameter model.
al. [6] take anempirical Bayesiampproach. The HMT parame- The amount of parameter reduction that is appropriate de-
ters used to modgl(w|®) are first estimated from the observeghends on the application and the amount of information known
noisy datay and then “plugged-in” to the Bayes equation (aftesibout the images to be modeled. For example, in estimation/
accounting for the noise). A strictly Bayesian approach woutienoising the assumptions are usually very broad; that is, the
require that we take the parameters as known (see Section IVAG)se-corrupted image is assumed “photograph-like.” The es-
or assign them a hyper-prior [7], [26]. timator needs only to differentiate between image and noise.

vV=X-+n (12)

given y = w +n’, estimatew (13)
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These entities have very different structure and hence canrtiides of the wavelet coefficients, we will require that they
modeled by very different HMTs (and thus differentiated usindgecay exponentially across scale as well (see also Fig. 5)
only a small set of parameters). In detection and classification,

on the other hand, the differences in structure between the hy- ff?@;j =Cos277%" (15)
potheses may be more subtle, and the models may need to be
more specific and thus described by more parameters. o} =C,, 277, (16)

In [6] and in Section Ill, the modeling paradigm was to assign
a different set of HMT parameters to each image, with4tie Since the wavelet coefficients representing edges in an image
parameters being specified by training on an observation. In tegcay slower than those representing smooth regions, we need
section, we take a different approach. By taking advantage@,; < ¢, for all scales, and thus requirg > «r.. The result
image properties not yet explicitly recognized by the HMT, wis an HMT for images with a generalized f power spectrum.
will specify a set of (only nine) meta-parameters that determine The four meta-parameters,;, «s, C,,, anday, charac-
the 4J HMT parameters. terizg the margjnal densities of the wavelt—;t coefficieljts_. Having
These additional properties, introduced astéfréiary prop- mar_gln.als of_th|s form no? only meshes with the statistical self-
erties of wavelet coefficient@1,T2) in the Introduction, are Similarity of images, but is also related to smoothness charac-
motivated by examining one-dimensional (1-D) cross sectioffization using Besov spaces [15], [30]. Roughly speaking, a
(slices) of images (similar to the approach of [29]). These 1-BFSOV SPace3;(L?) contains functions withs derivatives in
slices consist of piecewise smooth regions separated by a firﬁ‘t]é with ¢ making finer smoothness distinctions [31]. o« 1,

number of discontinuities. The extension of these propertles%(L ) contains functions that are uniformly regular but have

2-D is not exact—they hold for images with only vertical hor|_solated discontinuities [2]. These properties are similar to those
izontal, and 45 diagonal edges—»but still remains a good apc—)f re al-world images; Besovspacgs h_a ve been successfully used
as image models for several applications [31], [32].

proximation. The fact that wavelets form an unconditional basis for all
Besov space®;(L?) means that the Besov norm can be com-

A. Incorporating the Tertiary Properties of the Wavelet puted equivalently (subject to the constraint that the analysis

Coefficients into the HMT wavelets is smoother than the image) as a simple sequence

. . orm on the wavelet coefficients [33
The wavelet transforms of real-world images exhibit addE [33]

tional strong statistical properties in addition to the primary q/p V1
(P1-P5) and the secondarp(,S2) properties. In designing our js’q b P
. z|| gs = col|w;, + 2 W g,
reduced-parameter HMT model, we will use the observed teU— 1510 = collusoly J; %): [l
. . .. . —Jo 2
tiary properties of the wavelet coefficients stated in the Introduc-
tion: as the scale becomes finer, the magnitude of the wavgk%t
- . . ere
coefficients decreases exponentiallyl] and persistence be-
B (L.r) < OC.

comes strongerT@). The tertiary properties reflect the statis- For (17) to be finite, the-norm of the wavelet coefficients at

tical self-similarity across scale observed in real images [11}, .1, scale must fall off exponentially. The exponential decay of
Zooming in on an image adds detail at every step, and since {hg \ariances in the HMT model captures this fact. In fact, it has
statistics of these new details have predictable properties, e, shown in [34] that a realization from an IM having variance
can use this fact to r_educe the n_10de| complexity. ___parameters of the form (15) and (16) liesBj(LP), arr./2 >
Based on the tertiary properties of the wavelet coefficients,, 1/2, with probability 1 (a proof for a very similar statement
we can specify functional forms for the parameters of an HMdan pe found in [15] and [35]). The equivalence between Besov
model. The coefficient decay and change in coefficient persigyaces and wavelet domain statistical models is discussed in
tence are easily modeled by imposing patterns how the mpxq.
ture variances and state transition probabilities change acrosshis connection between the form of the marginals of the
scale. Because the characterized tertiary properties are comagelet coefficients and Besov spaces leads us to an important
to many real-world images, the resulting model describes thgint. Modeling an image as lying in a certain Besov space
common overall behavior of real-world images in the wavel@laces restrictions on the form of the wavelet coefficient
domain. marginals, but not on their dependency structure. By charac-
1) Modeling Wavelet Coefficient Decaylhe wavelet coef- terizing the dependencies between the wavelet coefficients,
ficient exponential decay property 1) stems from the overall as done in the next section, we are essentially refining the
smoothness of images. Roughly speaking, a typical grayscBlesov model to consider only images that have a similar edge
image consists of a number of smooth regions separated by digucture to photograph-like images.
continuities. This results in a generalizetf-type spectral be-  2) Modeling Coefficient Persistencéfhe edge structure of
havior [11], which leads to an exponential decay of the wavelghages manifests itself as dependencies between the wavelet
coefficients across scale [2]. coefficients. These dependencies are represented in the HMT
We can easily model the exponential decay of wavelet coeffirodel by the state transition matrix (9). In this section, we take
cients 1) through the mixture variances of the wavelet HMTadvantage of the observation that these dependencies also ex-
model. Since the HMT mixture variances characterize the magbit self-similar structure from scale to scale, codifiedli),

(7)
“<” denotes equivalent norm} = s+ 1 —2/p, g < oo,
ndcy = 2Y/2-1/7 We sayz € B2 (LP) if |||
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Fig. 5. Universal HMT parameters against trained parameters for images. The solid lines are the parameters for the “baby,” “cameraman,”“lfentyaand
images [5] plotted across scale. The dotted lines represent the uHMT parameters presented in Section IV-B. Reliable esgifiatagdpire more data than
the other three parameters, so the behavior is shown from gcalé onwards.

to simplify the HMT model further by assigning an exponential To incorporate T2) into the HMT model, we examine how
form to the transition matrix. the isolation of edges at fine scales controls the persistency and

We can obtain intuition behind the persistence propEejyby  novelty probabilities (and hence the form of the transition ma-
considering a piecewise smooth 1-D image slice containing affiix).

nite number (sayi/) of discontinuities. Since there are a finite  The persistence of small values is intuitive. If each of itfe
number of discontinuities and the spatial resolution ofthe wavelgdges in the 1-D slice is isolated, then there is no opportunity
coefficients becomes finer as the scaiecreasesR?2), there ex- for a novel large coefficient to come from a small parent; the
ists a scalg..i; suchthatforalf > je... eachwaveletbasis func- onjy way a coefficient can be large is if its parent is large. Thus,
tion has at most one discontinuity inside its spatial support. We—L _, ( asj — oc. In other wordsp$—5 — 1, since once a

: : ; \

. hpe e . ) 7
call this conditionsolation of edgeskecalling3, we expectthat pasis function lies over a smooth region, all of its children also
for fine scales such that> j..;; there will be approximately/  |ie gver that smooth region.

wavelet coefficients that are “large” when compared to other CO-The persistence of large values is somewhat more compli-

efficients at the same scale (exacily if we are using the Haar cated. Consider a 1-D wavelet coefficientfor “parent”) lying

Wavele.t)' Each of_these large coeffl_czlents W'” a'?" have_ a lar Ver an isolated edgéf = L)inthe 1-D slice atscalg > jui:.
child, since the children wavelet basis functions simply divide 4P

the spatial support of the parent. Each of the small coefﬁcientsa"p s childrenc, andc;. Since the edg_e IS perfectly_locahzed
[N space, one and only one @f andc, will be large, since the

children will have small children, since thereisno chanceforal?_)( ar basis functions correspondingdoand c, have disjoint
of them to encounter an edge. We can combine these facts in . P 9 2 )
ports. This means that

a grammar for the magnitudes of wavelet coefficients at scaftd
7 > Jeit. @asmall parent has two children that are also small, a

large parent has one small child and one large child. As the scale p(S., = L,S,, = S|S, = L) _1 (18)
increases, more of the edges become isolated, and the coefficient 2
magnitudes follow the grammar more closely as a whole. 1

In 2-D, the situation is similar except that instead of disconti- p(Se, = 85,8, =L|S, =L) =5 (19)
nuities at points, we now have discontinuities along curves. At
Jerit, all wavelet basis functions that have spatial support inter- p(S., =S, 8., = §|S, = L) =0 (20)

secting this curve will be “large.” Now each of these coefficients
will have between one and four large children, while the small
coefficients will spawn small children. p(S., =L,S., =L|S, =L)=0. (21)
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Because the HMT does not jointly model the state values of The self-similarity of images is reflected in the self-similarity
the children given the state of the parent, it cannot capture thiethe HMT model parameters. The fact that the model param-
property that exactly one and only one@fandcs; is large. In  eters can be captured by these functional forms means that sta-
fact, givenS,, under the HMTS,, and S., are independent. tistical behavior of images at a fine scale is predictable from the
Instead of modeling the joint distribution 6f., andS,, given statistical behavior at a coarser scale. Not only does the intro-
S, (18)—(21) exactly, the HMT approximates it as the produduction of the HMT meta-parameters reduce the complexity of

of the marginalg(S., |.S,) andp(S.,|S,) with the model, but it integrates a key property of real-world images.
p(Se, = L|S, = L) =p(S., =L,S., =5|S, =L) B. A “Universal” Grayscale Image Model: The uHMT
+p(Se, =L, S, = L|Sp, = L) Now that we have an image model specified by a small set of
_ 1 22) meta-paramete®,,,, we must find a way of specifying them.
2 The first possibility would be to derive a constrained EM algo-
p(Se, = L|S, = L) =p(S., = 85,5, =L|S, = L) rithm to give pseudo-MLE estimates &¥,,, given an observa-
+p(Sey =L, S, = L|S, = L) tion. Deriving the steps for this algorithm is difficult, and there
1 is no guarantee that the training would be any faster than in the
9 (23)  unconstrained case.

. - Another possibility is to fix the meta-parameters directly. This

As a result, the HMT persistency probability—~* — 1/28s yields an HMT model for a class of images, with each member
J — oo. Admittedly, this is an imperfect model, since for alf the class being treated as statistically equivalent. To see how
values ofj, there is a chance that the edge will disappear (singch variation in the HMT meta-parameters there is across pho-
p(Se, = 5,5, = S[Sp, = L) = 1/4 under the HMT) or ograph-like images, we trained HMT models for a set of wavelet
bifurcate [2] (sincep (S, = L,Se, = L[S, = L) = 1/4).  transforms (using the Daubechies-8 wavelet) of normalized pho-
However, capturing the exact behavior of (18)-(21) would ngsgraph-like images and examined their parameters. The vari-
cessitate the use of a more complicated joint model for the staf@iz.e and persistence decays were measured by fitting aline tothe
of the children coefficients given the state of the parent coeffyq of the variance versus scale for each state. The decays were
cient. For wavelets other than the Haar, the supports of the b‘%%?ysimilar for many of the images (see Fig. 5). Since the images
functions of the children are not necessarily disjoint. Howevefere normalized, the range over which the variances decayed
(18)—(21) hold within a reasonable approximation. was similar as well. These observations confirm that we can use

Extension of this analysis to 2-D is also not exact, except fgispecific “universal” set of HMT meta-parameters to reasonably
horizontal, vertical, and diagonal edges. In 2-D, edges lie @Rgracterize photograph-like images.
curves in space, and the curve could conceivably intersect therhe yniversal parameters obtained by (jointly) fitting lines to

spatial support of the basis functions of any of the children gfe HMT parameters of four images (see Fig. 5) are given by
a coefficient that has isolated the curve. However, the curves

become straight lines asymptotically inside the support of the ( gs :_32111

wavelet and so they encounter only two children in the limit. "S__Q o5

We have observed for a number of grayscale images that gL __ 21‘;
gy

the transition matrix entries approach their asymptotic values 1
in a roughly exponential manner (see Fig. 5). This observation On =4 75= . (27)

makes sense, since the transition probabilities rely on the edges COss =227
being isolated, which becomes (approximately) exponentially =0 40 5
more likely as scale increases. We therefore impose the fol- O,LL :12
lowing exponential form on the state transition matrix (9) spec- \DPj, = 3
ified by four parameters The lines were fit to the HMT parameters starting at sgate4
1= Cec2=755  (Cag2=si (j = 5 for thepL =% measurement). There are two reasons for
Aj = L [ R J} (24) this, as follows:
5 LL 5 +Crr2

1) Before this scale, there is not enough data for an accurate

The transition matrix has the asymptotic form estimate of the decays.
2) These decay rates are really asymptotic properties. The
Ao = [ } ?} . (25) parameter that is the most similar across all imageg,is
2 2 This is to be expected, sineg, corresponds to the decay
3) HMT Meta-ParametersThe only parameter in the HMT rate of the wavelet coefficients lying over an edge, and

not yet accounted for is the probability mass function on the ~ hence is automatically independent of the image we are
hidden state value of the root coefficients (just one number in _ analyzing. _ . .

our casepl , since the hidden state can only take two different Of particularinterestis the resulf, = 2.25. As mentioned in
vales). Taking this parameter as is, we can specify all of i3], it is shown that a realization from a independent mixture

HMT parameters with nine meta-parameters: model is almost surely in a Besov spabBg(L?) if and only
if or/2 < s+ 1/2. Therefore, a realization from the uUHMT

On = {as,Csqar, Cyy 75, Css, v, CLr, pj; b - (26)  model is almost surely il (L?) if and only if s < 0.625.
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Fig. 6. (a) DWT tree and (b) DWT tree at one shift (shift 6) embedded into the 1-D RDWT graph. Note that the DWT trees overlap—the same coefficient appears
in more that one tree. There are log n) unique coefficients for a length-signal. Also note that each node now has two parents as well as two children, and

is included in27 different trees. In 2-D, the RDWT graph consists of overlapping quad-trees; each node has four parents and four children and is ificluded in
different trees.

This closely agrees with [31], where DeVoee al. found that Donoho [27]. The estimation algorithm is applied to all shifts of
real-world images lie in Besov spaces withk: 0.6. the noisy image, and the results are averaged. The shift-invariant
Although we clearly lose accuracy by viewing all images westimate of ailv x N (n-pixel) imagex that has been corrupted
are interested in as statistically equivalent, this process totdlly noise,v = x + n, is given by
eliminates the need for training. This can save a tremendous 1 R
amount of computation, making real-time HMT processing pos- X= Z Xk,m (28)
sible. k.m
wherex;, .., is the estimate af using the(k, m) shift of v (there
C. Application: Bayesian Estimation with the uUHMT areN? possibilities, one for each pixel in the image). To calcu-

With the uHMT parameters, we have a fixed prior onthe late the estimat&,. .., shift the observation by (k,m), apply
and the estimation problem in Section I1I-E can be approachBtf estimator, and unshift the result
from a purely Bayesian s_tgndpoint. To find the conditional mean R = S k—m(D(Skm (V) (29)
vector, the state probabilities(S; = q|y, ©,,) are calculated _ _
using the upwards-downwards algorithm and used to evaluf@ereSk,m(v) = v(s —k,¢ —m) is the 2-D shift operator and
(14). Since we have eliminated training, the estimation algh? denotes the estimator of Section I1I-E or Section IV-C.
rithm is truly O(n) and takes only a few seconds to run on a.Th|s approqch fits directly into the Bayesian framework.
workstation, slightly longer than simple wavelet thresholdingince the estimate depends on the stiftrm) of the data,
algorithms but much faster than the empirical Bayesian algds;”?) can be viewed as an unknown random variable.
rithm of Section I1I-E [6]. Since we have no a prior information ab_o@h, m) _excep_t

To test this new Bayesian estimator, we denoised the test ifiat 0 < km < N —1, we use a noninformative prior
ages using the uUHMT parameters presented in the last secti; ) = 1/N?, meaning each possible shift is equally likely.
The estimation results are summarized in the second columnl§€n the Bayes-optimal estimator becomes a weighted average
Tables I-11l, and an example is given in Fig. 2(g). The results ap¥er all shifts [26]
almost identical to the ml_Jch more complicated empirical Bayes % = Zp(/% m|y)S e —m (D(Sk.m(2))). (30)
HMT approach, suggesting that we have lost almost nothing by
completely eliminating training.

k.m

Since (28) makes the additional assumption #{@t m|y) is
uniform, the estimator derives no information about the under-
lying shift given the observed data; equal weight to the estimates
Image estimates based on orthogonal wavelet transforateach shift. If we calculated &, m|y), we could use (30) and
(DWTSs) often exhibit visual artifacts, usually in the form ofweight the estimate at each shift by its likelihood, but this is an
ringing around the edges. These artifacts result from the lagkpensive operation that led to no significant gains in our exper-
of shift-invariance in the DWT [27]. As we mentioned beforeiments.
two different shifts of an image can have very different wavelet The algorithm (28), if implemented directly, would be com-
transforms. In particular, the wavelet domain characteristics ifitationally expensive;)(n?). However, if we assume that the
a singularity change as it shifts around. same HMT model applies to all shifts (an assumption tacitly
For a shift-invariant estimation algorithm, we turn to thenade in deriving the uHMT parameters), then the complexity
RDWT. Ideally, we would like to model the RDWT coeffi- can be reduced substantially. While the DWT tree for each shift
cients using an HMT in a similar fashion as in the orthogonal the image is unique, wavelet coefficients are shared between
case. Unfortunately, the redundant transform does not haveees. There are logn unique wavelet coefficients among the
tree-like structure, and capturing all of the important depen-DWT trees of am-pixel image [27]. These log n unique
dencies would require a complicated graph that would makeefficients are the RDWT coefficients, as mentioned in Sec-
Bayesian inference hard or impossible [6], [36]. tion 11, and can be indexed by scale and shift. The DWT tree of
Another way to make the image estimate shift-invariant is #particular shift is embedded into the RDWT coefficients (see
follow the “cycle-spinning” program proposed by Coifman anéig. 6 for a 1-D example).

V. SHIFT-INVARIANT HMT IMAGE ESTIMATION
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From Fig. 6, we see that the RDWT coefficients do not retain Finally, the uHMT model also allows us to implement a shift-

the same tree structure as the DWT; each node notwtagar-

invariant estimator; a task that would be too computationally in-

entsand two children (in 1-D) with each parent coming from &ensive if we had to train a model for every shift of the image.
different DWT tree (in the 2-D case, each node will have foukhe shift-invariant uUHMT estimator offers state-of-the-art per-
parents and four children). Averaging the estimates of the imalggmance in MSE and visual quality.

at different shifts in the spatial domain is equivalent to averagingMATLAB code for the HMT-based denoising algorithms
together the estimates for each node from all trees in which itdgd the test images used for Tables I-lll can be found at
included. Since each node still has two children, the downwardsp.rice.edu/software/WHMT.

binary tree structure is preserved, and’im log n) algorithm
can be obtained by a modification to the upward-downward al-
gorithm (see [28] for details).

Our results using the uUHMT parameters from Section IV-C in
the shift-invariant estimator are summarized in the first column
of Tables I-11I, with an example shown in Fig. 2(h). As we see 2
in the figure, the shift-invariant transform smooths the visual (3
artifacts in the smooth regions of the image while keeping the
edges sharp. We have also picked up an exttalB MSE per-
formance over the uHMT and empirical Bayesian HMT models.

(5]
(6]

(1]

VI. CONCLUSIONS

Modeling lies at the core of any statistical image processing[7]
problem. An accurate model is of paramount importance for ap-
plications such as estimation, detection, compression and sed§
mentation. Not only are models of great practical importance,
but they also offer insight into the underlying natural structure [9]
of images.

Hidden Markov trees capture the primary aspects of imageio
structure in the wavelet domain. In this paper, we have shown
that the HMT parameters themselves have a certain form, d?l'l]
scribed by the nine HMT meta-parameters, derived from the
self-similar nature of real-world images. By constraining thel12]
HMT with these meta-parameters, we not only have a simpler,
more concise image model, but we also incorporate naore [13]
priori information about the structure of images into the model.

The form of the HMT parameters not only agrees with the
Besov space model of images, it expands on it. Besov space
models capture the overall smoothness of images, a propert%/
which is reflected by the exponential decay of the mixture vari{®]
ances in the HMT. By including a characterization of depen-
dencies between wavelet coefficients, the HMT also captureg6]
the edge structure of images, thus narrowing down the space of
images represented by the model. [17]

The uHMT parameters arise naturally from the form of the[18]
HMT and accurately model a wide range of images. These nine
numbers completely specify an HMT model for a large clasgg
of real-world images, eliminating any need for training and
thus greatly simplifying processing algorithms and allowing
real-time implementations.

With the uUHMT parameters, we have specified a prior for
photograph-like images. This allows us to take a Bayesian a@él]
proach to statistical image processing problems; specifically, es-
timation in the presence of noise. Using a Bayesian approach,
we are able to incorporate our knowledge of image structure int&?2]
a “smart” wavelet shrinkage rule that takes into account coarse
scale information while processing fine scale wavelet coeffi{23]
cients. The model helps predict which wavelet coefficients rep-
resent key features in the image (and thus should not be affecte[ajl]
and which ones represent noise (and thus should be shrunk).

[20]
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