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Abstract—We introduce a simple spatially adaptive statistical
model for wavelet image coefficients and apply it to image
denoising. Our model is inspired by a recent wavelet image
compression algorithm, the estimation-quantization (EQ) coder.
We model wavelet image coefficients as zero-mean Gaussian
random variables with high local correlation. We assume a
marginal prior distribution on wavelet coefficients variances
and estimate them using an approximate maximuma posteriori
probability rule. Then we apply an approximate minimum mean
squared error estimation procedure to restore the noisy wavelet
image coefficients. Despite the simplicity of our method, both in
its concept andimplementation, our denoising results are among
the best reported in the literature.

Index Terms—Image denoising, parameter estimation, statisti-
cal modeling, wavelets.

I. INTRODUCTION AND MOTIVATION

A CCURATE image modeling, whether done explicitly
or implicitly, is a critical component of many image

processing tasks. In [1], a simple yet effective statistical
spatially adaptivewavelet image model was developed and
formed the basis of the state-of-the-art estimation-quantization
(EQ) compression algorithm. In this work, we develop a
closely related model for image wavelet coefficients and apply
it to denoising of images corrupted by additive white Gaussian
noise (AWGN). Our new model significantly reduces the
computational burden of an earlier version of our scheme
in [2], yet produces comparable results in terms of mean-
squared error (MSE) and perceptual image quality. The key
ingredient of our new algorithm is the use of simple but
efficient spatial adaptation techniques. This work does not
attempt to investigate the theoretical properties of the proposed
models and algorithms in general settings. Our primary goal is
to demonstrate the importance of accurate modeling for image
denoising problems.

There is a close relationship between image compression
and image denoising. In fact, the use of lossy data compression
itself was proposed for denoising with the intuition that a
“typical correlated signal is compressible but noise is not”
[3]. This principle is also apparent in more theoretically mo-
tivated methods such as minimum description length (MDL)
and complexity regularized denoising [4]–[6]. In this letter,
we further exploit the relationship between compression and
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Fig. 1. (a) Histogram of the high-band wavelet coefficients of Lena. (b) Solid
line: histogram of the same coefficients scaled by estimated localstandard
deviations. Dashed line: unit-variance, zero-mean Gaussian p.d.f.

denoising by using state-of-the-art image models developed
for compression.

A wide class of image processing algorithms is based on
the discrete wavelet transform. The transform coefficients
within subbands can be modeled as independent identically
distributed (i.i.d.) random variables with generalized Gaussian
(GG) distribution [7]. More sophisticated models for image
compression recognize the existence of significant spatial
dependencies in the transform coefficients, and try to describe
these dependencies using data structures such as zerotrees [8].
The high performance of the zerotree-based image coders has
led several researchers to develop similar methods for image
denoising. A hidden Markov model based on wavelet trees
was proposed for denoising of one-dimensional (1-D) signals
in [9] and extended to image denoising in [10].

Zerotrees are not the only way to account for dependencies
between wavelet coefficients. The EQ algorithm, which offers
excellent compression performance, uses a very simple and
efficient local model [1]. In this work, we modify this model
for the purpose of image denoising, and demonstrate the
benefits of this approach. A related model, which accounts
for local dependencies, was independently proposed in [11],
and its effectiveness was verified by various experimental
results. In [12], another related adaptive model was used
to perform image denoising via wavelet thresholding using
context modeling of theglobal coefficients histogram. In our
work, we take an opposite approach that exploits thelocal
structure of wavelet image coefficients. Also, we use linear
minimum mean squared error-like (MMSE-like) estimation
instead of coefficient thresholding.

II. PROPOSEDAPPROACH

A. Stochastic Model for Wavelet Coefficients

We model image wavelet coefficients as a realization of
a doubly stochastic process. Specifically, the wavelet coeffi-
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Fig. 2. (a) Block-diagram of the denoising algorithm. For each observed noisy coefficientY (k), we form an approximate MAP estimatê�2(k) of the variance
of X(k) based on a local neighborhood and on the priorf� . The estimatê�2(k) is then used for linear MMSE-like estimation ofX(k). (b) Histogram of
the estimated local variance of the coefficients (solid line) in wavelet image subband approximated using a single exponential prior (dash-dotted line) and
a mixture of exponentials that consists of three single exponentials in three nonoverlapping regions (dashed line).

cients are assumed to be conditionally independent zero-mean
Gaussian random variables, given their variances. These vari-
ances are modeled as identically distributed, highly correlated
random variables. For estimation purposes, we approximate
wavelet coefficients as locally i.i.d. Our proposed model differs
from the one in [1] in the following two respects. First, we put
a stochastic prior on the local variances rather than considering
them as unknown deterministic parameters. Second, we model
the wavelet coefficients asconditionally independent Gaussian
random variables rather than GG variables, as in [1]. To moti-
vate this model, see Fig. 1. The left panel shows the histogram
of the original high-band coefficients of Lena image from the
first scale, obtained by employing Daubechies-8 wavelets [12].
The right panel shows those coefficients normalized by their
estimated standard deviations. Observe that the normalized
histogram is well approximated by a zero-mean, unit-variance,
Gaussian probability density function (p.d.f.).

In this work, we assume that image pixels are corrupted
by AWGN with known variance . Let represent the
orthonormal wavelet coefficients of the “clean” image. The
wavelet coefficients of the noisy image are given by

, where is AWGN due to orthonormality of
the chosen wavelet transform.

Our proposed denoising algorithm operates in two steps.
Initially, we perform an approximate maximuma posteriori
(MAP) estimation of the variance for each coefficient,
using the observed noisy data in a local neighborhood and a
prior model for . The estimate is then substituted
for in the expression for the MMSE estimator of .
Both steps are summarized in Fig. 2(a) and are described in
more detail below.

B. Denoising Algorithm

Given , the wavelet coefficients are independent
Gaussian variables, so the MMSE estimator for is given
by . We emphasize that this assumes

is deterministic and known. But in fact is not
known, so we construct a linear MMSE-like estimator

, where is an estimate for .
Our results indicate that the performance of the proposed

approximate MMSE predictor is dependent, to some high
extent, on the quality of the estimator . Generally, this
relation is unknown and complicated; but it is likely that a
better estimator for the data variance yields a better estimate
for the data as well.

C. Estimation of the Underlying Variance Field

The estimation of the variance field is the crux of the
proposed denoising algorithm. For each data point , an
estimate of is formed based on a local neighborhood

. We use a square window centered at .
Assuming the correlation between variances of neighboring
coefficients is high, we have for all .
Then we compute an approximate maximum likelihood (ML)
estimator:

(1)

where is the Gaussian distribution with zero mean
and variance , and is the number of coefficients in

. Now, assume a prior marginal distribution for
each is available. Then we obtain an approximate MAP
estimator for as

In Fig. 2(b), we plot a histogram of the estimated local
variances using (1) with a 7 7 window for a typical high-
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pass subband of an image (solid line). The exponential prior
shown by the dash-dotted line in Fig. 2(b),

is a reasonable candidate to fit the original histogram. The
approximate MAP estimate for using an exponential
prior is given by

(2)

In our experiments, we indeed found out that (2) improves
the denoising performance over (1). Using the exponential
prior requires the estimation of only one additional parameter

per image wavelet subband. One might expect that more
accurate modeling of the histogram in Fig. 2(b) would yield
further improvements in denoising performance. For instance,
we fitted the histogram with different exponentials in three
nonoverlapping regions (dashed line). In this case, the ap-
proximate MAP estimator still admits a simple closed-form
expression. However, we experimentally verified that it does
not produce better image denoising results.

III. RESULTS AND DISCUSSION

We tested our algorithm on a number of images, but only
report results for Lena and Barbara. We used an orthog-
onal wavelet transform with five levels of decomposition
and Daubechies’ length-8 wavelet. Centered square-shaped
windows of sizes 3 3, 5 5 and 7 7 were employed
to find different estimates for . The parameter of the
prior was set equal to the inverse of the standard deviation
of wavelet coefficients that were initially denoised by using
(1) and linear MMSE-like estimation.

We compared five different denoising methods. The PSNR
results are shown in Table I. The first method is the hard-
thresholding of wavelet coefficients using a constant threshold
for all subbands, calculated according to [14]. The second
method is MATLAB’s image denoising algorithmwiener2.
The third method uses spatially adaptive wavelet thresholding
[12]. We included only the results from [12] which were
obtained by using an orthogonal wavelet transform since this
is equivalent to our setup.

Our results are presented for two different methods. First, we
treated the variances as deterministic quantities and computed
approximate ML estimates. We call the resulting methodlo-
cally adaptive window-based denoising using ML(LAWML).
The second method uses an exponential distribution as a prior
for the underlying variance field. Based on this model, we
compute approximate MAP estimates of the variances. We call
this methodlocally adaptive window-based denoising using
MAP (LAWMAP).

In this work, we confined ourselves to square-shaped neigh-
borhoods with fixed size, for simplicity. In general, it would
be desirable to automatically select both the size and the
shape of the neighborhood region. But clearly, this would
introduce additional difficulties. The selection of the window

TABLE I
PSNR RESULTS IN DECIBELS FOR SEVERAL DENOISING METHODS

size suggests a tradeoff that has been discussed in detail in
[2]. The flexibility of our proposed method lends itself to the
usage of different shaped neighborhoods for each coefficient.
This could be implemented by using edge- and shape-adapted
windows. Such an adaptation is likely to further improve
denoising performance; see [2] for an example.
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