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Low-Complexity Image Denoising Based on
Statistical Modeling of Wavelet Coefficients

M. Kivang Mihgak, Igor Kozintsev, Kannan Ramchandratgmber, IEEEand Pierre MoulinSenior Member, IEEE

Abstract—We introduce a simple spatially adaptive statistical
model for wavelet image coefficients and apply it to image
denoising. Our model is inspired by a recent wavelet image
compression algorithm, the estimation-quantization (EQ) coder. |
We model wavelet image coefficients as zero-mean Gaussian
random variables with high local correlation. We assume a .|
marginal prior distribution on wavelet coefficients variances
and estimate them using an approximate maximuma posteriori
probability rule. Then we apply an approximate minimum mean
squared error estimation procedure to restore the noisy wavelet S = =% =i s i 3

image coefficients. Despite the simplicity of our method, both in @) (b)
its concept andimplementation our denoising results are among ) ] o ]
the best reported in the literature. Fig. 1. (a) Histogram of the high-band wavelet coefficients of Lena. (b) Solid

line: histogram of the same coefficients scaled by estimated localstandard
Index Terms—image denoising, parameter estimation, statisti- deviations. Dashed line: unit-variance, zero-mean Gaussian p.d.f.
cal modeling, wavelets. o ) ]
denoising by using state-of-the-art image models developed
. INTRODUCTION AND MOTIVATION for compression.
COURATE image modeling, whether done expicty, L Lo L T B coefciens
or implicitly, iis a critical component of many image ithin subbands can be modeléd as independent identicall
processing tasks. In [1], a simple yet effective statistic P y

. . : Istributed (i.i.d.) random variables with generalized Gaussian
spatially adaptivewavelet image model was developed an

formed the basis of the state-of-the-art estimation-quantizati Cl(;ﬁ) rzlssggar?tlroencg?]n.' '\2O;Eeszphs'fggg;edofmsdﬁl.?cg tln;ag?al
(EQ) compression algorithm. In this work, we develop % P ! gniz X gniti patl

closely related model for image wavelet coefficients and app pendencies in t_he trqnsform coefficients, and try to describe
ese dependencies using data structures such as zerotrees [8].

it to denoising of images corrupted by additive white Gaus:siéﬂ1 hiah performan fthe zerotree-based im ders h
noise (AWGN). Our new model significantly reduces th € high pertormance of the zerotree-base age coders has
d several researchers to develop similar methods for image

computational burden of an earlier version of our sche e noising. A hidden Markov model based on wavelet trees
in [2], yet produces comparable results in terms of mean- 9.

squared error (MSE) and perceptual image quality. The Kas proposed for denoising of one-dimensional (1-D) signals

ingredient of our new algorithm is the use of simple b £9]ratrr1d ext(:ndnei ttf? |mr?lgewdent0|smg mn[tlfO]r.d ndenci
efficient spatial adaptation techniquesrhis work does not erotrees are not the only way 1o account for dependencies

attempt to investigate the theoretical properties of the proposl?aeowveen wavelet coefficients. The EQ algorithm, which offers

- . . . excellent compression performance, uses a very simple and
models and algorithms in general settings. Our primary goal P P y P

IS . S
to demonstrate the importance of accurate modeling for im %r'clﬁgt Ioucralorsngdcij [iﬂélr:a”;jinvcv)?sriﬁ WZrTjO?jlfeynrglnsstTaotge![he
denoising problems. purp g g,

There is a close relationship between image compressg)%neﬁtS of this approach. A'related model, which acpounts
and image denoising. In fact, the use of lossy data compresm%loCal dependencies, was independently proposed in [11],

itself was proposed for denoising with the intuition that nd its effectiveness was verified by yarious experimental
“typical correlated signal is compressible but noise is no gssgrsfbrlr?1 E;ﬂéearé%trl?girsirrlzla\t?; v\?:\?;gﬁhgggg: d;,xgsu;i?gd
3]. This principle is also apparent in more theoretically mo- . o .

[3] P P PP y ontext modeling of thglobal coefficients histogram. In our

iv meth h minimum ription length (MDL . )
tivated methods such as um description length ( ork, we take an opposite approach that exploits Il

and complexity regularized denoising [4]-[6]. In this letter ucture of wavelet im Hicients. Also. we use linear
we further exploit the relationship between compression a H clure ot wavele age coetnicients. IS0, we Use linea
minimum mean squared error-like (MMSE-like) estimation

instead of coefficient thresholding.
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Fig. 2. (a) Block-diagram of the denoising algorithm. For each observed noisy coeflitignt we form an approximate MAP estimaié (k) of the variance

of X (k) based on a local neighborhood and on the pfier The estimater? (k) is then used for linear MMSE-like estimation &f(k). (b) Histogram of
the estimated local variance of the coefficients (solid line) in wavelet image subband approximated using a single exponential prior (dasb}dmtibd li
a mixture of exponentials that consists of three single exponentials in three nonoverlapping regions (dashed line).

cients are assumed to be conditionally independent zero-med(k) is deterministic and known. But in faet?(k) is not

Gaussian random variables, given their variances. These veriown, so we construct a linear MMSE-like estimalotk) =
. . . . . ~207. . .

ances are modeled as identically distributed, highly correlat%g%y(k), where&2(k) is an estimate for2(k).

random variables. For estimation purposes, we approximateyr results indicate that the performance of the proposed
wavelet coefficients as locally i.i.d. Our proposed model diffeggpproximate MMSE predictor is dependent, to some high
from the one in [1] in the following two respects. First, we pugxtent, on the quality of the estimaté? (k). Generally, this

a stochastic prior on the local variances rather than considerfigdhtion is unknown and complicated; but it is likely that a

them as unknown deterministic parameters. Second, we mogigier estimator for the data variance yields a better estimate
the wavelet coefficients aonditionally independent Gaussianigr the data as well.

random variables rather than GG variables, as in [1]. To moti-

vate this model, see Fig. 1. The left panel shows the histograi Estimation of the Underlying Variance Field

of the original high-band coefficients of Lena image from the h L fth . fiekd () is th fth

first scale, obtained by employing Daubechies-8 wavelets [12]F N eztléna'uqn_o t qur;]anc?: et ( %'Zt N CQ;X ofthe

The right panel shows those coefficients normalized by thélfOPOose eQO'S'T‘g algorithm. For each data p .(W)’ an
imate ofs=(k) is formed based on a local neighborhood

estimated standard deviations. Observe that the normali :
ff[icgk). We use a square window/ (k) centered atY (k).

histogram is well approximated by a zero-mean, unit-varian Assuming the correlation between variances of neighboring
G i bability density functi .d.f). . S
aussian probability density function (p.d f. efficients is high, we have?(j) ~ o?(k) for all j € N (k).

In this work, we assume that image pixels are corrupt ; / likelihood (ML
by AWGN with known variances2. Let X (k) represent the en we compute an approximate maximum likelihood (ML)

orthonormal wavelet coefficients of the “clean” image. Thgstlmator:
wavelet coefficients of the noisy image are givenbfic) = 52(k) = arg max H PY(5) | o?)
X (k) +n(k), wheren(k) is AWGN due to orthonormality of 720 LN
the chosen wavelet transform.
Our proposed denoising algorithm operates in two steps. — max | 0, 1 Z Y2(j) — o2 1)

Initially, we perform an approximate maximumn posteriori
(MAP) estimation of the variance?(k) for each coefficient,
using the observed noisy data in a local neighborhood andvhere P(- | o2) is the Gaussian distribution with zero mean
prior model foro? (k). The estimate?(k) is then substituted and variances? + o2, and M is the number of coefficients in
for o2(k) in the expression for the MMSE estimator &f(k). N(k). Now, assume a prior marginal distributigip(c?) for
Both steps are summarized in Fig. 2(a) and are describedecho?(k) is available. Then we obtain an approximate MAP

JEN(K)

more detail below. estimator fora?(k) as
B. [.)enoising Algorithm N | 52(k) = axg max H P () | 62| o (0?).
Giveno?(k), the wavelet coefficient& (k) are independent 7201 N ()

Gaussian variables, so the MMSE estimator Xgfk) is given n Fig. 2(b), we plot a histogram of the estimated local

Y - oK) i i
by X(k) = a?(k)+o3, Y (k). We emphasize that this assUMegariances using (1) with a ¥ 7 window for a typical high-
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pass subband of an image (solid line). The exponential prior
fr(0?) = Ae=*” shown by the dash-dotted line in Fig. 2(b),
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TABLE |
PSNR ResuLTs IN DECIBELS FOR SEVERAL DENOISING METHODS

is a reasonable candidate to fit the original histogram. The Noise Standard Deviation oy,
approximate MAP estimate fos?(k) using an exponential 10 | 15 | A20 | 25
ior is qi LEN.
prior is given by S
52 (k) thresholding [14] || 30.34 | 28.52 | 27.24 | 26.34
Spatial local
Wiener (MATLAB) || 32.98 | 30.44 | 28.52 | 26.95
M 8A ) 5 ——
=max|0,— |-1+ |1+ — Z Y2(5)| — o2 SAWT [12] 31.83 | 30.49 | 29.50
4 M= NG 3x3 LAWML 3372 | 31.37 | 29.63 | 28.22
! 3x3 LAWMAP 34.25 | 32.33 | 31.00 | 29.96
(2) 5x5 LAWML 34.13 | 31.99 | 30.46 | 29.24
5%x5 LAWMAP 34.31 | 32.36 | 31.01 | 29.98
In our experiments, we indeed found out that (2) improves 7x7 LAWML 34.17 | 32.10 | 30.65 | 29.52
the denoising performance over (1). Using the exponential 7x7 LAWMAP || 34.24 | 32.27 | 30.92 | 29.90
prior requires the estimation of only one additional parameter e BARBARA
A - onono’s har
A per image ngelet subb:?md. One.mlg'ht expect that more thresholding [14] || 27.29 | 25.01 | 23.65 | 22.83
accurate modeling of the histogram in Fig. 2(b) would yield Spatial Tocal
further improvements in denoising performance. For instance, Wiener (MATLAB) | 31.35 | 28.58 | 26.67 | 25.19
we fitted the histogram with different exponentials in three SAWT [12] 29.19 | 27.65 | 26.52
nonoverlapping regions (dashed line). In this case, the ap- 3x3 LAWML 32.32 | 29.72 | 27.93 | 26.53
proximate MAP estimator still admits a simple closed-form 3;‘351“31&/%}’ g;éi gggg 32)3;3 ;Zi})
expression. Howevc_ar, we exper_lr_nentally verified that it does 5 LAVWMAPD 5o 3010 [o8.60 27 12
not produce better image denoising results. 7T LAWML 3519 173000 1 38.49 | 2798
7x7 LAWMAP 32.51 | 30.13 | 28.57 | 27.40

Ill. RESULTS AND DISCUSSION

We tested our algorithm on a number of images, but only,e gyggests a tradeoff that has been discussed in detail in
report results for Lena and Barbara. We used an orthqg The flexibility of our proposed method lends itself to the
onal wavelet transform with five levels of decompositiolygage of different shaped neighborhoods for each coefficient.
apd Daubechles’ length-8 wavelet. Centered square—shapmqis could be implemented by using edge- and shape-adapted
windows of sizes 3« 3, 5 x 5 and 7x 7 were employed indows, Such an adaptation is likely to further improve

to find different estimates fos?(k)
prior f, was set equal to the inverse of the standard deviation
of wavelet coefficients that were initially denoised by using
(1) and linear MMSE-like estimation.

We compared five different denoising methods. The PSNR]
results are shown in Table I. The first method is the hard-
thresholding of wavelet coefficients using a constant threshold
for all subbands, calculated according to [14]. The secont?]
method is MATLAB’s image denoising algorithrwiener2
The third method uses spatially adaptive wavelet thresholding
[12]. We included only the results from [12] which were [3]
obtained by using an orthogonal wavelet transform since this
is equivalent to our setup. [4]

Our results are presented for two different methods. First, we
treated the variances as deterministic quantities and computed
approximate ML estimates. We call the resulting methmd (5]
cally adaptive window-based denoising using MIAWML).

The second method uses an exponential distribution as a prigj
for the underlying variance field. Based on this model, we
compute approximate MAP estimates of the variances. We call
this methodlocally adaptive window-based denoising using(7]
MAP (LAWMAP).

In this work, we confined ourselves to square-shaped neigirg]
borhoods with fixed size, for simplicity. In general, it would
be desirable to automatically select both the size and tlzi%]
shape of the neighborhood region. But clearly, this woul
introduce additional difficulties. The selection of the window

. The parameted of the  yengising performance; see [2] for an example.
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