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Abstract

This paper presents an information–theoretic analysis of statistical dependencies between

image wavelet coefficients. The dependencies are measured using mutual information, which

has a fundamental relationship to data compression, estimation, and classification performance.

Mutual informations are computed analytically for several statistical image models, and depend

strongly on the choice of wavelet filters. In the absence of an explicit statistical model, a method

is studied for reliably estimating mutual informations from image data. The validity of the

model–based and data–driven approaches is assessed on representative real–world photographic

images. Our results are consistent with recent empirical observations that coding schemes

exploiting inter– and intra– scale dependencies alone perform very well, whereas taking both

into account does not significantly improve coding performance. A similar observation applies

to other image processing applications.
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1 Introduction

In image processing applications such as compression, estimation, and classification, one can con-

struct optimal or near-optimal algorithms based on accurate statistical image models [1, 2]. For

instance, Shapiro’s zerotree coding technique [3] has led to a new generation of powerful wavelet

image coders that exploit the clustering of wavelet coefficients in scale and space [4, 5, 6, 7, 8]. In

image denoising problems, adaptive wavelet filtering techniques [9, 10, 11, 12] and estimators based

on hidden Markov models (HMT) [13, 14] outperform simpler Wiener filtering techniques. The

use of hidden Markov tree models has also been beneficial in image classification [15, 16]. Markov

random field models [17, 18] have been used successfully in some applications.

The potential advantages of using a particular model can be validated by an improved per-

formance in a specific application, as in the above papers, or by a direct characterization of the

discrepancy between this model and a simpler one. This paper presents such a characterization of

interscale and intrascale dependencies between image wavelet coefficients.

Such dependencies have been studied intensively in the image compression and estimation lit-

erature. They can be formulated explicitly (e.g., [5], [6], [8]–[14]), or implicitly (e.g., [4, 7]). The

resulting wavelet models can be loosely classified into three categories: those exploiting interscale

dependencies, those exploiting intrascale dependencies, and those exploiting both. It is not always

clear which type of model should be preferred, and why it should be preferred.

Current image compression and estimation practice suggests that models combining both inter–

and intra–scale dependencies models are not significantly better than models exploiting intrascale

dependencies alone. For example, the recently developed JPEG–2000 image compression standard

exploits intrascale dependencies alone [19, 20]. In addition, recent image denoising experiments [21]

have compared the performance of a composite model–based estimation scheme and an intrascale

estimation scheme. The mean–squared error (MSE) using the first scheme is only slightly (< 5%)

lower. This paper seeks an analytical explanation for such empirical observations and develops a

framework for studying related questions.

The main theme of this paper is to compare various wavelet models based on their ability to

capture dependencies between wavelet coefficients, rather than their experimental performance in

any specific algorithm measured using an application–dependent criterion such as MSE or compres-
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sion ratio. The dependencies between coefficients are measured using mutual information, which

has a fundamental relationship to compression, estimation, and classification performance, e.g., in

the form of performance bounds.

1.1 Overview of statistical wavelet models

The wavelet transform nearly decorrelates many images and can be viewed as an approximate

Karhunen–Loève transform (KLT) [22]. This is the basic property exploited by early wavelet

coders and wavelet denoising algorithms. Nevertheless, significant dependencies still exist between

wavelet coefficients. Each statistical wavelet model in the literature focuses on a certain type of

dependencies, which it attempts to capture using a relatively simple and tractable model. We

classify these models in the following three categories.

1. Interscale models. The magnitudes of wavelet coefficients in typical images are strongly

correlated across scales. Consider a quadtree representation of wavelet coefficients. If a parent

node has small magnitude, its children are very likely to be small too. This property is exploited

in Shapiro’s embedded zerotree wavelet (EZW) coder [3]. Combining the self–similarity across

scales with a clever scheme for set partitioning in hierarchical trees (SPIHT), Said and Pearlman

developed an even better coder [4]. The hidden Markov tree model (HMT) by Crouse et al [13] also

captures the dependencies between a parent and its children. A hidden state is associated with each

wavelet coefficient; conditioned on their hidden states, the coefficients are Gaussian, independent

and identically distributed (iid).

2. Intrascale models. Strong dependencies in the form of spatial clusters exist between

wavelet coefficients inside each subband. Compression algorithms such as the morphological coder

[7] exploit the spatial clustering of these wavelet coefficients. The EQ coder [6] models wavelet

coefficients as independent generalized Gaussian distributed (GGD) with zero mean and slowly

varying variance. Local statistics are estimated from the data. This model has recently found

applications to denoising [12].

3. Composite dependency models. Both types of dependencies above may be combined. For

instance, Joshi et al [5] and Liu and Moulin [21] developed classification–based models involving

both interscale and intrascale dependencies. Predictive models have been used by Chang et al [11]
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and Simoncelli [9]. In particular, Simoncelli [9] assumes a strong correlation between the squared

magnitude (energy) of a wavelet coefficient and those of its parent and neighbors, and develops a

prediction scheme based on that assumption.

1.2 Organization of this paper

Sec. 2 of this paper formulates the modeling problem in terms of mutual information, relative en-

tropy, and Markovian properties. Sec. 3 illustrates these concepts in the special, classical case of

an AR–1 Gaussian image process. We compute the mutual informations analytically, and study

the influence of the choice of the wavelet filter. In Sec. 4, we move on to more complex, nonpara-

metric models. Modeling and estimating high–dimensional probability density functions (pdf) for

neighborhoods of wavelet coefficients is difficult, so we propose a technique to “summarize” the

neighborhood based on sufficient statistics. The choice of the summary function is discussed for

nonlinear Markov models and doubly stochastic models. In Sec. 5, we describe numerical methods

for nonparametric estimation of mutual informations from image data. Results on real–world pho-

tographic images are presented and interpreted. In Sec. 6, we consider doubly stochastic models

such as the EQ model and derive an upper bound on intrascale mutual information. This yields

additional insights about wavelet models and provides a convenient alternative to the numerical

mutual information estimation methods in Sec. 5. Discussions are presented in Sec. 7.

2 Mutual Information

To compare interscale, intrascale, and composite wavelet models based on their ability to capture

dependencies between wavelet coefficients, we seek a simple but useful quantitative measure of

dependency. While a correlation coefficient is appropriate for Gaussian–distributed data, it is typ-

ically inadequate for non–Gaussian distributions. For instance, the correlation of adjacent wavelet

coefficients within a subband is typically very low (approximately 0.1 [23]), yet inspection of the

magnitudes of these coefficients immediately reveals strong dependencies.

Consider mutual information, which admits direct data compression and classification inter-

pretations [24] as well as an estimation interpretation [25, 26]. Let X ∈ X and Y ∈ Y be two
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random variables (or vectors) having a joint pdf p(x, y). The mutual information between X and

Y is defined as

I(X;Y ) =
∫
X

∫
Y

p(x, y) log
p(x, y)

p(x)p(y)
dxdy

�
= EXY

[
log

p(x, y)
p(x)p(y)

]
= D (p(x, y)||p(x)p(y)) , (1)

where D(·||·) is the relative entropy between two distributions, also known as the Kullback–Leibler

divergence [24]. Throughout the paper, we use logarithm of base 2, hence I(X;Y ) is measured

in bits. If the differential entropies h(X) = EX [− log p(x)] and h(X|Y ) = EX,Y [− log p(x|y)]

are finite, then I(X;Y ) = h(X) − h(X|Y ). The mutual information is symmetric in X and Y ,

nonnegative, and is equal to zero if and only if X and Y are independent. If X is a function of Y ,

I(X;Y ) = ∞ [27].

The mutual information I(X;Y ) indicates how much information Y conveys about X. For

instance, I(X;Y ) admits a well-known data compression interpretation: encoding X to a precision

ΔX costs h(X)−log ΔX bits (assuming sufficiently small ΔX), but if Y is known, encoding X to the

same precision given Y costs only h(X)−log ΔX−I(X;Y ) bits [24]. The saving is I(X;Y ) bits. The

conditional mutual information I(X;Y |Z)
�
= EXY Z

[
log p(x,y|z)

p(x|z)p(y|z)

]
= h(X|Z) − h(X|Y,Z) admits

a similar interpretation.

In estimation problems, mutual information provides bounds on parameter estimation perfor-

mance via the distortion-rate bound [25, 26]. The higher I(X;Y ) is, the easier it is to estimate

X given Y or vice-versa. Note that Fisher information also provides bounds on the variance of

unbiased estimators via the Cramer-Rao bound, but extension of these bounds to the case of bi-

ased estimators and/or non-Euclidean parameter sets is quite unwieldy [28, 29]. Moreover, the

Cramer-Rao bound is local and typically tight only for large-sample problems.

Mutual information can be used for adaptive or off–line processing in various applications.

Examples include image registration [30, 31], independent component analysis (ICA) [32], and the

application of ICA to various problems such as blind source separation [33] and image restoration

[34].

In order to better understand the performance of image processing algorithms that exploit

interscale dependencies, intrascale dependencies, or both, we refer to Fig. 1 and compare the

following mutual informations:
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• I(X;PX), where X denotes a wavelet coefficient, and PX denotes its parent in the next

coarser subband.

• I(X;NX), where NX is a predefined neighborhood of X (excluding X). For backward–

adaptive coders such as in [6], one is interested in causal neighborhoods, which are used to

adapt the quantizer applied to X. For forward-adaptive coders [35], adaptation is done using

larger, noncausal neighborhoods.

• I(X;PX,NX), corresponding to the composite dependency model which takes into account

both parent and neighborhood data (PX,NX).

From the chain rule for mutual information [24], we know that I(X;PX,NX) ≥ I(X;NX),

where the difference between the two terms is I(X;PX|NX). This difference quantifies how much

information PX conveys about X if NX is already known. It is zero if and only if PX → NX → X

forms a Markov chain. Similarly, we have I(X;PX,NX) ≥ I(X;PX). The difference between

these two terms, I(X;NX|PX), quantifies how much information NX conveys about X if PX is

already known. It is equal to zero if and only if NX → PX → X forms a Markov chain.

In many applications, one would like the mutual informations listed above to be small, meaning

that the wavelet transform nearly whitens the image data. But in fact there are residual dependen-

cies between wavelet coefficients, which can be quantified using mutual information and exploited

using appropriate techniques.

3 Special Case: AR–1 Gaussian Model

Assume here that the image is a stationary AR–1 Gaussian process. This is a simple but oft–used

model in image processing [36]. In this case, the mutual informations of Sec. 2 can be computed in

closed form, and insightful results are obtained.

We use a 1–D signal to simplify the notation and illustrate the basic concepts. Suppose the

signal is a Gaussian random process {g(n), n ∈ Z} with autocorrelation sequence RG(k) = r|k|σ2,

where 0 ≤ r ≤ 1 and k ∈ Z. We consider a two–level wavelet decomposition using lowpass filter h0

and highpass filter h1, as plotted in Fig. 2. The wavelet decomposition produces three subbands:
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the coarse subband B0, the first fine subband B1, and the finest subband B2. For any coefficient

in B2, we compute the correlation with its parent (in B1) and neighbors (in B2). The correlation

can be expressed as the convolution of RG(n) (or its down–sampled version) with the filterbank

coefficients. Specifically, let f1(n) denote the filter with z-transform F1(z) = H0(z)H1(z2). For any

j, h ∈ Z, we have

E[B2(j)B2(h)] =
∑

l

∑
n

h1(l)h1(n)r|2(h−j)+l−n|σ2;

E[B1(j)B2(2j + h)] =
∑

l

∑
n

f1(l)h1(n)r|2h+l−n|σ2;

E[|B1(j)|2] =
∑

l

∑
n

f1(l)f1(n)r|l−n|σ2.

Now recall that the mutual information between two Gaussian random vectors X and Y is given

by [24]

I(X;Y ) =
1
2

log

⎛
⎜⎝|RXX | · |RY Y | ·

∣∣∣∣∣∣
RXX RXY

RY X RY Y

∣∣∣∣∣∣
−1

⎞
⎟⎠ , (2)

where | · | denotes the determinant of a matrix, and RXX , RY Y , and RXY are the autocorrelation

of X, autocorrelation of Y , and the cross correlation between X and Y , respectively. Define X as

the coefficient B2(j), its parent PX as B1(� j
2	), and its neighborhood NX as {B2(j − 1), B2(j +

1)}. The mutual informations I(X;PX) (interscale), I(X;NX) (intrascale), and I(X;PX,NX)

(composite) can then be computed from (2).

For brickwall filters, we have

I(X;PX) = 0 and I(X;NX,PX) = I(X;NX).

This is because the subbands B1 and B2 correspond to different frequency components that are

statistically independent under our stationary model. In this case, intrascale models capture all

the dependencies.

Fig. 3 plots the mutual information values using Haar filters and Daubechies’ maximally flat

8–tap filters [37], as a function of the correlation coefficient r. The value of mutual information

does not depend on σ2, as can be easily verified from (2).

The value of mutual information strongly depends on the filterbanks {H0(z), H1(z)}. In particu-

lar, interscale dependencies are significant for the Haar wavelet and weak for the Daubechies wavelet.
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Moreover, the Haar wavelet produces larger values of I(X;NX,PX) compared to the Daubechies

wavelet (e.g., for r = 0.9, I(X;NX,PX) = 0.093 and 0.030 bits, respectively). This is due to

the fact that Daubechies’ wavelet does a better job of approximately whitening the spatial domain

AR–1 process. For a perfectly whitening transform1, we would have I(X;NX,PX) = 0. Most of

the dependencies remaining after application of the wavelet decomposition using Daubechies’ 8–tap

filters can be captured by an appropriate intrascale model.

4 Reduced-Order Models

This section is concerned with more complex, possibly nonparametric models for the joint dis-

tribution of (X;NX,PX). One major practical difficulty in estimating the mutual informations

I(X;NX) (intrascale) and I(X;NX,PX) (composite) is the high dimensionality of the models,

due to the possibly large size of the neighborhood NX. For example, consider an image subband

and define the neighborhood NX as the collection of the eight coefficients adjacent to X, as shown

in Fig. 4. It is difficult to reliably estimate the 9–dimensional pdf p(x,Nx) because the number

of data needed to accurately estimate a pdf increases exponentially with the dimensionality [39].

To avoid this so–called curse of dimensionality, we would like to assume that the neighborhood

NX = {NX1, ...,NXk} provides information to X only through a many–to–one scalar function

T = f(NX), in the sense that

I(X;NX) = I(X;T ). (3)

As we shall see in Secs. 4.1 and 4.2, several models considered in recent image processing liter-

ature use this assumption. Under (3), the original problem is then reduced to estimating mutual

information for a 2–D density, which is a much simpler problem. The assumption that the function

f(·) “summarizes” the neighborhood information is illustrated in Fig. 5.

Of course, Assumption (3) is not necessarily satisfied by the actual image model. Regardless of

the choice of the function f(·),
X → NX → T = f(NX) (4)

1Recall that under standard regularity conditions, the Fourier transform whitens stationary, discrete–time, random

processes [36][38, Sec. 4.4].
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forms a Markov chain, and the data–processing theorem [24, Ch. 2.8] implies

I(X;NX) ≥ I(X;T ). (5)

Equality is achieved if and only if the statistic T = f(NX) is sufficient for X [24, Ch. 2.10].

4.1 Nonlinear Markov models

Because Assumption (3) rarely holds exactly in practice, finding the proper form of the summarizing

function f(·) is important. The inequality (5) suggests a criterion for choosing f(·): maximize

I(X;T ). This would yield the best model in the mutual-information sense among the class of 2–D

models for (X,NX).

Note that several empirical choices for f(·) have been proposed in the image processing literature

[8, 9, 11]. For example, Simoncelli [9] assumes that the squared magnitude of the current coefficient

can be linearly predicted from that of its neighbors at the same scale. His model is a nonlinear

Markov model which can be stated as follows. The statistic T is a weighted average of {|NXi|2},
and X is Gaussian, conditioned on T :

T = f(NX) =
∑

i

Wi|NXi|2, (6)

X/
√

T + σ2
e ∼ N(0, 1) is independent of T. (7)

Here σ2
e denotes variance of the prediction error in the subband. The model (6) (7) has been

validated in [9] using the histogram of the normalized wavelet coefficients X/
√

T + σ2
e and their

correlation. This suggests that the dependencies are mostly captured by the function f(·) defined

in (6), and that Assumption (3) approximately holds.

To illustrate the problem of selecting f(·) according to our mutual–information criterion, con-

sider the function (6), and define the neighborhood NX to be the set of eight coefficients adjacent

to X, as in Fig. 4. Two choices of {Wi} are considered:

• Equal weights Wi = 1
8 (see Fig. 4a). Here T is an unbiased estimate of the variance of X

(assuming {NXi} are zero-mean and identically distributed).
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• Adaptive weights with Wi’s estimated based on the data. This choice allows some flexibility

in the choice of f(·). To reduce the number of free parameters, assume symmetric weights,

as illustrated in Fig. 4b. The upper, lower, left and right neighbors of X are assigned equal

weights W1, and the four diagonal neighbors are assigned equal weights W2. Since the mutual

information is invariant to linear scaling, I(X;T ) depends on W1 and W2 only through the

ratio β = W2
W1

. In this case, we let

T =
∑

i∈{hor,ver}
|NXi|2 +

∑
i∈{diag}

β|NXi|2, (8)

where hor, ver, and diag denote the two horizontal, two vertical, and four diagonal neighbors,

respectively. The parameter β can be estimated from the data, for instance, by maximizing

the log–likelihood
∑N

i=1 log p(xi|ti), where N is the number of available samples. In the

asymptotic case N → ∞, the normalized sum 1
N

∑N
i=1 log p(xi|ti) converges in probability to

its expectation E[log p(X|T )] = −h(X|T ) according to the weak law of large numbers [40].

Moreover, −h(X|T ) = I(X;T ) − h(X). Thus the estimate β asymptotically maximizes the

mutual information I(X;T ), and the inequality (5) is tighter than the bound corresponding

to β = 1 (equal–weights design).

4.2 Doubly stochastic models

Consider a class of models that is analytically and computationally simpler than (6) (7) and has

been used in recent image processing literature [6, 12, 41]:

X and its neighboring coefficients in NX are independently drawn from a distribution

p(·|θ) parameterized by θ, and θ itself is a random variable following a distribution p(θ).

In this case, the optimal summarizing function T = f(NX) is a sufficient statistic for estimating θ

from NX, provided such a 1-D sufficient statistic exists [28]. By the description of this model,

X → θ → NX → T (9)

forms a Markov chain. Doubly stochastic models have been used, for instance, in the EQ coder

[6] and in the denoising algorithms of Mıhçak et al. [12] and Liu and Moulin [21]. Given the local
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variance θ, the coefficients are assumed to be independent with distribution N(0, θ). In this special

case, the optimal summarizing function is the minimal sufficient statistics for θ: T =
∑

i NX2
i .

Another direct consequence of the Markov property (9) is

I(X; θ) ≥ I(X;NX) ≥ I(X;T ) (10)

with equality if and only if T is a sufficient statistic for θ, and θ can be estimated exactly from

T . This equality is approximately satisfied if the neighborhood is sufficiently large, and if T is a

consistent estimator of θ. Under these assumptions, I(X;NX) can be approximated using a simple

parametric model for the wavelet coefficient dependencies.

5 Nonparametric Estimation of Mutual Information

For most distributions, mutual information cannot be computed analytically. Moreover, the pdf’s

themselves are rarely available. In this section, we develop numerical methods to estimate mutual

information based on available wavelet coefficient data. This problem is at least as difficult as pdf

estimation; see [42, 43] for estimation of entropy in a general, theoretical context.

5.1 Nonparametric estimators

Given two random vectors X and Y with known joint pdf p(x, y), I(X;Y ) is defined by the integral

(1). We let X be the wavelet coefficient, and Y be the neighborhood statistic T = f(NX), the

parent PX, or the vector (T,PX). The pdf p(x, y) is unknown and must be estimated from

empirical data. Consider a nonparametric approach. Partition the range of X and Y into NX

and NY intervals, respectively. The histogram of (X,Y ) obtained from the binned empirical data

is denoted as {PX,Y (i, j), for 1 ≤ i ≤ NX , 1 ≤ j ≤ NY } and yields an approximation to the

pdf p(x, y). Likewise, the marginal distributions PX(i) and PY (j) can be estimated. From these

histograms, the mutual information is estimated as

Î(X;Y ) =
∑

i

∑
j

PX,Y (i, j) log
PX,Y (i, j)

PX(i)PY (j)
. (11)

Assume that the random sequence {(Xn, Yn), 1 ≤ n ≤ N} is stationary and ergodic. Then the

histogram yields a reliable estimate of the pdf, and Î(X;Y ) converges to I(X;Y ) in probability.
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The distribution may vary from subband to subband, but is assumed stationary and ergodic within

each subband.

In our experiments, we have used two different binning techniques to construct the histograms

used in (11): a log–scale histogram method and an adaptive partitioning method [44]. Both

techniques are described in Appendix A.

5.2 Experimental results

We have used a database containing ten representative images, each of size 512×512, ranging from

simple (such as Peppers) to complicated (such as Baboon). The thumbnail version of these images

can be viewed at the website http://www.ifp.uiuc.edu/˜j-liuf/thumbnails/images.html. Mutual

information is computed for these images using the two numerical methods in Appendix A. Due

to space limitations, we report the results for representative images such as Lena, Barbara and

Peppers.

We used Daubechies’ maximally flat 4–tap filters [37] in a 4–level wavelet decomposition. Table 1

reports results computed using the log–histogram method for the finest subbands of the images

Lena, Barbara, and Peppers. Two special cases of the mapping f(·) in (6) are compared. The first

one assigns equal weights to all neighbors, and the second adjusts the ratio β = W2
W1

in each subband

so as to maximize the estimated intrascale mutual information, as described in Sec. 4.1. The

estimated β values are listed in Table 1. We notice that the model f(·) with adjustable β is better

in the sense that it better captures intrascale and composite model dependencies (see theoretical

justification in Sec. 4). However, the improvement is minor (about 2% for Lena, and 3% for Barbara

and Peppers. This indicates that despite its simplicity, an equally weighted combination of neighbors

yields a good model for intrascale dependencies among wavelet coefficients. If the stationary ergodic

assumption of Sec. 5.1 holds and if the assumption (4) holds, we have Î(X;T ) ≈ I(X;NX),

where the discrepancy is small and is only due to finite sample size. Likewise, Î(X;T,PX) ≈
I(X;NX,PX).

Table 2 reports the mutual information computed using the log–histogram estimation method

for the next–to–finest subbands. The most striking result in Tables 1 and 2 is that Î(X;T,PX) is

always significantly larger (84% for Lena, 201% for Barbara, and 133% for Peppers) than Î(X;PX),
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and only a few percent larger than Î(X;T ) (13% for Lena, 6% for Barbara, and 13% for Peppers).

This is also true for other images in the database; see Table 3 for the summary of results. This

indicates that intrascale models capture most of the dependencies between wavelet coefficients, and

the gains obtained by also including the parent information are marginal. This is consistent with

the performance of image processing algorithms reported in compression and estimation literature

(see Sec. 1).

We also experimented with Haar filters and with Daubechies’ maximally–flat 8–tap filters [37].

We observed that

Î(X;PX) < Î(X;T ) < Î(X;T,PX)

regardless of the choice of wavelet. For long filters, Î(X;T ) is close to Î(X;T,PX), and Î(X;PX)

is small. This is true for all finest and next–to–finest subbands of our test images. We take the

finest horizontal subband of Lena as an example. Using a Haar wavelet, Î(X;PX) is about 67%

of Î(X;T,PX), and Î(X;T ) is about 87% of Î(X;T,PX); using a Daubechies 4–tap filterbank,

the two percentages are 55% and 91% respectively (see Table 1); and using a Daubechies 8–tap

filterbank, the two percentages are 49% and 93% respectively.

Table 4 compares our two methods for estimating mutual informations: the log scale histogram

method and the adaptive partitioning method [44]. The two methods produce consistent values of

the mutual information within about 10%. This suggests that these estimated values are relatively

reliable. It is also interesting to see what the partitioned cells using Darbellay and Vajda’s method

look like. Fig. 6 shows an example plotted in log scale. The range of (X;PX) is partitioned into

a set of cells. The partition is nonuniform and nonseparable (see Appendix A). Interestingly, the

resulting partitioning is fairly close to uniform discretization of log |X| and log |PX|.

5.3 Discussion on experimental results

Based on these results, one may come to the conclusion that intrascale models should always be

favored over interscale models. However, this need not be so. For instance, the intrascale mutual

information depends on the size and shape of the neighborhood. In compression applications,

backward–adaptive intrascale models such as the EQ coder [6] use a small causal neighborhood

(which is also available at the decoder) to help encoding the current coefficient. Consider a causal
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neighborhood NX defined as the upper, left, and upper–left neighbors of X (three coefficients

only), and repeat the experiments of Sec. 5.2. The corresponding mutual informations produced

are reported in Table 5 for the finest subbands of Lena. Compared with Table 1, the advantage of

intrascale models over interscale ones is much less prominent.2

Moreover, interscale models also have some advantages. Interscale coders such as EZW [3]

and SPIHT [4] can be considered as vector quantizers, where the coefficients in a hierarchical

tree are classified jointly. The tree structure is algorithmically more convenient than a noncausal

neighborhood structure. This is analogous to the difference between a Markov chain and a Markov

random field, with the latter being more complicated than the former, both in theory and in

practice. Besides the rate–distortion performance of coders, also of concern are practical issues

such as the complexity of encoding and decoding, functional requirements such as embedding [3, 4],

and hardware implementability.

Related to our comparison of interscale, intrascale, and composite models is the work by Buc-

cigrossi and Simoncelli [8] which linearly predicts a coefficient’s magnitude from a conditioning

coefficient set. The set may include one or some of the following: the coefficient’s parent, neighbors

(left and upper), cousins (coefficients at the same location but in different orientation subbands),

and aunts (cousins of the parent). To determine which candidates to include in the prediction set, a

greedy algorithm compares the mutual information between the coefficient’s magnitude and its lin-

ear estimator, and includes the most informative candidate in the conditioning set first. The parent

is ranked third, providing less information content than the left and upper neighbors. This result

is complementary to ours. It also verifies that the dependencies between neighboring coefficients

(intrascale) are stronger than the interscale dependencies.

6 Upper Bound I(X; θ) Under Doubly Stochastic Models

Doubly stochastic models (or more generally, hierarchical models [45]) have been used in image

processing applications (e.g., [46]). Recently they have been used to model wavelet domain images

[12, 47, 48]. Consider the doubly stochastic model from Sec. 4.2, where the wavelet coefficients
2Furthermore, in compression applications, X is encoded given a quantized version of NX only. According to the

data processing theorem [24], such quantization further reduces mutual information.
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are drawn independently from a distribution p(·|θ) parameterized by θ, and the distribution of θ

is p(θ). Recall from (10) that I(X; θ) gives an upper bound on the intrascale mutual information

I(X;NX), and that this bound is tight for sufficiently large neighborhoods. In this section, we

derive mutual informations under several useful models for p(·|θ) and p(θ). Our derivation uses

the property that mutual information is invariant to invertible mappings such as linear scaling:

I(αX; ξY ) = I(X;Y ) for any α, ξ �= 0. The mutual information I(X; θ) depends on p(θ), but in

some cases is invariant to parameters of p(θ). Consider the following examples.

• Model 1 [12, 49]: ⎧⎨
⎩

p(x|θ) ∼ N(0, θ);

p(θ) = ae−aθ for θ ≥ 0.
(12)

The marginal distribution of X is Laplacian with zero mean and variance 1
a [49]. To compute

I(X; θ), consider the scaled random variables θ′ = aθ and X ′ =
√

aX. The joint distribution

of (X ′, θ′) is given by ⎧⎨
⎩

p(x′|θ′) ∼ N(0, 1);

p(θ′) = e−θ′ for θ′ ≥ 0

and is independent of a; hence so is I(X ′; θ′). Due to the scaling–invariant property of mutual

information,

I(X; θ) = I(X ′; θ′) =
1
2
(1 + γ − log π) nats = 0.313 bits,

where γ = limm→∞
(∑m

k=1
1
k − log m

) ≈ 0.577216 is Euler’s constant. The fact that I(X; θ)

is independent of a is remarkable: as long as θ follows an exponential distribution, I(X; θ) =

0.313 bits; and the variance of the distribution p(θ) does not matter.

We further generalize this analysis to the case where the variance parameter θ follows a

single–sided generalized Gaussian distribution (GGD), i.e.,
⎧⎨
⎩

p(x|θ) ∼ N(0, θ);

p(θ) = a νη(ν)
Γ(1/ν) e−[a η(ν) θ]ν for θ ≥ 0,

(13)

where ν is the shape parameter, and η(ν)
�
=

√
Γ(3/ν)
Γ(1/ν) . Here Γ(·) is the Gamma function.

For ν = 1, we have the Laplacian model in (12). For decreasing values of ν, the tails of

the distribution become increasingly flat. This model allows more flexibility than (12) and
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is often more realistic for practical images. See for instance Fig. 7a, which plots the log–

histogram of the local variance for the finest horizontal subband of Lena. The local variance

is estimated from the eight adjacent wavelet coefficients. The single–sided GGD with ν = 0.6

(dash–dotted line) provides a good fit for the histogram. In Fig. 7b, we observe that the

normalized wavelet coefficients follow a distribution very close to a Gaussian (N(0, 1)). This

is consistent with the model (13).

Given the prior p(x, θ), I(X; θ) is evaluated via numerical integration. Fig. 8 plots the value of

I(X; θ) for shape parameter ν ∈ [0.3, 2] in the model (13). For the finest horizontal subband

of Lena, with ν = 0.6, I(X; θ) = 0.406 bits. From Table 1, the estimate Î(X;T ) = 0.322 bits.

Hence the upper bound (10) is reasonably tight (again assuming Î(X;T ) ≈ I(X;T )).

• Model 2: ⎧⎨
⎩

p(x|θ = σ2) ∼ N(0, σ2);

p(σ) = ae−aσ for σ ≥ 0.
(14)

This model assumes the local standard deviation σ is exponentially distributed with parameter

a > 0. The marginal distribution p(x) has a heavy tail. Fig. 9a plots the histogram of local

standard deviation for the finest horizontal subband of Barbara. The exponential distribution

fits this histogram quite closely. The conditional prior p(x|t = σ2) ∼ N(0, σ2) is quite realistic,

as shown in Fig. 9b.

Under this model, the distribution of the variance θ = σ2 is p(θ) = a
2
√

θ
e−a

√
θ for θ ≥ 0.

The scaling σ′ = aσ and x′ = ax gives a doubly stochastic model independent of a. Hence

the mutual information I(X; θ) is again independent of a. Its value is obtained by numerical

integration: 0.796 bits, regardless of the value of the parameter a. This upper bound is again

quite close to the value Î(X;T ) = 0.696 bits obtained using our nonparametric estimation

technique (see Table 1) for the same Barbara subband.

• Model 3: ⎧⎨
⎩

p(x|θ) ∼ N(0, θ);

p(θ) ∼ Uniform [0, a].
(15)

Under this model, the marginal distribution p(x) =
√

2
πae−

x2

2a − |x|
a + |x|

a erf( |x|√
2a

)), where

erf(·) is the error function. For large |x|, this distribution tends to a Gaussian. Under this
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model, I(X; θ) = 0.193 bits regardless of the value of a. Compared to (12) and (14), the

model (15) is less realistic. We include this model for reference: It gives the value of I(X; θ)

when the wavelet coefficients follow a particular fast-decaying (not as “heavy–tailed” as the

previous models) prior p(x).

Under the doubly stochastic models (12), (13), (14), and (15), the optimal summarizing function

f(·) takes the form of (6) with equal weights, as this is the sufficient statistics for estimating θ from

the neighborhood NX.

The approach above provides a useful alternative to the more complicated nonparametric mutual

information estimation method described in Sec. 5. Under a given model p(x, θ), I(X; θ) provides an

upper bound on the intrascale mutual information I(X;NX) via (10). As discussed in Sec. 4, for the

bound (10) to be tight, one would need sufficiently large NX, in which the data X and {NXi} are

independently generated from the distribution p(·|θ). Then T is a good estimator of θ. Moreover,

in order to have Î(X;T ) ≈ I(X;T ), we need a large number of samples from the distribution p(θ).

The assumptions above are satisfied if θ viewed as a function of wavelet coefficient location is a

slowly-varying, stationary, ergodic random field with the prescribed marginal distribution.

7 Discussion

In practical image processing applications, it is often not clear how to select a statistical model, from

which an appropriate algorithm can be derived. In this paper, competing models are compared using

information–theoretic metrics. We have evaluated mutual information for interscale, intrascale, and

composite wavelet models. Mutual information may also be useful in practical image processing

algorithms; see recent research on image registration [30, 31], blind source separation [32, 33], and

image restoration [34] for examples. How to incorporate the mutual information analysis efficiently

in a compression or estimation algorithm is not discussed in this paper, and would be an interesting

subject for future research.

Mutual information provides bounds on the performance of compression, estimation, and classi-

fication algorithms. This is attractive both from a theoretical and a practical point of view because

bounds provide an economical alternative to extensive runs (tests) of image processing algorithms.
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Such considerations have contributed to the popularity of Fisher information and Cramer-Rao

bounds in statistical signal processing. The image modeling tools developed in this paper are ap-

plicable not only to standard compression, denoising and classification problems, but also to more

complicated imaging applications.

Our analysis has been developed for complete wavelet representations. An extension to over-

complete wavelet representation would follow similar principles but appears to be more difficult.

The coefficients in oversampled subbands exhibit strong dependencies, thus the summarization

function T = f(NX), which should ideally be a sufficient statistic, should take a different form.

The form of T depends on the modeling of the overcomplete wavelet domain coefficients, which is

not a mature subject yet.

Acknowledgment. The authors are grateful to Prof. Alfred Hero for stimulating discussions on

entropy estimation and the distortion–rate bound. The authors would like to thank the anonymous

reviewers for making constructive comments and suggestions.
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A Numerical methods to estimate mutual information

Method 1. To estimate mutual information I(X;Y ), compute the histogram of (X,Y ) using a

uniform discretization of log X and log Y . We use a log nonlinearity due to the wide spread of the

wavelet coefficients. Recall that I(X;Y ) = I(f1(X); f2(Y )) for any invertible functions f1 and f2

such as the log function.

Method 2 (Darbellay and Vajda [44]). This is an iterative method which recursively partitions

the data into nonuniform cells. The approach is data–dependent and adaptive. Each partitioning

operation splits a cell into four quadrants. Consider the joint density of (X,Y ) in the cell (nor-

malized to integrate to 1). The partitioning algorithm splits the cell at the median of X along the

range of X, and splits at the median of Y along the range of Y . If the contribution of a quadrant to

Î(X;Y ) falls below a prespecified threshold δ, X and Y are considered approximately independent

inside the quadrant, and further splitting of the quadrant is prohibited. On the other hand, if the

contribution is above δ, then the quadrant is further partitioned. All four quadrants are partitioned

independently. The procedure stops when no cell is subject to further splitting.

Overall, the partitioning is nonuniform and nonseparable. After completion of the algorithm,

the range of X and Y is partitioned into a collection of discretization cells. The estimate Î(X;Y )

is computed similarly to (11). For the estimate Î(X;Y ) to converge to I(X;Y ), the following

conditions are required: N → ∞; δ → 0; and the number of data samples in each discretization cell

tends to infinity. For finite N , the threshold δ needs to be chosen properly — too large δ produces

underestimated I(X;Y ), while too small δ produces overestimated I(X;Y ). In our experiments,

we have calibrated the case where X and Y are two correlated Gaussian random variables with

correlation coefficient r = 0.1, 0.3, 0.6, and 0.9. The threshold δ is adjusted so that the estimate

of I(X;Y ) produced by the algorithm from N iid data samples well matches its theoretical value

computed from (2). This produces δ = 0.005.
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PX X
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Figure 1: Definition of PX and NX . For a wavelet coefficient X (pictured as the little black block), PX

is its parent in the coarser band, and NX is its neighborhood, pictured as the gray area surrounding X .
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Figure 2: Wavelet decomposition of a 1–D signal, using lowpass and highpass filters H0(z) and H1(z).
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Figure 3: Mutual informations I(X ;PX), I(X ;NX), and I(X ;PX,NX) for the wavelet coefficients of a

stationary AR–1 Gaussian processes, as functions of r. (a) Using Haar wavelets; (b) using Daubechies’ 8–tap

filters.
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Figure 4: Weights assigned to the neighborhood NX . (a) Equal weights; (b) symmetric weights. Neighbors

marked with the same grey level are assigned the same weights.
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Figure 5: Reduction of dimensionality through a many–to–one mapping.
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Figure 6: The partitioning result of the method by Darbellay and Vajda [44] when computing I(X,PX)

for the finest horizontal subband of Lena. The horizontal axis is log2 X for X > 0, and the vertical axis is

log2 PX for PX > 0.
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Figure 7: (a) Histogram of estimated local variance (solid line), approximated using a single–sided GGD

prior (13) with ν = 0.6 (dash–dotted line); (b) histogram of the normalized wavelet coefficients (solid line)

approximated using an N(0, 1) prior (dash–dotted line), all plotted in log scale. The histogram is for the

finest horizontal subband of Lena.
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Figure 9: (a) Histogram of estimated local standard deviation (solid line), approximated using an exponen-

tial prior (dash–dotted line); (b) histogram of the normalized wavelet coefficients (solid line) approximated

using an N(0, 1) prior (dash–dotted line), all plotted in log scale. The histogram is for the finest horizontal

subband of Barbara.
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Lena, finest subbands

Î(X;PX) Î(X;T ) Î(X;T,PX)

horizontal, Wi = 1/8 0.195 0.322 0.352

vertical, Wi = 1/8 0.144 0.239 0.264

diagonal, Wi = 1/8 0.084 0.135 0.159

horizontal, β = 0.25 0.195 0.330 0.359

vertical, β = 0.60 0.144 0.244 0.269

diagonal, β = 0.65 0.084 0.136 0.160

Barbara, finest subbands

Î(X;PX) Î(X;T ) Î(X;T,PX)

horizontal, Wi = 1/8 0.206 0.696 0.723

vertical, Wi = 1/8 0.155 0.464 0.497

diagonal, Wi = 1/8 0.225 0.491 0.522

horizontal, β = 0.45 0.206 0.706 0.732

vertical, β = 0.60 0.155 0.488 0.519

diagonal, β = 0.65 0.225 0.498 0.529

Peppers, finest subbands

Î(X;PX) Î(X;T ) Î(X;T,PX)

horizontal, Wi = 1/8 0.157 0.280 0.312

vertical, Wi = 1/8 0.158 0.286 0.320

diagonal, Wi = 1/8 0.054 0.138 0.161

horizontal, β = 0.50 0.157 0.286 0.318

vertical, β = 0.35 0.158 0.294 0.326

diagonal, β = 0.35 0.054 0.143 0.167

Table 1: Comparison of estimated mutual informations using equal weights and adaptive weights

in (6). These numbers are calculated using Daubechies 4–tap filters and a log scale histogram.
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Lena, next–to–finest subbands

Î(X;PX) Î(X;T ) Î(X;T,PX)

horizontal, Wi = 1/8 0.275 0.500 0.587

vertical, Wi = 1/8 0.235 0.409 0.468

diagonal, Wi = 1/8 0.200 0.366 0.424

Barbara, next–to–finest subbands

Î(X;PX) Î(X;T ) Î(X;T,PX)

horizontal, Wi = 1/8 0.130 0.530 0.599

vertical, Wi = 1/8 0.165 0.485 0.556

diagonal, Wi = 1/8 0.109 0.645 0.711

Peppers, finest subbands

Î(X;PX) Î(X;T ) Î(X;T,PX)

horizontal, Wi = 1/8 0.268 0.411 0.486

vertical, Wi = 1/8 0.254 0.377 0.455

diagonal, Wi = 1/8 0.148 0.232 0.298

Table 2: Mutual information in the next–to–finest subbands. These numbers are calculated using

Daubechies 4–tap filters and a log scale histogram.
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finest subbands next–to–finest subbands

Improvement Improvement Improvement Improvement

over interscale over intrascale over interscale over intrascale

Lena 84% 13% 85% 16%

Barbara 201% 6% 383% 12%

Peppers 133% 13% 61% 22%

Baboon 209% 9% 274% 21%

Bank 67% 14% 77% 19%

Lake 157% 12% 112% 16%

Couple 102% 13% 129% 20%

Plane 86% 9% 86% 15%

Milkdrop 149% 14% 135% 19%

Tiffany 111% 10% 118% 19%

Table 3: Summary over 10 images: comparison of composite mutual information Î(X;T,PX) with

interscale and intrascale mutual informations (Î(X;PX) and Î(X;T,PX)). The second and third

columns show the average improvements for the finest subbands (horizontal, vertical, and diagonal);

and the last two columns show the averages over next–to–finest subbands. The second and fourth

columns display the percentage by which Î(X;T,PX) is larger than Î(X;PX); the third and fifth

columns display the percentage by which Î(X;T,PX) is larger than Î(X;T ).

Lena Barbara Peppers

Î(X;PX) Î(X;T ) Î(X;PX) Î(X;T ) Î(X;PX) Î(X;T )

log scale histogram 0.195 0.322 0.206 0.696 0.157 0.280

adaptive partitioning [44] 0.181 0.290 0.208 0.632 0.136 0.238

Table 4: Comparison of two methods to estimate the mutual informations: the log scale histogram

method and the adaptive partitioning method [44]. The mutual informations are for the finest

horizontal subband. Equal weights are used, and NX contains the eight coefficients adjacent to X.
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Î(X;PX) Î(X;T ) Î(X;T,PX)

horizontal, Wi = 1/3 0.195 0.256 0.318

vertical, Wi = 1/3 0.144 0.179 0.241

diagonal, Wi = 1/3 0.084 0.090 0.137

Table 5: Results with causal neighborhood NX defined as the left, upper, and upper–left neighbors

of X. The mutual informations are for the finest subbands of Lena. Equal weights are used in (6).
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