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Abstract

In this paper we compare the performance of a number of representative instrumental models for image dissimilarity
with respect to their ability to predict both image dissimilarity and image quality, as perceived by human subjects. Two
sets of experimental data, one for images degraded by noise and blur, and one for JPEG-coded images, are used in the
comparison. ( 1998 Elsevier Science B.V. All rights reserved.

Zusammenfassung

In dieser Arbeit vergleichen wir das Verhalten einer Anzahl repräsentativer einsetzbarer Modelle für die Unterschied-
lichkeit von Bildern in bezug auf ihre Fähigkeit sowohl Bildunterschiede und Bildqualität vorherzusagen, so wie
menschliche Beobachter sie empfinden würden. Zwei Sätze experimenteller Daten, einer für verrauschte und unscharfe
Bilder und einer für JPEG-kodierte Bilder, werden im Vergleich verwendet. ( 1998 Elsevier Science B.V. All rights
reserved.

Résumé

Nous comparons dans cet article les performances d’un certain nombre de modèles instrumentaux pour la dissimilarité
d’image vis-à-vis de leur capacité à prédire à la fois la dissimilarité d’image et la qualité d’image comme perc7 ues par des
sujets humains. Deux ensembles de données expérimentales, l’un d’images dégradées par du bruit et rendues floues, et
l’autre d’images codées par JPEG sont utilisés à des fins de comparaison. ( 1998 Elsevier Science B.V. All rights reserved.

Keywords: Image dissimilarity; Image quality metric; Instrumental measures; Objective image quality; Subjective image
quality; Vision models

1. Introduction

Reliable experimental techniques are available
for measuring the influence of imaging system
parameters on the perceived quality of images [11].

In most cases, such an experimental evaluation is
only feasible in the design phase of a system, and
even then only with a limited number of images and
subjects. Therefore, instrumental measures that
correlate well with experimental data on image
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quality are needed once systems become operational
or when systems have to be tested on a large set of
images. A proliferation of computational image
quality metrics has been witnessed, especially over
the past few years [1]. At first, most metrics were
limited to monochromatic still images [6,7,16,17,32].
More recently, extensions towards color and
image sequences are being proposed [9,15,30,31].
Furthermore, simplified models are also proposed,
since the complexity of some models makes them
unsuited for most applications (especially applica-
tions where quality has to be monitored in real
time).

Little has been done to compare the performance
of the different models. It remains unclear how well
models perform, as well as which model components
are mostly responsible for this performance. An
extensive comparison of all proposed models is not
straightforward. First, this requires implementing
all these models, which is not always feasible since
specific algorithmic details needed for the imple-
mentation are sometimes not available. Second, the
models have to be tested on a large database of
original and distorted images. For these images,
both the test results and the experimental settings
(monitor characteristics, viewing distance, experi-
mental procedure, etc.) have to be documented.
These experimental results must obviously include
ratings of image quality. However, in order to get
more insight into how overall quality is influenced
by different distortions, this data base may also
have to include information about image dis-
similarity and/or image quality attributes such as
noisiness, perceived blur, blockiness, etc. Such
databases are simply not (publicly) available.

One of the more extensive and well-documented
experimental data sets that is available at our
institute concerns images degraded by noise and
blur [12]. Although the explicit goal of most image
quality metrics is to predict the visual effect of
image-dependent distortions, such as the ones oc-
curring in image coding, it is usually implicitly
assumed that they perform at least as well as more
traditional measures, such as root-mean-squared
error, in case of image-independent distortions (such
as noise and blur). One of the goals of this paper is
to examine if this assumption can be supported by
experimental evidence.

Another data set that we have recently collected
concerns images coded by a baseline JPEG-coder
[21]. As in the case of the above data set, not only
overall image quality ratings were collected, but
also ratings on dissimilarity and blockiness (an
important image quality attribute) [19]. The dis-
similarity scores were specifically intended to be
used in this study.

Although the concept of image dissimilarity is
very familiar in the context of instrumental measures
for image quality, it is fairly uncommon to use it as
an experimental paradigm. Most instrumental
measures relate image quality to some distance
(such as the root-mean-squared error) between the
original and the processed image, such that image
dissimilarity arises naturally in this context. In
a number of recent papers [8,12], it was demon-
strated that dissimilarity can also be judged consis-
tently by subjects. Instead of judging quality
(differences), subjects were asked to indicate how
dissimilar or different they perceived two images to
be, and not to base their score on any preference,
quality or emotional criteria. Although judging
dissimilarities seems more complicated than judging
quality differences, it is often experienced as being
easier by subjects, most likely because it does not
involve value judgements.

2. Perceived dissimilarity and image quality

In a number of recent papers, we have argued for
a multidimensional approach towards analyzing
and modelling image quality variations within
a scene due to variations in imaging system para-
meters [8,12,13]. This approach recognizes the fact
that image quality is often determined by several
underlying attributes (such as noise and blur) and
uses a multidimensional geometric model to de-
scribe the mutual relationships between different
perceptual attributes, as well as the relationships
between these attributes and overall image quality.
In this geometric model, both the original and the
degraded/processed versions of an image are repre-
sented as positions in a multidimensional space.
The dimensionality of this space is determined by
the number of independently varying perceptual
attributes. For instance, in the case where noise and
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blur are varied independently, a dimensionality of
two is assumed. A number of techniques, usually
referred to as multidimensional scaling (MDS) tech-
niques [14,22], have been developed within the
field of mathematical psychology to position stimuli
(such as the original and processed images) based
on experimental data.

The basic assumption of MDS is that all relevant
image properties such as overall image quality,
image dissimilarity and the strengths of perceptual
attributes correlate highly with geometrical proper-
ties of the stimulus positions. For instance, distances
between the image positions are assumed to be
monotonically related to the perceived dissimilarity
between the corresponding images. Furthermore,
the strength of perceived attributes, as well as overall
image quality, are assumed to correlate well with
coordinates along different directions in this
space and/or with the distance from an ‘ideal’-image
point.

The mapping from dissimilarity data into stimu-
lus configurations will be used for both experimental
data and instrumental measures. We
therefore briefly summarize how this mapping is
performed. Let us denote by d

rij
the dissimilarity

between stimuli i,j"1,2,I (j(i) as indicated by
subject (or model) r"1,2,R. The fact that the
subject/model responses d

rij
must be monotonically,

but not necessarily linearly, related to the sensations
of dissimilarity dw

rij
is modelled by the power-law

relationship

dw

rij
"a

r
) dpr

rij
, (1)

with exponent p
r
, for r"1,2,R. This power-law

relationship is quite flexible and supported by many
psychophysical studies [26]. The model underly-
ing the MULTISCALE estimation program [22]
assumes that the difference between the trans-
formed dissimilarities dw

rij
and the Euclidean

distance

dK
ij
"

M
+

m/1

(x
im
!x

jm
)2 (2)

between the stimuli i and j in an M-dimensional
space belongs to a log-normal error distribution, i.e.,

e
rij
"log dw

rij
!log dK

ij
, (3)

is assumed to have a zero-mean normal distribution
with standard deviation p

r
. An extensive argumen-

tation in favour of this log-normal error distribution
model is given in the original paper by Ramsay
[22].

The maximum-likelihood estimation of all para-
meters (p

r
, a

r
, p

r
and the positions of all stimuli in an

M-dimensional Euclidean space) involves the maxi-
mization of the log-likelihood function

log¸"!

1

2

R
+
r/1
A
S
r

p2
r

#D
r
logp2

rB#C, (4)

where C combines all terms that are independent of
the parameters to be optimized, D

r
is the number of

measured dissimilarities for subject/model r and the
sum

S
r
"

Dr

+
i,j

e2
rij

(5)

is over all measured dissimilarities for subject/
model r. We refer to the original papers by Ramsay
for more details on how this maximization can be
performed [22]. One of the advantages of a max-
imum-likelihood estimation is that we cannot only
estimate the positions of the stimuli, but also confi-
dence regions for these stimulus positions [23]. The
(asymptotic) 95% confidence regions will also be
included in some stimulus configurations further
on in the paper.

The stimulus positions can be arbitrarily trans-
lated and rotated without influencing the distances
between the stimuli. Moreover, scaling all coordi-
nates (and hence all distances) by the same factor
s does not influence the dissimilarity predictions
either, because this can be counteracted by an
increase in the proportionality factor a

r
of the

power-law relationship between original and trans-
formed dissimilarities. If we collect the stimulus
positions into an I]M matrix X, then the above
remarks can be mathematically summarized by
stating that the transformed stimulus configuration

½"X ) (sº)#¹, (6)

is an equally valid stimulus configuration to describe
the experimental data, i.e., it will result in the same
value for the log-likelihood function. In this formula,
s is a scalar factor, º is a unitary matrix (i.e., ºT )º
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is equal to the identity matrix) and ¹ is a trans-
lation matrix (with all identical rows specifying the
translation vector). The MULTISCALE pro-
gram adds extra conditions to the above log-
likelihood maximization in order to guarantee
a unique solution for the stimulus position matrix
X [23].

When comparing two stimulus configurations
X and ½, for instance arising from experimental
data and model predictions, then the transformation
parameters for one of the configurations, say X,
must be optimized before determining the distance
from and/or correlation with the second
configuration ½. The optimum translation can be
easily determined by requiring that the column
averages after transformation become equal. If the
translation matrices ¹

x
and ¹

y
are needed to make

the column averages equal to zero for X and ½,
respectively, then the optimum overall translation
matrix is ¹"¹

x
) sº!¹

y
.

The scaling factor s and the transformation matrix
º for the optimum transformation from
XI "X#¹

x
to ½I "½#¹

y
are determined by

minimizing the sum of the squared distances be-
tween the stimulus positions, i.e.,

d2"trace[(XI ) sº!½I )T(XI ) sº!½I )]. (7)

Substituting the optimum scaling factor

s"
trace(½I T XI º)

trace(ºTXI T XI º)
(8)

into this expression results in

d2"trace(½I T½I )(1!o2), (9)

so that minimizing d2 is equivalent to maximizing
the inner-product correlation

o"
trace [½I TXI º]

Mtrace [ºTXI TXI º] ) trace [½I T½I ]N1@2
. (10)

Maximizing this inner-product correlation is in turn
equivalent to maximizing the inner product
trace[½I TXI º], since the denominator in the latter
expression is constant if º is a unitary transforma-
tion. The solution to the inner-product maximiza-
tion problem is well-known [24,27]. More precisely,
the optimum (so-called orthogonal Procrustes)

transformation is given by

º"P QT, (11)

where XI T½I "PSQT is the singular-value decompo-
sition of XI T½I , and S is a diagonal matrix of singular
values.

Sometimes we may also wish to consider the case
where the matrix transformation between two
stimulus configurations need not be unitary, but
can be an arbitrary linear transformation. The
optimum linear transformation matrix between
XI and ½I in this general (unconstrained) case is

º"(XI TXI )~1 )XI T½I . (12)

The elements of this matrix are equal to the multiple
regression coefficients between the columns of XI and
the columns of ½I [24].

Once the stimulus positions have been deter-
mined, then perceived quality (and attribute) judge-
ments can, for instance, be correlated with directions
in this space. This means that the perceived quality
judgements q

ri
for stimulus i by subject r are

modeled by

qL
ri
"c

r0
#

M
+

m/1

c
rm
)x

im
, (13)

for r"1,2,R and i"1,2,I, where the vector
(c

r1
,2,c

rM
) is orthogonal to the lines of equal

quality for subject r.

2.1. Images with noise and blur

The MDS approach to image quality has been
described in detail in [12] for images degraded by
noise and blur. We briefly summarize the experi-
mental results of this study which constitute our
first data set.

The three scenes that were used in the experiment
(two natural scenes, Wanda and Terrace, and one
synthetic scene, Mondrian) are reproduced in the
original paper. All 16 combinations of four levels of
blur (corresponding to no filtering and filtering
with binomial filters of length 3, 5 and 9, respective-
ly) and four levels of Gaussian noise (corresponding
to noise standard deviations of 0, 7, 10 and 14,
respectively) were used in the experiments. A region

158 J.-B. Martens, L. Meesters / Signal Processing 70 (1998) 155–176



of interest of 470 rows and 240 columns was selected
from the processed images (of size 512 ] 512). This
restricted image size allowed simultaneous display
of two images on the screen. The display was
calibrated to have a gray-value-to-luminance char-
acteristic equal to

¸"max[¸
.*/

,¸
.!9

(g/g
.!9

)c], (14)

for 0)g)g
.!9

, with g
.!9

"255, ¸
.*/

"0.2 cd/m2,
¸
.!9

"60 cd/m2 and c"2.5. The distance between
successive pixels, expressed in degrees of visual
angle, was approximately 1 arcmin. Two experi-
ments were performed with these stimuli.

In the first experiment, dissimilarity scores were
collected for all combinations of 16 stimuli of the
same scene. The subjects were urged to base their
score (on an interval scale from 0 to 10) only on
how dissimilar or different they perceived the images
to be. Five subjects participated in the dissimilarity
experiment. The dissimilarity data were mapped
into two-dimensional stimulus configurations using
the MDS program MULTISCALE described
above. The resulting stimulus configurations [12]
will be used as a reference for the dissimilarity
models further on in this paper.

In the second experiment, seven subjects were
asked to rate blur, noisiness and overall quality of
the images (on an interval scale from 0 to 10). The
stronger the perceived attribute, the higher the score
they had to give. All stimuli were repeated four
times. We used a model based on Thurstone’s law
of categorical judgement [29] to map the original
interval judgements of the subjects into quality (or
attribute) scores on a psychologically linear scale.
The in-house software package THURCATD was
used for this purpose [3]. The resulting quality
scores, which are also reproduced in [12], will be
used as reference for the quality predictions of the
models in this paper.

2.2. JPEG-coded images

The four natural scenes that were used in this
second experiment will be referred to as Boats,
Child, Girls and Lighthouse, and were taken from
a Kodak PhotoCD demonstration disc. The original
color images were converted into monochrome

images. A public-domain software package for
JPEG encoding and decoding (Independent JPEG
Software Group, http://www.jig.org/) was used to
code these images at quality levels 60, 40, 30, 25 and
20. Including the original, we hence had six images
per scene. A region of interest of 480 rows by 240
columns was selected from the images in order to
allow simultaneous display of two images. The
uncoded images are shown in Fig. 1. The display

Fig. 1. Images used in the JPEG experiment: ‘Boats’ (upper left),
‘Child’ (upper right), ‘Girls’ (lower left) and ‘Lighthouse’ (lower
right).
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was calibrated to have the gray-value-to-luminance
characteristic of Eq. (14). In order to allow subjects
to adequately judge the small coding differences,
the viewing distance was reduced to 80 cm, corre-
sponding to a separation between pixels of approx-
imately 2 arcmin of visual angle.

All 15 distinct combinations of the six stimuli
were judged by 10 subjects. The subjects were asked
to rate dissimilarity, as well as differences in overall
quality and blockiness. The subjective scores for
blockiness were intended to be used in another
study [19]. More details about the experimental
set-up and the data processing can also be found in
this reference.

Quality differences (or preferences) were rated
on a scale from !5 to 5. Positive and negative
values indicated that the image on the right or
the left of the screen was preferred, respectively.
The absolute value expressed the strength of the
quality difference. A value of zero could be used if
none of the displayed stimuli was preferred. These
preference scores between stimulus combinations
were mapped into quality scores for the individual
stimuli using the in-house software package DIF-
SCAL [3]. The resulting quality scores will be used
as reference for the quality predictions of the models
in this paper.

Similarly as in the case of the previous experiment,
dissimilarity was judged on a scale from 0 to 10,
and the experimental data were transformed into
stimulus configurations using the MULTISCALE
estimation program. We will use the resulting 1D
stimulus configurations in this paper. We originally
started with 2D solutions for the dissimilarity data,
but found that the first dimension was very domi-
nant, despite the fact that visual inspection of
the JPEG-coded images identified three possible
attributes: blockiness, blur and ringing. These
impairments are very conspicuous in highly
compressed JPEG images, but it was verified in
a separate experiment that their strengths decrease
in a linearly correlated way when the compression
ratio decreases, so that only one independent di-
mension can be recovered from experiments with
this JPEG-baseline-coded stimulus set. One way to
control the underlying attributes more indepen-
dently would be to use a richer data set in the
experiment (for instance, JPEG-coded images with

quantization matrices that are not only scaled
versions of each other).

3. Instrumental dissimilarity measures

Most image quality metrics that have been pro-
posed use as inputs two images, where most often
one of the images is the original. The images are
assumed to be perfectly alligned. Usually, a model
of the early visual pathway is used to map the two
separate image inputs I

1
and I

2
into two sets of

visual system outputs P(I
1
) and P(I

2
) [1]. These

models typically include aspects of luminance ad-
aptation, decomposition into channels with different
frequency/orientation tuning, and masking (both
within and across channels). The two sets of visual
system outputs are subsequently integrated into
a single number Q[P(I

1
),P(I

2
)]"d(I

1
,I
2
) that is

assumed to be an instrumental measure for the
perceived distance between the two images. It is
moreover often assumed that the distance from the
original image is a measure for the impairment, and
that the image quality decreases linearly with the
distance from the original. This latter assumption
has already been seriously criticized in [25], based
on experimental evidence.

Given the amount of assumptions and the num-
ber of parameter choices that have to be made in
the mapping IPP(I), and given the limited experi-
mental evidence on which most of these assumptions
and choices are based (most models are tuned based
on experimental data for simple patterns such as
sinewaves and their overall quality prediction has
only marginally been tested against experimental
data), it is at least surprising that these ‘image-
quality metrics’ have been so widely adopted, albeit
in many varieties. If nothing else, it indicates the
need for reliable instrumental measures of image
quality.

The assumption that image quality decreases
linearly with the distance from the original image is
not essential for the above perceived distance
measures to be used for image quality modelling.
Indeed, similarly as in the case of the MDS approach
of the previous section, we could use the results of
an instrumental distance measure to position images
in a multidimensional space. This would require
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not only determining the distances between the
original image and all processed images, but also
the distances between (a sufficiently large subset of)
all image pairs. The stimulus configuration resulting
from such an instrumental measure could then be
compared against the stimulus configuration re-
sulting from dissimilarity judgements by subjects.
Moreover, it could be investigated if such a multi-
dimensional stimulus configuration is better suited
for predicting image quality than the original one-
dimensional configuration where only the distance
from the original image is used.

In order to test the above ideas against experi-
mental data, a representative subset of models had
to be selected. We subsequently describe the models
that we have implemented in sufficient detail to
allow reproduction.

3.1. Sarnoff model

The Sarnoff model is regarded by many as the
current de facto standard for an instrumental image
quality metric, and many alternative models may
be viewed as simplified versions of it [1]. The model
for monochromatic still images is fairly well
documented [16,17], although some parameters still
have to be tuned for the specific viewing conditions.
The model version for color image sequences is
available as a commercial product [9], which ex-
plains why little or no detailed information is
published about this latter model. We now describe
the model that we have implemented in our study,
including all model parameters. The model follows
as closely as possible the original model description,
although some small but inconsequential modifica-
tions (in the optical and pooling filter) have been
made to simplify the implementation.

First, a gray-value image is converted into
a luminance image according to Eq. (14). The optical
filtering by the eye is simulated by a Gaussian filter
with a standard deviation of 0.35 arcmin. The samp-
ling distance is 1 arcmin in case of the images
degraded by noise and blur, and 2 arcmin in case of
the JPEG-coded images. In all filter operations,
reflection of the image at the boundaries is applied.

The filtered luminance image is converted into
a Gaussian pyramid with seven levels using a separ-

able filter with coefficients (0.05,0.25,0.4,0.25,0.05)
[4]. The original images of size 470]240 or
480]240 are extended to size 512]256 (and padded
with zeros) before the pyramid is constructed. The
Gaussian pyramid is subsequently mapped to a con-
trast pyramid with five levels, where the contrast at
level k is as defined by Peli [20], i.e.,

C
k
"

G
k
!Gi

k`1
Gii

k`2
#U/4k

, (15)

for k"0,2,4, where the offset U"0.1 avoids
divisions by zero. The image Gi

k`1
arises by inter-

polating Gaussian pyramid level G
k`1

with a
separable interpolation filter with coefficients
(0.1,0.5,0.8,0.5,0.1). Applying this interpolation twice
to Gaussian pyramid level G

k`2
results in Gii

k`2
. The

images G
k
, Gi

k`1
and Gii

k`2
all have the same size.

In the next step, the contrast images C
k

are
mapped into channel responses. For this purpose
the contrast images are convolved with four pairs
of spatially oriented filters. The filters used are
second derivatives of a Gaussian and their Hilbert
transform, for four different orientations. The stan-
dard deviation of the Gaussian is approximately
equal to the sampling distance, and the actual filter
tabs are specified in Tables V and VI of the Freeman
and Adelson paper on steerable filters [10]. The
four oriented responses r

kl
, for pyramid level index

k"0,2,4 and orientation index l"0,2,3, are
obtained by taking the square root of the sum of
the squared filtered images for the Hilbert pairs
with the same orientation.

The gains g
kl
"g

k
for the different response chan-

nels have to be calibrated such that the peak
sensitivities follow the contrast sensitivity function
(CSF) of the visual system. This is accomplished by
determining the peak response in the different
channels to sinewave gratings with varying spatial
frequency and with modulation depth equal to the
inverse of the CSF for that frequency. The channel
gain g

kl
has to be adjusted such that the maximum

response in channel (k,l) is equal to one for the
spatial frequency and orientation for which that
channel is most sensitive. We used the formula
proposed by Barten [2] for an average luminance
of 20 cd/m2 as a mathematical description of the
CSF.
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Although the above procedure seems straightfor-
ward, it runs into practical difficulties for spatial
frequencies close to the sampling frequency. Hence,
we have only used it to set the channel gains for
pyramid levels 2, 3 and 4. The resulting gains were
in agreement with the relative sensitivities of fre-
quency channels with different peak frequencies
reported in the contrast perception model of
Cannon and Fullenkamp [5]. They also propose
relative sensitivities for higher-frequency channels
that seem more realistic than those resulting from
the above calibration procedure, and which we
have therefore adopted to set the channel gains for
pyramid levels 0 and 1. The resulting channel gains
depend on the viewing distance (because the CSF is
specified in cycles per degree of visual angle), and
therefore we specify these channel gains in Table 1
for sampling distances of 1 and 2 arcmin. Note that
the peak sensitivity shifts to a channel with a smaller
channel number when the sampling distance in-
creases from 1 to 2 arcmin.

Within-channel visual masking is taken into
account by mapping the (amplified) channel re-
sponses a

kl
"g

kl
) r

kl
, for k"0,2,4 and l"0,2,3,

through a sigmoid non-linearity of the form

¹(a)"
(2#c) as

1#as~l#cas~w
, (16)

where s"1.5, l"0.4, w"0.068 and c"0.1 are
typical values [16]. The 20 masked response images
¹(a

kl
) are filtered using a pooling filter equal to

a uniform filter of size 5]5, and subsequently
interpolated to the input image size 512]256 using
the interpolation filter mentioned in the contrast
pyramid definition.

The resulting response images R(1)
kl

(x,y) and
R(2)

kl
(x,y) for the first and second input image I

1
and

I
2
, respectively, are pointwise combined into one

distortion image using the Minkowski metric

D
12

(x,y)"G
4
+
k/0

3
+
l/0

DR(1)
kl

(x,y)!R(2)
kl

(x,y)DQH
1@Q

(17)

with exponent Q"2.4. If the model is properly
tuned, then a value of D

12
(x,y)"1 indicates 1 JND

(just noticeable difference), i.e., a probability of 75%
to see a difference between both images at the
corresponding location (x,y).

In order to obtain a single dissimilarity number
for a pair of images, we can perform a spatial
Minkowski integration with exponent P across the
distortion image D

12
(x,y), i.e.,

d
S
(I

1
,I
2
)"G

1

N
+
x,y

DD
12

(x,y)DPH
1@P

, (18)

where N ("512]256) is the number of pixels at
pyramid level 0. By varying P from one to infinity,
we can vary from taking the average to taking the
(scaled) maximum of the distortion image as the
relevant distance measure. The ‘Sarnoff ’ instru-
mental measure d

S
(I

1
,I
2
) that we use in the rest of

the paper was calculated with P"1.

3.2. Simplified measures

The original Sarnoff model described in the pre-
vious section requires a very large number of com-
putations, and therefore we have also developed
a simplified version of it. Especially the orientation
and pooling filtering and the full-size interpolation
at the end determine the total number of operations.
We were interested to know if removing these
components would seriously affect the predictions
made by the model.

The directional filtering can be avoided by using
an alternative method for mapping the contrast
images C

k
into channel responses. The purpose of

using a Hilbert pair of oriented filters is to realize
a phase independence for the channel responses,
e.g., to make the responses insensitive to the exact
position of an edge (with respect to the sampling
lattice). Oriented filters are only required in case
orientation masking is applied [28], which is not
(currently) the case in the Sarnoff model. An alter-
native, and simpler, way of realizing phase-inde-
pendent responses is by taking the residue
amplitudes (or local standard deviations) [18], i.e.,

r
k
(x,y)"Mw(x,y)*C2

k
(x,y)![w(x,y)*C

k
(x,y)]2N1@2,

(19)

where a Gaussian filter w(x,y) of the same standard
deviation as in the case of the directional filtering is
used. More specifically, this filter is approximated
by a separable 9-tap filter with coefficients
w(4)"w(!4)"0.00048, w(3)"w(!3)"0.00880,
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w(2)"w(!2)"0.06965, w(1)"w(!1)"0.23997
and w(0)"0.36217. The number of channels hence
remains the same as the number of pyramid levels.

A consequence of the alternative channel response
mechanism is that the channel gains g

k
have to be

calibrated accordingly. These alternative channel
gains are also given in Table 1 for viewing distances
of 1 and 2 arcmin. The amplified channel responses
are denoted by a

k
"g

k
) r

k
, for k"0,2,4. Similarly

as in the case of the original Sarnoff model, the
masked channel responses ¹

k
"¹(a

k
) are obtained

by applying the sigmoid non-linearity in Eq. (16).
A pooling filter is also not included in the simplified
model. The standard deviation of the Gaussian resi-
due amplitude filter could potentially be increased
if response averaging over a larger area is required.

The differences between the masked channel
responses ¹(1)

k
(x,y) and ¹(2)

k
(x,y) for both input

images can be spatially integrated at each pyramid
level k. More specifically, let

D
12

(k)"G
1

N
k

+
x,y

D¹(1)
k

(x,y)!¹(2)
k

(x,y)DPH
1@P

, (20)

where N
k
is the number of pixels at pyramid level k,

for k"0,2,4, denote the result of this spatial
averaging with a Minkowski metric with exponent
P. The overall instrumental measure for the
perceived distance between two images I

1
and I

2
is obtained by Minkowski integration across pyr-
amid levels

d
SR

(I
1
,I
2
)"G

4
+
k/0

DD
12

(k)DQH
1@Q

, (21)

Table 1
The two leftmost columns specify the channel gains g

k
for the

original Sarnoff model and sampling distances of 1 and 2 arcmin,
respectively. The two rightmost columns give similar information
for the simplified Sarnoff model

Channel Original Sarnoff Simplified Sarnoff
number

1 arcmin 2 arcmin 1arcmin 2arcmin

0 25 60 170 420
1 85 133 450 960
2 125 111 845 885
3 90 68 670 535
4 50 37 385 295

with an exponent equal to Q. Correspondence with
the original Sarnoff model implies the choice P"1
and Q"2.4. The need for full-size interpolation is
avoided in the simplified model by reversing the
order of across-channel integration and spatial
integration. The consequence is that no single dis-
tortion image is available anymore. However, we
are only interested in an overall distortion measure
in the current study.

The simplified model retains four basic properties
of the original model: contrast analysis at
multiple spatial scales, contrast calibration against
human CSF, within-channel contrast masking, and
Minkowski integration (with different exponents
across space and across channels).

Next to the original and simplified Sarnoff mod-
els, we have also included two very simple root-
mean-square error (RMSE) models. These models
operate on the psychometric lightness image ¸

w that
is obtained from the luminance image ¸ through
the CIELAB lightness formula, i.e.,

¸
w
"G

116(¸/¸
.!9

)1@3!16
for ¸/¸

.!9
*0.008856,

903.3(¸/¸
.!9

)
for ¸/¸

.!9
(0.008856.

(22)

This lightness image ranges from 0 to 100. For
a well-calibrated monitor, this lightness image will
typically be very close to the scaled gray-value
image. The main reason for using the lightness
image is that it allows to incorporate the gray-
value-to-luminance characteristic of the monitor.
This characteristic will for instance have an influence
if the luminance of the monitor saturates at the low
or high end, or if the gamma of the monitor deviates
significantly from c"3.

Table 2
Images with noise and blur: correlations between (averaged)
perceived image quality and distances from the original image
(for 4 dissimilarity models and 3 scenes)

Model Mondrian Terrace Wanda

d
S

0.568 0.950 0.830
d
SR

0.561 0.895 0.818
RMSE

L
0.855 0.951 0.795

RMSE
LR

0.748 0.931 0.724
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Fig. 2. Subjective quality judgements in the blur/noise-experiment for scene ‘Mondrian’ versus distances from the reference image for
four instrumental models: original Sarnoff (upper left), simplified Sarnoff (upper right), RMSE on lightness (lower left) and RMSE on
residue amplitude (lower right). Connected points correspond to the same amount of blur.

The first RMSE model that we use simply deter-
mines the RMSE between two lightness images
¸

w

1
(x,y) and ¸

w

2
(x,y), i.e.,

RMSE
L
(I

1
,I
2
)"S

1

N
+
x,y

[¸w

1
(x,y)!¸

w

2
(x,y)]2, (23)

where N is the number of image pixels. The second
RMSE model does not operate directly on the

lightness images, but on the residue amplitudes
derived from these lightness images [18]. We used
the same 9-tap Gaussian filter as mentioned above
in relation to Eq. (19). The resulting RMSE measure
will be denoted by RMSE

LR
(I

1
,I
2
) and was proposed

in order to see how a measure that reacts to
differences in lightness variations compares to
a measure like RMSE

L
(I

1
,I
2
) that reacts to differ-

ences in absolute lightness levels.
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Fig. 3. Subjective quality judgements in the blur/noise-experiment for scene ‘Terrace’ versus distances from the reference image for four
instrumental models: original Sarnoff (upper left), simplified Sarnoff (upper right), RMSE on lightness (lower left) and RMSE on residue
amplitude (lower right). Connected points correspond to the same amount of blur.

Table 3
Images with noise and blur: two important parameters from the MULTISCALE estimation of 2-D stimulus configurations, i.e., the
power-law exponent p for mapping dissimilarities and the correlation r between the transformed dissimilarities and the distances in the
configuration

Mondrian Terrace Wanda

Model p r p r p r

d
S

1.045 1.000 1.022 0.999 1.089 1.000
d
SR

1.018 0.999 0.995 0.998 1.010 1.000
RMSE

L
1.046 0.999 1.038 1.000 1.038 1.000

RMSE
LR

1.008 1.000 1.019 1.000 1.017 1.000
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Fig. 4. Subjective quality judgements in the blur/noise-experiment for scene ‘Wanda’ versus distances from the reference image for four
instrumental models: original Sarnoff (upper left), simplified Sarnoff (upper right), RMSE on lightness (lower left) and RMSE on residue
amplitude (lower right). Connected points correspond to the same amount of blur.

4. Instrumental measures versus experimental data

4.1. Images with noise and blur

In the existing models, the distance from the
original image is used as the prediction for quality.
In Table 2, we show the correlations between the
quality scores (averaged over seven subjects) and

these predictions for the four proposed models and
the three scenes used in the experiments with noise
and blur. Note that the correlations for d

S
and

d
SR

are especially low for the ‘Mondrian’ scene. The
simplified Sarnoff model performs worse than the
original Sarnoff model, and the RMSE measure on
the residue amplitude is worse than the RMSE
measure on the lightness values. The complex
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Fig. 5. Experimental stimulus configurations in the blur/noise experiment for scenes ‘Mondrian’ (upper left), ‘Terrace’ (upper right) and
‘Wanda’ (lower middle). The quality, blur and noisiness vectors are indicated by ‘Q’, ‘B’ and ‘N’, respectively.

Sarnoff model only performs better than the simple
RMSE measure in case of the ‘Terrace’ scene.

In Figs. 2—4, we have plotted the relationship
between the instrumental measures and the subjec-
tive quality scores for the respective scenes ‘Mon-
drian’, ‘Terrace’ and ‘Wanda’. The data points
corresponding to images with the same amount of
blur and varying levels of noise standard deviation
have been connected. There is a monotonous rela-
tionship between the 1-D model predictions and
subjective image quality in case only one distortion

is present (i.e., only noise or only blur). For the
‘Mondrian’ and ‘Wanda’ scene, the slope of this
relationship is much steeper in the case of images
degraded by blur. The fact that there is usually less
variation in the model predictions for images with
different amounts of blur indicates that the quality
variations due to blur are typically underestimated
by the models (as compared with quality variations
due to noise). This latter observation will also be
confirmed when the model predictions between all
pairs of images are transformed into 2-D stimulus
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Table 4
Images with noise and blur: the average distance dM between stimulus positions and the inner-product correlation coefficient o obtained
when comparing the stimulus configuration from subjective dissimilarity measurements with the stimulus configurations from model
calculations

Mondrian Terrace Wanda

Model dM o dM o dM o

d
S

1.934 0.804 1.301 0.904 1.519 0.912
d
SR

2.026 0.759 1.663 0.840 2.020 0.825
RMSE

L
1.036 0.948 0.844 0.963 1.156 0.947

RMSE
LR

1.145 0.930 1.078 0.937 1.553 0.905

configurations. Note that, in the case of the ‘Terrace’
scene, some of the algorithms even have problems
predicting the right order if both the blur and the
noise standard deviation are large.2

We used the MULTISCALE estimation pro-
gram described in Section 2 to estimate 2-D
Euclidean configurations from all pairwise distances
given by the models. For all four models we find
that the predicted distances between the images can
be very well described by 2-D Euclidean configura-
tions. This can be judged from Table 3 where it is
shown that the correlations r between the trans-
formed model distances (after the power-law trans-
formation) and the Euclidean distances between the
image points in the configuration are very close to
one for all four metrics. The exponent p is also close
to one in all cases, which indicates that a power-law
transformation is not even strictly necessary, but
that the model distances themselves can be inter-
preted as Euclidean distances.

We compared the stimulus configurations result-
ing from the instrumental models with the stimulus
configurations obtained from the dissimilarity
judgements by subjects [12]. The experimentally
obtained stimulus configurations for all three images
are reproduced in Fig. 5. The directions for (average)
quality, blur and noisiness are also indicated in

2 In the case of the Sarnoff models, a better fit could probably
be obtained by altering the channel gains. However, these channel
gains are not considered as free parameters, since they are
calibrated based on CSF data, and intended to be fixed for all
stimuli.

Table 5
Images with noise and blur: correlations between (averaged)
perceived image quality and coordinates along an optimized
direction in 2-D space for four dissimilarity models, one experi-
mental dissimilarity configuration and three scenes

Model Mondrian Terrace Wanda

d
S

0.963 0.956 0.963
d
SR

0.919 0.935 0.842
RMSE

L
0.947 0.956 0.933

RMSE
LR

0.954 0.963 0.951
exp 0.959 0.972 0.953

these figures. The lengths of these attribute vectors
are proportional to the communalities (i.e., the
squares of the correlation coefficients between
the experimental data and the stimulus coordi-
nates in the direction of the quality/attribute vector).
Perfect correlation corresponds to the dotted circle.
Lines of constant quality, which are orthogonal to
the quality vector, are also shown. Note that the
noisiness and blur vectors are approximately or-
thogonal, and that quality is a compromise between
blur and noise. The fact that the quality vector has
a direction which is closer to the direction of the
blur vector than to the direction of the noisiness
vector moreover implies that blur is the dominant
attribute for quality.

Comparing the experimental configurations with
the configurations derived from model calculations
again reveals that the variations due to blur are
compressed in the latter models. As described
in Section 2, the stimulus configurations in
Figs. 6—8 have been optimally transformed (using
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Fig. 6. Experimental stimulus configuration in the blur/noise experiment for scene ‘Mondrian’ versus stimulus configurations from four
instrumental models: original Sarnoff (upper left), simplified Sarnoff (upper right), RMSE on lightness (lower left) and RMSE on residue
amplitude (lower right). The experimental data are at the centers of the 95% confidence regions.

scaling, translation and unitary transformation) in
order to allow an optimal comparison with the
experimental data. The experimental data corres-
pond to the centers of the 95% confidence ellipses,
while the transformed model data are the end points
of the arrows. None of the instrumental measures is
able to make a good prediction for the measured
dissimilarities, since the arrows are typically much
larger than the sizes of the uncertainty ellipses. The
average distance dM between the image points in

both configurations, as well as the inner-product
correlations (according to Eq. (9)), are listed in
Table 4. The RMSE

L
measure obviously performs

better than all other measures since the relative
compression of the blur versus noise dimension is
least pronounced for this measure.

All configurations can be used to perform quality
predictions. We can use Eq. (13) to model the quality
direction in 2-D space, and maximize the regression
between subjective data and model predictions.
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Fig. 7. Experimental stimulus configuration in the blur/noise experiment for scene ‘Terrace’ versus stimulus configurations from four
instrumental models: original Sarnoff (upper left), simplified Sarnoff (upper right), RMSE on lightness (lower left) and RMSE on residue
amplitude (lower right). The experimental data are at the centers of the 95% confidence regions.

Since we use an additional parameter in the quality
prediction which is able to counteract the above-
mentioned relative compression, we expect that all
configurations are about equally well suited as basis
for a quality model, which is confirmed by the
correlation results in Table 5. This table also lists
the correlations that are obtained when the config-
urations resulting from experimental dissimilarity

judgements are used as basis for the quality predic-
tions.

In conclusion, also in this alternative 2-D
approach, the Sarnoff models are unable to
demonstrate a clear benefit over simple RMSE
measures. The simplified Sarnoff model performs
worse than the original Sarnoff model, both in
predicting dissimilarities and in predicting quality.
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Fig. 8. Experimental stimulus configuration in the blur/noise experiment for scene ‘Wanda’ versus stimulus configurations from four
instrumental models: original Sarnoff (upper left), simplified Sarnoff (upper right), RMSE on lightness (lower left) and RMSE on residue
amplitude (lower right). The experimental data are at the centers of the 95% confidence regions.

4.2. JPEG-coded images

Since the quality variations in the JPEG-coded
images are accomplished by the systematic variation
of one coder parameter (i.e., a scaling factor for the
quantization matrix), we expect that a 1-D predic-
tion model will perform much better than in the
previous case of two simultaneous but independent
distortions. If we use the distance from the original
image as the quality prediction for each of the

above four models, then we obtain the correlations
listed in Table 6. The RMSE measure on the residue
amplitude of lightness seems to have the best per-
formance.

In Fig. 9 we have plotted the subjective quality
judgements versus the distances from the original
image for all four instrumental measures and all
test scenes. In order to present all data in one figure,
we have scaled all measures except the RMSE. The
factors used to scale the different distance measures
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Fig. 9. Subjective quality judgements in the JPEG experiment versus distance from the reference image for four instrumental models
and four images: ‘Boats’ (upper left), ‘Child’ (upper right), ’Girls’ (lower left) and ‘Lighthouse’ (lower right).

Table 6
JPEG-coded images: correlations between (averaged) perceived image quality and distances from the original image for four
dissimilarity models and four scenes. The numbers between brackets are the correlations when the original is excluded

Model Boats Child Girls Lighthouse

d
S

0.935 (0.978) 0.935 (0.995) 0.897 (0.956) 0.900 (0.997)
d
SR

0.910 (0.968) 0.922 (0.997) 0.861 (0.945) 0.872 (0.996)
RMSE

L
0.916 (0.978) 0.903 (0.997) 0.874 (0.975) 0.874 (0.995)

RMSE
LR

0.958 (0.985) 0.951 (0.998) 0.924 (0.984) 0.934 (0.998)
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Table 8
JPEG-coded images: two important parameters from the MULTISCALE estimation of 1-D stimulus configurations: the power-law
exponent p for mapping dissimilarities and the correlation r between the transformed dissimilarities and the distances in the configuration

Boats Child Girls Lighthouse

Model p r p r p r p r

d
S

3.688 0.972 3.715 0.987 4.305 0.954 3.508 0.975
d
SR

3.148 0.966 3.026 0.975 3.786 0.934 2.835 0.984
RMSE

L
5.009 0.973 4.825 0.980 5.026 0.960 4.593 0.973

RMSE
LR

4.942 0.966 4.049 0.985 3.665 0.988 4.103 0.990

Table 9
JPEG-coded images: the average distance dM between stimulus positions and the inner-product correlation coefficient o obtained when
comparing the stimulus configuration from subjective dissimilarity measurements with the stimulus configurations from model
calculations (for four dissimilarity models and four scenes)

Boats Child Girls Lighthouse

Model dM o dM o dM o dM o

d
S

0.967 0.979 2.664 0.969 2.979 0.951 3.121 0.981
d
SR

0.899 0.970 2.836 0.975 1.006 0.994 4.831 0.958
RMSE

L
1.092 0.966 2.868 0.972 3.249 0.917 3.150 0.982

RMSE
LR

1.640 0.923 3.195 0.962 2.654 0.961 4.733 0.957

Table 7
JPEG-coded images: multiplication factors used in order to
represent distances from the original image on a common scale
in Fig. 9 (for four dissimilarity models and four scenes)

Model Boats Child Girls Lighthouse

d
S

1.973 1.862 1.517 2.484
d
SR

2.946 3.053 2.523 3.465
RMSE

L
1.000 1.000 1.000 1.000

RMSE
LR

3.083 3.069 2.908 3.393

are given in Table 7. A closer look at these factors
reveals that the distances are much smaller (i.e.,
closer to 1 JND in the case of the Sarnoff model)
than in the previous case of images degraded by
noise and blur.

The graphs in Fig. 9 illustrate that the predictions
for the coded images are almost on a straight line,
but that the quality of the original image is ill-
predicted by extrapolating this linear relationship.
This failure of the instrumental models could
however easily be remedied by putting a threshold

on the model predictions. The numbers between
parentheses in Table 6 give the correlations between
measured quality and model predictions if the
original is excluded. The models perform about
equally well in this case, although RMSE

LR
retains

the highest correlation values.
We can also construct 1-D Euclidean configura-

tions from all pairwise distances given by the models
and all pairwise dissimilarity scores given by the
subjects. The correlations in Table 8 indicate that
the distances predicted by the models can again be
reasonably well described by Euclidean configura-
tions. There is however a noticeable difference
between the power-law exponents in Table 8 and
those in Table 3, which needs some clarification.
The difference between both data sets is that the
model distances for the JPEG-coded images are
smaller (i.e., close to the visible threshold). For
these small values, we need a power-law trans-
formation with exponent larger than one. For larger
distances, as in the case of the images degraded by
noise and blur, a linear function was adequate. This
is in accordance with previous studies, where an
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Fig. 10. Subjective quality judgements in the JPEG experiment versus positions in a 1-D space for four instrumental models and
4 images: ‘Boats’ (upper left), ‘Child’ (upper right), ‘Girls’ (lower left) and ‘Lighthouse’ (lower right).

S-shaped function (which includes threshold behav-
iour) is used to map an objective parameter (such as
standard deviation of the noise or size of the blurring
kernel) into a variable that is more linearly related
to a visual sensation [13]. For values close to the
threshold, such an S-shaped function can be ap-
proximated by a power law with an exponent larger
than one.

The stimulus configurations resulting from the
instrumental models can be compared with the

stimulus configuration from experimental dissimil-
arity judgements. As in the previous section,
comparisons are performed after optimal trans-
formations of the model configurations. For the
1-D case, this reduces to an arbitrary linear trans-
formation between stimulus positions. Contrary to
the case of images degraded by noise and blur, most
instrumental measures are able to make a reason-
ably accurate prediction for the measured dissimil-
arities. The average distance dM between the image
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Table 10
JPEG-coded images: correlations between (averaged) perceived
image quality and coordinates along an optimum quality direc-
tion in 1-D space for four dissimilarity models, one experimental
dissimilarity configuration and four scenes

Model Boats Child Girls Lighthouse

d
S

0.987 0.954 0.987 0.987
d
SR

0.982 0.979 0.983 0.942
RMSE

L
0.970 0.965 0.963 0.994

RMSE
LR

0.927 0.942 0.991 0.972
exp 0.986 0.971 0.985 0.992

points in both configurations, as well as the correla-
tions (according to Eq. (9)), are listed in Table 9.

All configurations are about equally well suited
for performing linear quality predictions. In
Fig. 10 we have plotted the subjective quality judge-
ments versus the stimulus positions for all four
instrumental measures and all test scenes. The
stimulus positions for the instrumental measures
have been linearly transformed to minimize the
average distance from the experimental stimulus
positions. Table 10 lists the correlations between
quality scores and 1-D stimulus coordinates for all
quality models. A comparison between Table 10
and Table 6 reveals that the updated models corre-
late much more linearly with subjective quality.
However, this improvement is mostly due to the
nonlinear relationship between model dissimilarity
and distance (i.e., the threshold mechanism discussed
above). This nonlinear threshold transformation
mostly influences the position of the original image.
Including such a threshold mechanism in the dis-
tance measures from the original image would have
accomplished a similar performance improvement,
as can easily be judged from the graphs in Fig. 9.

5. Conclusions

Many existing models for perceived image quality
are based on a distance metric between the original
image and the processed/coded versions of it. If the
variation in the images can be described as a vari-
ation in only one perceptual dimension (as in the
case of the JPEG-coded images), then these models
can perform well (especially if the nonlinear behav-

iour close to threshold is properly taken into ac-
count).

The dimensionality of a stimulus configuration
can be studied using both instrumental measures
and dissimilarity judgements by subjects, provided
(a large subset of) all distances between pairwise
stimulus combinations are determined. An estima-
tion program like MULTISCALE can be used to
determine (two- or more-dimensional) stimulus con-
figurations from such pairwise comparisons.

If more than one dimension is needed for the
stimulus configurations, then more than one inde-
pendent psychological dimension is probably
involved. The data for combined noise and blur
demonstrate that the existing models are not able
to balance the different kinds of distortions, so that
the distance from the original often does not corre-
late well with the perceived quality. Nevertheless,
the higher-dimensional stimulus configurations re-
sulting from the instrumental measures can still be
used as the basis for an image-quality model. An
optimum quality direction can be determined by
correlating with (a subset of) the subjective data.
The direction of the optimum quality vector then
determines the relative weight with which the dif-
ferent dimensions contribute in overall quality.

In none of the examined cases could a clear
advantage of complicated distance metrics (such as
the Sarnoff model) be demonstrated over simple
measures such as RMSE.

Acknowledgements

The authors wish to acknowledge the support of
the ACTS AC055 project ‘Tapestries’.

References

[1] A.J. Ahumada Jr., Computational image-quality metrics:
a review, in: SID 93 Digest, Society for Information Display,
Santa Ana, CA, 1993. pp. 305—308.

[2] P.G.J. Barten, The sqri method: a new method for the
evaluation of visible resolution on a display, Proc. Soc.
Inform. Disp. 30 (1987) 253—262.

[3] M.C. Boschman, J.A.J. Roufs, Text quality metrics for
visual display units: ii. an experimental survey, Displays 18
(1997) 45—64.

J.-B. Martens, L. Meesters / Signal Processing 70 (1998) 155—176 175



[4] P.J. Burt, E. Adelson, The laplacian pyramid as a compact
image code, IEEE Trans. Commun. 31 (April 1983) 532—540.

[5] M.W. Cannon, S.C. Fullenkamp, A transducer model for
contrast perception, Vision Res. 31 (1991) 983—998.

[6] S. Daly, Visible differences predictor: an algorithm for the
assessment of image fidelity, in: B.E. Rogowitz, (Ed.),
Human Vision, Visual Processing, and Digital Display III,
Proc. SPIE, Vol. 1666, 1992, pp. 2—15.

[7] S. Daly, Visible differences predictor: an algorithm for the
assessment of image fidelity, in: A.B. Watson (Ed.), Digital
Images and Human Vision, MIT Press, Cambridge, MA,
1993, pp. 179—206.

[8] B. Escalante-Ramı́rez, J.B. Martens, H. de Ridder, Multi-
dimensional characterization of the perceptual quality of
noise-reduced computed tomography images, J. Visual
Commun. Image Representation 6 (December 1995)
317—334.

[9] D.K. Fibush, Practical application of objective picture
quality measurements, in: IBC97, International Broadcast
Union, 1997, pp. 123—135.

[10] W.T. Freeman, E.H. Adelson, The design and use of
steerable filters, IEEE Trans. Pattern Anal. Mach. Intell.
13 (September 1991) 891—906.

[11] ITU, Method for the subjective assessment of the quality
of television pictures, Technical Report ITU Recommen-
dation 500-3, International Television Union, Geneva, 1992.

[12] V. Kayargadde, J.B. Martens, Perceptual characterization
of images degraded by blur and noise: experiments, J. Opt.
Soc. Amer. A 13 (June 1996) 1166—1177.

[13] V. Kayargadde, J.B. Martens, Perceptual characterization
of images degraded by blur and noise: model, J. Opt. Soc.
Amer. A 13 (June 1996) 1178—1188.

[14] J.B. Kruskal, M. Wish, Multidimensional Scaling, Sage
University Paper Series 07-011 on Quantitative Applica-
tions in the Social Sciences, Sage Publications, Beverley
Hills, CA, 1978.

[15] P. Lindh, C.J. van den Branden Lambrecht, Efficient spatio-
temporal decomposition for perceptual processing of video
sequences, in: IEEE Internat. Conf. on Image Processing,
Vol. III of III, Lausanne, Switzerland, September 1996, pp.
331—334.

[16] J. Lubin, The use of psychophysical data and models in the
analysis of display system performance, in: A.B. Watson
(Ed.), Digital Images and Human Vision, MIT Press,
Cambridge, MA, 1993, pp. 162—178.

[17] J. Lubin, A visual discrimination model for imaging system
design and evaluation, in: E. Peli (Ed.), Visual Models for
Target Detection and Recognition, World Scientific, River
Edge, NJ, 1995.

[18] J.-B. Martens, Adaptive contrast enhancement through
residue-image processing, Signal Processing 44 (1995)
1—18.

[19] L. Meesters, J.B. Martens, Blockiness estimation in jpeg-
coded images, Internal communication.

[20] E. Peli, Contrast in complex images, J. Opt. Soc. Amer.
A 7 (1990) 2032—2040.

[21] W.B. Pennebaker, J.L. Mitchell, JPEG Still Image Com-
pression Standard, Van Nostrand Reinhold, New York,
1993.

[22] J.O. Ramsay, Maximum likelihood estimation in multi-
dimensional scaling, Psychometrika 42 (1977) 241—266.

[23] J.O. Ramsay, Confidence regions for multidimensional
scaling analysis, Psychometrika 43 (1978) 145—160.

[24] J.O. Ramsay, J. ten Berge, G.P.H. Styan, Matrix correlation,
Psychometrika 49 (September 1984) 403—423.

[25] D.A. Silverstein, J.E. Farell, The relationship between image
fidelity and image quality, in: IEEE Internat. Conf. on
Image Processing, Lausanne, Switzerland, September 1996,
pp. 881—884.

[26] S.S. Stevens, On the psychophysical law, Psychol. Rev. 64
(1957) 153—181.

[27] J.M.F. Ten Berge, Orthogonal procrustes rotation for two
or more matrices, Psychometrika 42 (1977) 267—276.

[28] P. Teo, D. Heeger, Perceptual image distortion, in: IEEE
Internat. Conf. on Image Processing, Austin, TX, Novem-
ber 1994, pp. 982—984.

[29] W.S. Torgerson, Theory and Methods of Scaling, Wiley,
New York, 1958.

[30] C.J. van den Branden Lambrecht, Color moving pictures
quality metric, in: IEEE Internat Conf. on Image Process-
ing, Vol. I of III, Lausanne, Switzerland, September 1996,
pp. 885—888.

[31] C.J. van den Branden Lambrecht, Perceptual models and
architectures for video coding applications, Ph.D. Thesis,
Ecole Polytechnique Fédérale de Lausanne, Switzerland,
1996.

[32] C. Zetzsche, G. Hauske, Multiple channel model for the
prediction of subjective image quality, in: B.E. Rogowitz
(Ed.), Human Vision, Visual Processing, and Digital Dis-
play, Proc. SPIE, Vol. 1077, 1989, pp. 209—216.

176 J.-B. Martens, L. Meesters / Signal Processing 70 (1998) 155–176


