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Chapter 1

Introduction

The aim of realistic image synthesis is the creation of accurate, high quality imagery
which faithfully represents a physical environment, the ultimate goal being to create im-
ages which are perceptually indistinguishable from an actual scene.

Advances in image synthesis techniques allow us to simulate the distribution of light
energy in a scene with great precision. Unfortunately, this does not ensure that the dis-
played image will have a high fidelity visual appearance. Reasons for this include the
limited dynamic range of displays, any residual shortcomings of the rendering process,
and the extent to which human vision encodes such departures from perfect physical real-
ism.

Image quality metrics are paramount to provide quantitative data on the fidelity of ren-
dered images. Typically the quality of an image synthesis method is evaluated using nu-
merical techniques which attempt to quantify fidelity using image to image comparisons
(often comparisons are made with a photograph of the scene that the image is intended to
depict).

Several image quality metrics have been developed whose goals are to predict thevis-
ible differences between a pair of images. It is well established that simple approaches,
such as mean squared error (MSE), do not provide meaningful measures of image fidelity,
more sophisticated techniques are necessary. As image quality assessments should corre-
spond to assessments made by humans, a better understanding of features of theHuman
VisualSystem (HVS) should lead to more effective comparisons, which in turn will steer
image synthesis algorithms to produce more realistic, reliable images. Any feature of
an image not visible to a human is not worth computing. Results from psychophysical
experiments can reveal limitations of the HVS. However, problems arise when trying to
incorporate such results into computer graphics algorithms. This is due to the fact that,
often, experiments are designed to explore a single dimension of the HVS at a time. The
HVS comprises many complex mechanisms, which rather than function independently,
often work on conjunction with each other, making it more sensible to examine the HVS
as a whole. Rather than attempting to reuse results from previous psychophysical experi-
ments, new experiments are needed which examine the complex response HVS as awhole
rather than trying to isolate features for individual investigations.

This course addresses techniques to compare real and synthetic images, identify im-
portant visual system characteristics and help reduce rendering times significantly. The
following topics are covered: fidelity of images; human visual perception including im-
portant characteristics of the human visual system; computational models of perception
including spatial and orientation channels and visual masking; objective metrics includ-
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ing Visual Difference Predictors, the Sarnoff model and Animation Quality Metrics; and
psychophysics.

1.1 Course Syllabus

Introduction to Image Quality (Chalmers 15 mins)

� some intuitive examples of applications:

� the role of perception

� subjective and objective methods of image quality estimation

� our focus: synthetic images generated using computer graphics methods

Subjective Image Quality Metrics (McNamara & Troscianko 45 mins)

� psychophysics

� fidelity of final image

� working with real subjects

� procedures for comparing real and synthetic images

� case studies

Important Issues for Automating Image Quality Estimation (Daly & Troscianko 45 mins)

� visual perception

� computer models of visual system

Objective Image Quality Metrics (Daly 45 mins)

� state-of-the-art metrics

� VDP

� Sarnoff model

� Animation Quality Metric

� validation of metrics through experiments with subjects

� customising metrics for specific tasks

Applications in Rendering and Animation (Chalmers & Myszkowski 40 mins)

� explicit use: controlling image computation

� implicit use: improving rendering efficiency

� animation and dynamic case studies

Summary, discussion and questions (All 20 mins)
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1.2 Structure of Notes

The notes contain important background information as well as detailed descriptions of
the Image Quality Metrics described. The notes are arranged as follows:

Chapter 2 introduces the nature and behaviour of light, along with an outline of the
radiometric concepts, photometric concepts and terms relevant to illumination en-
gineering. This is followed by a brief outline of some image synthesis techniques
(illumination models). Aspects of the HVS are outlined detailing the physiologi-
cal characteristics that a global illumination framework must observe to effectively
reproduce an authentic simulated response to a (real or virtual) scene.

Chapter 3 describes how knowledge about human visual perception can be employed
to the advantage of realistic image synthesis. In particular, we focus on perception
driven techniques, perception based metrics, and effective display methods.

Chapter 4 concentrates on perception-driven global illumination and rendering tech-
niques. Some of the methods described in chapter 3 are briefly reviewed before
the Visual Differences Predictor is described in detail.

Chapter 5 introduces a new methodology to enable the comparison of synthetic imagery
to thereal environment, using human observers. We begin by presenting the concep-
tion of a small pilot study, demonstrating the feasibility of the approach. Building on
this study extends image comparison to real world using a more complex test scene
containing three dimensional objects in varying shades of grey, enabling examination
of effects such as partial occlusion and shadowing.

Chapter 6 describes some issues relating to preception rendering of walkthrough anima-
tions.

Finally, some detailed slides are presented by Scott Daly on important issues for Image
Quality Metrics.
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Chapter 2

Illumination: Simulation & Perception

Since its conception, the pursuit of realistic computer graphics has been the creation of
representative, high quality imagery [45, 44, 42, 103]. The production (rendering) of re-
alistic images in particular requires a precise treatment of lighting effects. This can be
achieved by simulating the underlying physical phenomena of light emission, propaga-
tion, and reflection. The environment under consideration is first modelled as a collection
of virtual light, objects and a camera (or eye) point. Arendering algorithmthen takes
this model as input and generates the image by simulating the light and its interaction
with the environment [38, 29, 117].Physically-basedrendering algorithms [40, 5, 56, 95]
focus on producing realistic images by simulating the light energy, orradiance, that is
visible at every pixel of the image. Finally the radiance values computed in the rendering
stage must be mapped to values suitable for display on some display device [104]. This
so called rendering pipeline [44] is illustrated in figure 2.1.

Figure 2.1: The rendering pipeline
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Figure 2.2: Mutually orthogonal E and B fields of an electromagnetic wave propagating in the x axis

2.1 Light and Materials

Understanding the natural illumination process, and how to quantify of illumination pro-
vides the foundations for designing and controlling physically based image synthesis algo-
rithms. A precise terminology exists to quantify illumination [13], from this terminology
the underlying equations used to build the mathematical models for illumination simu-
lation algorithms are derived. Also, certain aspects of the human visual system must be
considered to identify the perceptual effects that a realistic rendering system must achieve
in order to effectively reproduce a similar visual response to a real scene.

When simulating the propagation of light through an environment, two related methods
of measuring and characterising light distributions are of interest to the computer graphics
practitioner [52, 6]

� Radiometry is the science of measuring radiometry from any part of the electromag-
netic spectrum. In general, the term usually applies to the measurement using optical
instruments of light in the visible, infrared and ultraviolet wavelength regions. The
terms and units have been standardised in the ANSI publication, [49]

� Photometry is the science of measuring lightwithin the visible portion of the elec-
tromagnetic spectrum in unitsweightedin accordance with the sensitivity of the
human visual system [125]. Photometry deals with perceptual issues; if a surface
radiates a given amount of energy, then how bright does that surfaceappearto an
average viewer? By standardising theluminous efficiencyof the human visual sys-
tem, the subjective nature of photometric measurement may be eliminated. The was
done in 1924 by theCommission Internationale d’Eclairagesor CIE, by performing
empirical tests with over one hundred observers.[13]

Light is a form of electro-magnetic energy comprising waves of coupled electric and
magnetic fields perpendicular to each other and to the direction of propagation of the
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Figure 2.3: The visible portion of the electromagnetic spectrum

wave,(figure 2.2). The portion of light which can be seen by the human eye,visible light,
is just a tiny fraction of the electromagnetic spectrum, which extends from very high fre-
quency of radio waves through to low frequency microwaves, infra red and ultra violet
light to x-rays, gamma rays. The range of visible light, which lies approximately between
380nm and 780nm, is placed in the context of the whole electromagnetic spectrum is
depicted in figure 2.3. The scenes human perceive are based on an integration over the
visible spectrum of incoming radiation. Most of the following definitions are taken from
the Illumination Engineering Society Lighting Handbook, given by the IES [54].
Illuminating hemisphere(
): The illuminating hemisphere is a convenient notation to

dA

x
θ

N

dΧ

L(x,Χ )

θ

Figure 2.4: The Illumination Hemisphere

describe the illumination events above or below a surface. These events such as light
sources, or other reflecting surfaces are projected onto this hemisphere, which for conve-
nience is usually of radius 1 (a unit hemisphere). Integrating over the hemisphere means
considering all events above the surface weighted by the solid angles of their projections
onto the hemisphere. The illuminating hemisphere is depicted in Figure 2.4. Using this
form, the illumination at a given point can be computed by consideringall illumination
events captured on the illumination hemisphere.
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Figure 2.5: Calculating the Solid Angle.

Solid Angle: Solid angles are the solid geometry equivalent of angles in plane geome-
try, figure 2.5. Solid angles are measured insteradiansor sr. The solid angle is defined as
the area of the cone, with apex at the centre of the sphere, cut out from a sphere of radius
1. The solid angle of the entire sphere is4�sr, thus that of a hemisphere is 2�r. A small
circular area on the surface of a sphere may be approximated by a flat section. Thus the
solid angle subtended at the centre of the sphere by this small area may be expressed as:

d! = �(R sin�)2

R2 = � sin2 �

Projected AreadAi: This is theapparentarea of an object as seen by an observer from
a particular view direction. Projected area,dAi, is the actual areadA, times the cosine of
the angle,�, which is the angle between the surface normal and the view direction, figure
2.6.

dAi = dA cos �

Clearly projected area varies according to viewing direction.

2.1.1 Radiometry

Radiometry is the science of measuring radiant energy, in any portion of the electromag-
netic spectrum. As light is a form of radiometric energy radiometry is used in graphics to
provide the basis for illumination calculations.

Radiant Energy(Q): measured in Joules (J), photons of a certain frequency have a spe-
cific quantum of energy, defined byE = hf , whereh is Plank’s Constant1 andf is the

1Planck discovered that light energy is carried by photons, he found that the energy of a photon is equal to the frequency of its
electromagnetic wave multiplied by a constant, h, or Planck’s Constant which is equal to6:626x10�20J � s
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Figure 2.6: The greater the angle the greater the area over which light is distributed, so energy at a given
point will be proportionally less, after Collins

frequency.

Radiant Flux(�):Measured in Watts(W).This is simply the radiant energy flowing through
an area per unit time,dQ=dt.

Radiant Flux Density(d�/dA:) Measured in Watts per square meter (Wm2). The quo-
tient of the radiant flux incident on or emitted by surface element surrounding the point
and area of the element.Emittanceis radiant flux density emitted from a surface, and
irradianceis the term for radiant flux density leaving a surface.

Radiant Exitance(M): Watts per square meter (Wm2). The radiant flux leaving the sur-
face per unit area of the surface.

Irradiance(E): Measured in Watts per square meter (Wm2). The radiant flux incident on
the receiver per unit area of the receiver.

Radiant Intensity(I) :Measured in watts per steradian (Wsr1). Radiant Intensity repre-
sents the radiant flow from a point source in a particular direction. Thus it is the flux per
unit solid angle.d�=d!.

Radiance(L):Measured in watts per steradian per meter squared (Wsr1m2). Radiance
is radiant flux arriving at or leaving from a surface, per unit solid angle per unit projected
area. It is defined asL = d2=(cos �dAd!) for a given direction�. Radiance does not
attenuate with distance. It is the quantity to which most light receivers, including the hu-
man eye, are sensitive.
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2.1.2 Photometry

Photometry is the science of measuring light within the visible portion of the electromag-
netic spectrum in units that are weighted according to the sensitivity of the human eye. It
is a quantitative science based on a statistical model of the human visual response to light.
Photometry attempts to measure the subjective impression produced by stimulating the
human visual system with radiant energy. This is a complex task, nevertheless the sub-
jective impression of a scene can be quantified for “normal” viewing conditions. In 1924,
CIE asked over one hundred observers to visually match the brightness of monochro-
matic light sources with different wavelengths, under controlled conditions. The results
from those experiments show thePhotopic Luminous Efficiency Curveof the Human Vi-
sual System as a function of wavelength. It provides a weighting function that can be
used to convert radiometric units into photometric measurements. Radiant flux is a phys-
ical quantity, whereas the light due to radiant flux is not, the amount of light is dependent
on the ability of the radiation to stimulate the eye. The conversion of radiant flux to light
involves a factor that depends on the physiological and psychological processes of seeing.
Photometric terms are equivalent to radiometric terms weighted byV (�), the photopic

Figure 2.7: Luminous Efficiency Curve, after Ryer

spectral luminous efficiencycurve, figure 2.7. Radiations outside the visible spectrum do
not play a role in photometry. The photopic metrics relevant to computer graphics im-
agery are the following:

Light : Light is radiant energy, evaluated according to its capacity to produce a visual
sensation.

Luminous Flux( ��):Measured in Lumens. The rate of flow of light with respect to time.
The lumen is defined as the luminous flux of monochromatic radiation of wavelength
555nmwhose radiant flux is (1/663)W. As this wavelength generates the maximal sensa-
tion in the eye, larger radiant flux at other visible wavelengths will correspond to 1lumen
of luminous flux. The quantity can be expressed as a factorf times (1/663)W wheref is
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the reciprocal of the sensitivity of the corresponding wavelength relative the sensitivity of
555nm.

Luminous Factor or Luminous Efficacy:Measured in lumen/watt. The sensitivity of the
human eye to the visible wavelengths is expressed byluminous efficacy. Luminous effi-
cacy of a particular wavelength is the ratio of the luminous flux at that wavelength to the
corresponding radiant flux.

Luminous Intensity: Measured in candelas. Luminous intensity,I�, is the solid angular
flux density of a point light source in a particular direction,d�

d!
. Thecandelais the unit

of luminous intensity, one candela is one lumen per steradian. Since the total solid angle
about a point is4� steradians it follows that a point source having a uniform intensity of
1 candelahas a luminous flux of4�lumens.

Illuminance(E�):Measured in Lux. Illuminance,E�, or illumination, is the area density
of the luminous flux incident on a surfaced�

dA
.

Luminous Exitance(M): Luminous exitance,M, is the area density of luminous flux leav-
ing a surface at a point. This is the total luminous flux emitted, reflected and transmitted
from a surface independent of direction.

Luminance(L�)Measured in Candela per square meter. Luminance,L�, is the radiomet-
ric equivalent of radiance and is hence a useful quantity to represent directional luminous
flux for an area light source.Luminance, L�, along a direction(�; �), is the luminous flux
per projected surface area per unit solid angle centred around that direction.

Physics Radiometry Radiometric Units

Radiant Energy joules [J = kgm2=s2]
Flux Radiant Power watts[W = joules=s]
Angular Flux Density Radiance [W=m2sr]
Flux Density Irradiance [W=m2]
Flux Density Radiosity [W=m2]

Radiant Intensity [W=sr]

Physics Photometry Photometric Units

Luminous Energy talbot
Flux Luminous Power lumens [talbots=second]
Angular Flux Density Luminance Nit [lumens=m2sr]
Flux Density Illuminance Lux [lumens=m2sr]
Flux Density Luminosity Lux [lumens=m2sr]

Luminous Intensity Candela [lumens=sr]

Table 2.1: Radiometric and Photometric Quantities

Each of the radiometric quantities listed earlier has their photometric counterpart. Both
radiometric and photometric quantities are shown in Table 2.1, along with their units.
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2.1.3 Characterising Surface Materials

The next key problem to be addressed in the simulation of light distribution involves char-
acterising the reflections of light from surfaces. Various materials reflect light in very
different ways, for example a matt house paint reflects light very differently than the often
highly specular paint used on a sports car.Reflectionis the process whereby light of a spe-
cific wavelength is (at least partially) propagated outward by a material without change
in wavelength, or more precisely,“reflection is the process by which electromagnetic
flux(power), incident on a stationary surface or medium, leaves that surface or medium
from the incident side without change in frequency; reflectance is the fraction of the inci-
dent flux that is reflected”, [82].

The effect of reflection depends on the directional properties of the surface involved.
The reflective behaviour of a surface is described by itsBi-Directional Reflectance Distri-
bution Function(BRDF). The BRDF expresses the probability that the light coming from
a given direction will be reflected in another direction [17, 38]. Hence, the BRDF is the
ratio of outgoing intensity to incoming energy, figure 2.8. Generally we define BRDF as:

Rbd(�i; �i; �i; ��; ��)

This relates the light in the direction(�i; �i) to outgoing light in the direction(��; ��).
BRDF is a function of wavelength.

Rbd(�i; �i; �i; ��; ��) =
I�(�i;�i;�� ;��)

Ei(�i;�i)

Incoming energy is related to outgoing intensity by

Ei(�i; �i) = Ii(�i; �i) cos �id!

Figure 2.8: Geometry of the BRDF

Figure 2.9 shows different types of material behaviour, which are defined as follows,
[38]:

Specular (mirror): Specular materials reflect light in one direction only, the mirror di-
rection. The outgoing direction is in the incident plane and the angle of reflection is
equal to the angle of incidence.
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Diffuse: Diffuse, or Lambertian materials reflect light equally in all directions. Reflection
of light from a diffuse surface is independent of incoming direction. The reflected
light is the same in all directions and does not change with viewing angle.

Mixed: Reflection is a combination of specular and diffuse reflection. Overall reflectance
is given by a weighted combination of diffuse and specular components.

Retro-Reflection: Retro-Reflection occurs when the light is reflected back on itself, that
is the outgoing direction is equal, or close to the incident direction. Retro-reflective
devices are widely used in the areas of night time transportation and safety.

Gloss: Glossy materials exhibit the property that involves mixed reflection and is respon-
sible for a mirror like appearance of a rough surface.

Most materials don’t fall exactly into one the idealised material categories described
above, but instead exhibit a combination of specular and diffuse characteristics. Real
materials generally have a more complex behaviour, with a directional character resulting
from surface finish and sub-surface scattering.

A. Specular E. GlossyD. RetroReflectionC. MixedB.Diffuse

Figure 2.9: Types of Reflection. a. Specular, b. Diffuse, c. Mixed, d. Retro-Reflection, e. Gloss

2.2 Illumination Models

Figure 2.10: Light behaviour in an environment, after [7]

The purpose of anillumination modelis to model the distribution of light in an environ-
ment. Typically this is achieved by using the laws of physics to compute the trajectory of
light energy through the scene being modelled.Local illumination modelscalculate the
distribution of reflected light as a function of the incoming energy from the light source(s).
Local is used to emphasise the fact that the illumination of a surface is determined by, and
only by, the characteristics of the surface itself and those of the light source. The Phong
illumination model [85] is one of the earliest local reflection models in computer graph-
ics. Light interaction is considered as reflecting in terms of three separate components, a
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diffuse, a specular and an ambient term. The linear combination of these three can then
be used to model light intensity at each point on a surface (or at certain points on a sur-
face, then the appearance of the entire surface can be calculated using interpolation of the
values at these points).

I = IaIk +
X

Ii[kd cos � + ks cos
n �]

where I, the intensity leaving a point is calculated as the accumulation of contributions
from N light sources, each of intensityIi. The wavelength dependent diffuse reflectivity,
kd, gives thediffuseterm. This is the fraction of light scattered in all directions. The
specular coefficient,ks is used to model light reflected in the mirror direction. If a surfaces
faces away from the light source it will not receive any light, hence will appear black. In
reality, direct light and reflected light combine to give the illumination of each surface in
an environment, so such surfaces would receive light indirectly via interreflections from
other surfaces, to account for this, local illumination models include a constantambient
term, Iaka.

The interreflection of light can account for a high proportion of the total illumination
in a scene. This is especially true for indoor scenes where light cannot “escape” the scene
but instead is always reflected back into the scene by some surface, as in figure 2.10.
To account for such interreflections, all objects must be considered a potential source
of illumination for all other objects in the scene. This constitutes aglobal illumination
model. Global illumination models attempt to include all of the light interaction in a scene.
giving rise to effects such as indirect illumination, soft shadows and colour bleeding,
all of which have an impact on the perception of the resulting imagery, and hence the
quality of the image. This transfer of radiant energy is governed by the laws of physics.
The complexities of the interaction of light and surfaces in an environment can be neatly
described in a compact form byrendering equation[51]:

I(x; x0) = g(x; x0)[�(x; x0) +
R
x0�S �(x; x

0; x00)I(x0; x00)dx00]

where

f(x; x0) relates to the intensity of light passing from pointx to pointx0

g(x; x0) is a ”geometry” term
�(x; x0) is related to the intensity of emitted light fromx0 to x
�(x; x0; x00) is related to the intensity
of light scattered fromx00 to x by a surface element ax0

S is the union of all the surfaces in the environment.

Lr(�r; �r) = Le +
R
Li(�i; �i)fr(�i; �i; �r; �r)j cos �ij sin �id�id�i

The problem of global illumination can be seen as solving the rendering equation for each
point in an environment. The rendering equation is a complex integral equation2. In all
but the simplest case, there is no closed form solution for such an equation so it must
be solved using numerical techniques. Numerical techniques imply approximation. For
this reason most illumination computations are approximate solutions to the rendering
equation.

2The rendering equation is a linear inhomogeneous Fredholm integral equation of the second kind, which exhibits a recursive
nature making it difficult to evaluate.
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Figure 2.11: Illustration of the Rendering Equation which determines radiance by summing self emitting
radiance and reflected radiance

2.2.1 Raytracing
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Figure 2.12: Raytracing : Rays are traced from the eye into the scene in an attempt to capture specular
reflection, transparency effects and shadowing

Raytracing is a versatile technique for computing images by tracing individual paths of
light through an scene. Raytracing algorithms attempt to captureview-dependentspecular
effects as well as reflections and transmissions [4, 121]. Raytracing unifies the processes
of hidden surface removal, shading, reflection, refraction and shadowing. In raytracing, it
is recognised that although millions of photons travel through an environment, only those
photon striking the eye are needed to construct the image. Hence, raytracing proceeds
by tracing a number of rays starting at the eye point or camera into the scene, this way
only the necessary information is computed. The disadvantage of this is that the result of
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raytracing is a single image, making it a view-dependent technique. Initially one ray is
passed through (the centre of) each pixel, this is calledthe primary ray. Each primary ray
is tested for intersection with all objects in the scene to determine the object closest to the
eye. Ashadow rayis then traced toward each light source in the scene. If this ray does
not intersect any other objects, that is there is a clear path from the point of intersection to
the light source, then a local illumination model is applied to determine the contribution
of the light source(s) to that surface point. If the light source(s) is occluded then the point
under consideration is in shadow.

Figure 2.13: Behaviour of light ray incident on a surface

In the case of reflective or transparent surfaces, the direction in which light arrives by
reflection or transmission in also needed. Reflected rays are easily computed since the
angle of reflection is equal to the angle of incidence, figure 2.13. Transmitted rays are
computed according toSnell’s Law, which describes the relationship between the angle
of incidence,�i, and the angle of transmission,�t:

sin �i

sin �t
=

�i

�t

where�i and�t are theindices of refractionof the materials through which the ray
travels. Snell’s law states that the product of the refractive index is the sine angle of
incidence of a ray in one medium is equal to the product of the refractive index and the
sine angle of refraction in a successive medium, figure 2.13.

Figure 2.14: Raytracing, after [7]
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A recursiveevaluation must be employed, at each surface, figure 2.14. By recursively
tracing rays through the scene, until no further objects are encountered or some maximum
number of levels has been reached, colour contributions for each pixel are calculated. A
weakness of raytracing is the manner in which diffuse interreflections are handled. Sur-
faces receiving no direct illumination appear black, traditionally this indirect illumination
is referred to asambient lightand is accounted for by a constantambient term, which is
usually assigned an arbitrary value. The following pseudo code illustrates the recursive
raytracing procedure:

For each pixel, p, in an image
Set I = ray starting at eye though pixel p
rad = Trace(I);
DrawPixel(p, I);
Radiance Trace(Ray I){
Radiance radiance = 0;
Intersect I with all objects in the scene
to determine o, the closest object.
Compute P, the point of intersection of I with o
DO LOCAL SHADING
for each light source in the scene {

trace a ray from P to L;
If L is visible at P {

radiance += LocalShade(L, P);
else

P is in shadow, do nothing;
}

}
DO GLOBAL SHADING
ReflectedRay
TransmittedRay
return(radiance); } }

Raytracing can model a large range of lighting effects accurately accounting for the
global illumination characteristics of direct illumination, shadows, specular reflection and
transparency. The main drawback of raytracing is that it can prove to be computationally
expensive and time consuming, even for moderate environments. Intersection tests dom-
inate the cost of raytracing algorithms. Typically in raytracing several intersections per
pixel are computed. Performing intersection tests withall objects in an environment is
inefficient. Several algorithms, such asSpatial subdivision[30, 37], have been developed
which attempt to minimise the number of ray object intersections. By enclosing a scene
in a cube, that cube can be successively subdivided until each sub-regions (voxel or cell)
contains no more than a preset maximum number of objects. This subdivision can then
be stored in anoctreeto establish a hierarchical description of the occupancy of voxels.
Subdivision can beuniform, the cube is divided into eight equal sized octants at each step,
or adaptivewhere only regions of the cube containing objects are subdivided. Using such
a framework allows spatial coherence to be exploited. Rays are traced through individual
voxels, with intersection tests performed only for the objects contained within. The ray is
then processed through the voxels by determining the entry and exit points for each voxel
traversed by the ray until an object is intersected or the scene boundary is reached. In
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a Spatially Enumerated Auxiliary Data Structure (SEADS)space is divided into equally
sized voxels regardless of object position, resulting in more voxels than an octree division.
Using this strategy many rays can be traced with increased speed from region to region
using a 3DDDA, speed can be further augmented by implementing this in hardware.

Figure 2.15: Antialiasing: a) A circle b) Strongly aliased circle c) Aliased Circle at Higher Resolution d)
Antialiased Circle

Aliasingeffects, (figure 2.15), occur when attempting to represent a continuous phe-
nomena (radiance) with discrete samples (pixel values).Spatial aliasingeffects appear as
a consequence of the spatial resolution of the pixels in the image plane. Figure 2.15 illus-
trates this concept, attempting to represent a curved surface on a square grid, the resulting
“blockiness” is referred to as aliasing, or “jaggies”. Due to the digital nature of computers,
it is not possible to completely eliminate aliasing. Fortunately, manyanti-aliasingtech-
niques exist tominimisethe effect.Supersamplingtakes the average radiance produced
by shooting several rays through each pixel, this reduces aliasing but increases the cost of
raytracing. An alternative is to useadaptive samplingfocusing extra rays where they are
required. Initially a low number of rays are traced per pixel, only if there are sufficient
differences in the values returned are subsequent rays traced for that pixel.

In traditional raytracing only one ray is traced in each of the shadow and reflection
directions. As a result the images generated often contain unnaturally sharp shadows
and sharp mirror reflections as shown in figure.Distribution Raytracing[19, 20] extends
classical recursive raytracing to include stochastic methods to simulate an array of optical
effects including gloss, translucency, shadow penumbrae, depth of field and motion blur.
This was achieved by distributing rays over several domains (pixel positions, lens position,
area sampling position etc). In distribution raytracing several shadow or reflection rays
are cast, each in a slightly different direction and the result is averaged over the number
of rays cast.

Further details of raytracing may be found in, for example [39]

2.2.2 Radiosity

Radiosity methods [40, 83, 15] attempt to captureview-independentdiffuse interreflec-
tions in a scene, figure 2.16. Techniques originally developed to compute the radiant
interchange between surfaces, were first applied to the global illumination problem in the
mid 1980s.Radiosity3 methods are applicable to solving for the interreflection of light
between ideal (Lambertian) diffuse surfaces. Radiosity assumes ideal diffuse reflections.
The algorithm achieves global illumination by explicitly creating a global system of equa-
tions to capture interreflections of light in a scene and automatically accounting for the

3The term radiosity refers to a measure of radiant energy, specifically the energy leaving a surface per unit area per unit time. Now,
radiosity has also come to mean a set of computational techniques for computing global illumination.
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Figure 2.16: Radiosity, after [7]

effects of multiple reflections. To accomplish this the surfaces of a scene are first divided
into ameshof patches, and the radiance of these patches is computed by solving a system
of equations, figure 2.17. The result of a radiosity solution is not just a single image but a
full three dimensional representation of the distribution of light energy in an environment.

Figure 2.17: Radiosity: An image on the left, meshed representation the right, after [2]

The amount of light leaving each patch can be expressed as a combination of its emitted
light and its reflected light.

Bi = Ei + �i
X

1� njFijBj

Bi is the radiosity of patchi. (energy per unit area per unit time)
Ei is the radiosity emitted from patchi. (energy per unit area per unit time)
Fij is the form factor fromi to j, the fraction of energy leaving patchi that arrives at patch
j.
�i is the reflectivity of patchi.
n is the number of patches in the environment.

The form-factor, figure 2.18,Fij is the fraction of energy transferred from patchi to
patchj. Thereciprocity relationship[94] states:

AjFji = AiFij
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Figure 2.18: The relationship between two patches

For all patches in a scene we get alinear system of equations:
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A patch can contribute to its own reflected energy (in the case of convex objects) so
this must be taken into account; so in general, terms along the diagonal are not merely
1. Due to the wavelength dependency of the� + i andEi the matrix must be solved for
each band of wavelengths to be considered, in computer graphics this usually includes
a band for each of red, green and blue. However, the form factors are solely dependent
on geometry, and not wavelength dependent and so do not need to be recomputed if the
lighting or surface reflectivity changes.

This system of equations can be solved for the radiosity values by using iterative meth-
ods, for example Gauss-Seidel Iteration. Once the values for each pass have been obtained
then the values at the vertices of the patches are calculated and the patches can then be
passed to a standard polygon rendering pipeline that implements Gouraud shading. The
value at a vertex can be calculated by averaging the radiosity values of the surrounding
patches.

Form Factor ComputationThe form-factor, from differential areadAi to differential
areadAj is:

dFdi�dj =
cos �i cos �j

�r2
HijdAj

As shown in figure 2.18, for the ray between differential areasdAi anddAj; �i is the
angle between the ray and the surface normal ofAi, �j is the angle between the ray and
the surface normal ofAj, r is the length of the ray,Hij take the value of 1 or 0 depending
on whether or notdAi is visible from dAj. To calculate the form factor,Fi�j. from
differential areadAi to finite areaAj integrate over the area of patchj:

Fdi�j =
Z

cos �i cos �j

�r2
HijdAjdAi
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So the form-factor fromAi toAj is computed as the area average of the above equation
over patchi:

Fi�j =
1

Ai

Z
Ai

Z
Aj

cos �i cos �j

�r2
HijdAjdAi

By assuming that the centre of a patch typifies other points on that patch, thenFi�j can
be approximated byFdi�j calculated fordAi at the centre of patchi.

An equivalent to computing form-factors, Nusselt projected parts ofAj visible from
dAi onto a unit hemisphere, this projected area is then projected orthographically down
onto the hemisphere’s unit circle base, then dividing by the area of the circle, figure 2.19.
Projecting onto the unit hemisphere accounts forcos �j=r

2, the projection to the base
accounts for the multiplication bycos �i, and dividing by the area of the base accounts for
the division by�.

Figure 2.19: The Nusselt Analog

An alternative algorithm, proposed by Cohen and Greenberg, projects onto the upper
half of a cube,hemicube, centred aboutdAi, with the cube’s top parallel to the surface,
figure 2.20. The hemicube is divided into a uniform grid. All patches in the environment
are clipped to the view-volume frusta defined by the centre of the cube and each of its
five faces, then each of the clipped patches is projected onto the appropriate face of the
hemicube.

Each cell,p, of the hemicube has a precomputeddelta form factorassociated with it:

4Fp =
cos �i cos �j

�r2
4A

�p is the angle between the surface normal of cellp and the vector betweendAi andp,
r is the length of the vector, figure. Assigning the hemicube a(x; y; z)coordinate system,
with the origin at the centre of the bottom face, then for the top face:

r =
q
x2p + y2p + 1

cos �i = cos �p =
1

r
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Figure 2.20: The Hemicube

xp andyp are the coordinates of the hemicube cell.
The approximate form factor,Fdi�j for any patchj can be found by summing the

values of4Fp associated with each cellp in Aj ’s hemicube projections. The values of
4Fp for all the hemicube cells sum to 1. Assuming that the distance between the patches
is large relative to the size of the patch, these values forFdi�j can be used as the values of
Fi�j to compute patch radiosities.

The full matrix algorithm solves eachBi value one at a time by “gathering” light
contributions from all other patches in the scene. One of the disadvantages of this method
is only after all radiosities have been computed can the resultant image be displayed.
For complex environments the time taken to produce a solution can be extensive. This
means that the user is unable to alter any of the parameters of the environment until the
entire computation is complete. Then once the alteration is made, the user must once
again wait until the full solution is recomputed. To alleviate this Cohen et al proposed the
progressive refinement radiositywhich uses the notion ofadaptive refinementof images,
to provide the user as soon as possible with an approximation of the full solution. Rather
than evaluating the effect that all other radiosities have on a particular patch, progressive
refinement examines the effect that a patch has on all other patches in the environment.

With early radiosity techniques it was necessary to build the complete matrix of form-
factorsbeforesolving the radiosity method. By re-ordering computation so that the com-
plete form-factor doesn’t meet to be storedprogressive refinementradiosity allows partial
solutions to be displayed. The progressive refinement approach simultaneously solves all
patch radiosities by repeatedly choosing a patch to “shoot” and distributing that patches
energy to all other patches. This is attractive as it provides a very good approximation to
the final solution after only a few iterations.

More details of the radiosity method may be found in, for example [6, 17]
Hierarchical radiosityattempts to minimise the number of form-factor computations

by approximating blocks of the form-factor matrix with a single value.Form Factor
Computation

The main advantage of radiosity methods lies in the view independence of the solution,
and the ability to accurately simulate lighting effects.
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2.3 Visual Perception

Perception is the process by which humans, and other organisms, interpret and organise
sensation in order to understand their surrounding environment. Sensation refers to the
immediate, relatively unprocessed result of stimulation of sensory receptors. Perception,
on the other hand is used to describe the ultimate experience and interpretation of the
world and usually involves further processing of sensory input. Sensory organs translate
physical energy from the environment into electrical impulses processed by the brain. In
the case of vision, light in the form of electromagnetic radiation, activates receptor cells
in the eye triggering signals to the brain. These signals are not understood as pure energy,
rather, perception allows them to be interpreted as objects, events, people and situations.

2.3.1 The Human Visual System

Figure 2.21: Cross Section of the human Eye

Vision is a complicated process that requires numerous components of the human eye and
brain to work together. Vision is defined as the ability to see the features of objects we
look at, such as colour, shape, size, details, depth, and contrast. Vision begins with light
rays bouncing off the surface of objects. These reflected light rays enter the eye and are
transformed into electrical signals. Millions of signals per second leave the eye via the
optic nerve and travel to the visual area of the brain. Brain cells then decode the signals
providing us with sight.

The response of the human eye to light is a complex, still not well understood process.
It is difficult to quantify due to the high level of interaction between the visual system
and complex brain functions. A sketch of the anatomical components of the human eye is
shown in Figure 2.22. The main structures are the iris, lens, pupil, cornea, retina, vitreous
humor, optic disk and optic nerve.

The path of light through the visual system begins at thepupil, is focused by thelens,
then passes onto theretina, figure 2.24, which covers the back surface of the eye. The
retina is a mesh ofphotoreceptors, which receive light and pass the stimulus on to the
brain. Figure 2.21 shows the internal structure of the human eye, a sphere, typically 12mm
in radius, enclosed by a protective membrane, thesclera. At the front of the schlera lies
the cornea, a protruding opening and an optical system comprising thelensandciliary
muscleswhich change the shape of the lens providing variable focus. Light enters the
eye though the lens and proceeds through thevitreous humor, a transparent substance, to
the rear wall of the eye, theretina. The retina has photo-receptors ouplked to nerve cells,
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Figure 2.22: The components of the HVS (http://www.hhmi.org/senses/front/110.htm))

which intercept incoming photons and outputting neural signals, which are transmitted
to the brain through theoptic nerve, connected to the retina at theoptic diskor papilla,
more commonly known as theblind spot. The retina is composed of two major classes
of receptor cells known asrods and cones. The rods are extremely sensitive to light
and provide achromatic vision at low(scotopic)levels of illumination. The cones are
less sensitive than the rods but provide colour vision at high levels(photopic)levels of
illumination. A schematic drawing of rod and cone cells are shown in Figure 2.24. Cones
are nerve cells that are sensitive to light, detail, and colour. Millions of cone cells are
packed into the macula, aiding it in providing the visual detail needed to scan the letters
on an eye chart, see a street sign, or read the words in a newspaper.

Rods are designed for night vision. They also provide peripheral vision, but they do
not see as acutely as cones. Rods are insensitive to colour. When a person passes from a
brightly lit place to one that is dimly illuminated, such as entering a movie theatre during
the day, the interior seems very dark. After some minutes this impression passes and
vision becomes more distinct. In this period ofadaptationto the dark the eye becomes
almost entirely dependent on the rods for vision, which operate best at very low light
levels. Since the rods do not distinguish colour, vision in dim light is almost colourless.

Cones provide both luminance and colour vision in daylight. Cones contain three
different pigments, which respond either to blue, red, or green wavelengths of light. A
person is missing one or more of the pigments is said to be colour-blind and has difficulty
distinguishing between certain colours, such as red from green.

These photoreceptor cells are connected to each other and theganglion cellswhich
transmit signals to and from the optic nerve. Connections are achieved via two layers,
thefirst andsecond synaptic layers. The interconnections between the rods and cones are
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mainly horizontal links, indicating a preferential processing of signals in the horizontal
plane.

scotopic mesopic photopic
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Figure 2.23: The range of luminances in the natural environment and associated visual parameters, after
Ferwerda et al.

Normal daytime vision, where the cones predominate visual processing is termedpho-
topic, whereas low light levels where the rods are principally responsible for perception
is termedscotopic vision. When both rods and cones are equally involved then vision
is termedmesopic. Figure 2.23 shows the range of luminances encountered by a typical
human observer in a natural environment along with associated visual parameters.

Visual acuityis the ability of the Human Visual System (HVS) to resolve detail in an
image. The human eye is less sensitive to gradual and sudden changes in brightness in
the image plane but has higher sensitivity to intermediate changes. Acuity decreases with
increase in distance. Visual acuity can be measured using aSnellen Chart, a standardised
chart of symbols and letters.Visual field indicates the ability of each eye to perceive
objects to the side of the central area of vision. A normal field of vision is180o.

Contrast is defined as by (lmax - lmin)/(lmax + lmin), where lmax and lmin are maximal
and minimal luminances. Human brightness sensitivity is logarithmic, so it follows that
for the same perception, higher brightness requires higher contrast. Apparent brightness
is dependent on background brightness. This phenomenon, termed conditional contrast is
illustrated in 2.25. Despite the fact thatall centre squares are the same brightness, they
are perceived as different due to the different background brightness.

Depth Perceptionis the ability to see the world in three dimensions and to perceive
distance. Images projected onto the retina are two dimensional, from these flat images
vivid three dimensional worlds are constructed.Binocular Disparityandmonocular cues
provide information for depth perception. Binocular disparity is the difference between
the images projected onto the left and right eye. The brain integrates these two images into
a single three dimensional image to allow depth and distance perception. Monocular cues
are cues to depth which are effective when viewed with only one eye, these include in-
terposition, atmospheric perspective, texture gradient, linear perspective, size cues, height
cues and motion parallax.

Perceptual Constancyis a phenomenon which enables the same perception of an object
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Figure 2.24: Retinal structure, after [47].

Figure 2.25: Simultaneous Contrast: The internal squares all have the same luminance but the changes in
luminance in the surrounding areas change theperceivedluminance of the internal squares

despite changes in the actual pattern of light falling on the retina. Psychologists have iden-
tified a number of perceptual constancies including lightness constancy, colour constancy,
size constancy and shape constancy.

� Lightness Constancy: The term lightness constancy describes the ability of the
visual system to perceive surface colour correctly despite changes in the level of
illumination.

� Colour Constancy: Closely related to lightness constancy, this is the ability of the
HVS to perceive the correct colour of an object despite changes in illumination.

� Shape Constancy: Objects are perceived as having the same shape regardless of
changes in their orientation. - example with cube, from front and side

� Size Constancy: This is the tendency to perceive objects as staying the same size
despite changes in viewing distance.
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2.3.2 Human Visual Perception

A number of psychophysical experimental studies have demonstrated many features of
how the HVS works. However, problems arise when trying to generalise these results for
use in computer graphics. This is because, often, experiments are conducted under limited
laboratory conditions and are typically designed to explore a single dimension of the HVS.
As described earlier, the HVS comprises complex mechanisms, which rather than working
independently, often features work together, so it makes sense to examine the HVS as a
whole. Instead of reusing information from previous psychophysical experiments, new
experiments are needed which examine the HVS as a whole rather than trying to probe
individual components. Some examples will support this.

A Benham’s disk is a flat disc half of which is black and the other half has three
sets of lines like the groves on a record but more spaced out, figure. When the disk is
spun a human observer sees red, yellow and green rings, despite the fact that there are
no colours in the pattern. The curves on the right of the pattern begin to explain what
happens. Each curve plots the temporal light intensity distribution at the different radii
from the centre, created when the top is spun. These changing light patterns produce
spatiotemporal interaction in the HVS that unbalance antagonistic, spectrally-opponent
mechanisms to create the appearance of coloured rings. This illusion demonstrates that
although it may be convenient to model the HVS in terms of unidimensional responses
to motion, pattern and colour, in fact human percepts are in fact the product of complex
multidimensional response.

A second example, figure 2.26, shows the panels in checkerboard block on the left and
a flat pattern on the right, which have the samereflectancesbut differences in their three-
dimensional organisation means they are perceived differently. The two panel marked
with X’s have the same reflectance but on the block they appear to have different re-
flectances under different levels of illumination. Conversely, the two panels marked with
O’s have different reflectance values but on the block appear to be the same colour due
to the different illumination conditions. This demonstrates the complexity of interactions
between apparent reflectance, apparent illumination and apparent shape that can dramati-
cally affect human perception.

Figure 2.26: Interaction between apparent reflection, apparent illumination and apparent three-dimensional
shape. Corresponding panels in the two patterns have the same physical reflectance. Differences in the per-
ceived spatial organisation of the patterns produces differing interpretations in terms of lightness(apparent
reflectance) and brightness(apparent illumination), after Adelson
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2.3.3 Lightness Perception

Gilchrist is a firm believer in the systematic study of lightness error as and understanding
of the HVS as, firstly there are always errors, and secondly these errors are not random,
but systematic. The pattern of these systematic errors therefore provide a signature of
the visual system. He defines a lightness error as “any difference between the actual
reflectance of a target surface and the reflectance of the matching chip selected from a
Munsell chart”. The task defined for the psychophysical experiments described later in
these notes involved asking human observers to match the reflectance of real world objects
to a Munsell chart, this gives a measure of errors in lightness matching. The observer is
then asked to match the reflectance of simulated objects (in a computer generated rendition
of the real world) to the same Munsell chart. This gives a measure of lightness errors
with respect to the computer image. There are limitations on the HVS, so there will be
errors (systematic errors) in both cases. For the rendered image to be deemed a faithful
representation, both sets of lightness errors should be close to each other.

Perception of the lightness of patches varying in reflectance may thus be a suitable
candidate for the choice of visual task. It is simple to perform, and it is known that
lightness constancy depends on the successful perception of lighting and the 3D structure
of a scene. As the key features of any scene are illumination, geometry and depth, the task
of lightness matching encapsulates all three key characteristics into one task. This task is
particularly suited to this experimental framework, apart from being simple to perform it
also allows excellent control over experimental stimuli.
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Chapter 3

Perception and Graphics

Realistic image synthesis is defined as the computation of images that are faithful rep-
resentations of a real scene. For computer generated imagery to be predictive and have
use beyond illustration and entertainment thenrealismis the key. Generally, the overall
level of accuracy required is determined by the application. For certain applications where
viewers simply need to be convinced the scene could be real (children’s education, enter-
tainment, games). In such a case,empirical modelsof light simulation may be sufficient.
However, for a predictive applications (industrial simulation, archaeological reconstruc-
tion) where the aim is to present the user with the same visual experience as if they were
actually in the scene,physically based modelsare normally employed. In many cases,
but not always, the images are intended for viewing by human observers. It follows then
that the required level of accuracy in the image synthesis process is dictated by capability
of the human visual system. Recall the image synthesis pipeline illustrated in figure 2.1,
which can be loosely categorised into three stages: model, render and display. What is
known about human vision can be applied in various ways at each of these stages. The
level of detail at themodelingstage is prescribed by the level of detail visible to a human
observer. During therenderingstage the limitations of the HVS can be exploited to speed
up rendering without sacrificing the visual quality of the result. Perception based metrics
can be used to evaluate rendered images, demonstrating that the image is comparable to
what an observer standing in the physical scene would see. Such metrics can be used
to determine the visible differences between two images (or successive images in a pro-
gressive computation), enabling stopping conditions to be enforced when the differences
between computed image and target image are not perceptible. Having spent consider-
able time and effort computing the image, care must be taken when presenting the result
through some display device, so as not to waste this effort. The display, and hence correct
perception, of an image involves converting computed values to screen values and finally
to values perceptible by the HVS.

3.1 Using Perception to increase efficiency

Knowledge of the behaviour of the HVS can be used to speed up rendering by focusing
computational effort into areas of an image with perceivable errors. Accounting for such
HVS limitations enables computational effort to be shifted from areas of a scene deemed
to have a visually insignificant effect on the solutions appearance, and shifted into those
areas that are most noticeable. Several attempts have been made to incorporate what is
known about the HVS into the image synthesis process.
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Mitchell [75] introduced a ray tracing algorithm that took advantage of the HVS’s poor
sensitivity to high spatial frequency, to absolute physical errors (threshold sensitivity) and
to the high and low wavelength content of a scene. Using a simple model of vision he
managed to generate antialiased images using a low sampling density. Initially the image
is sampled at a low density using a Poisson disk sampling strategy. Then an adaptive
sampling rate is defined according to the frequency content, thus enabling aliasing noise to
be concentrated into high frequencies where artifacts are less conspicuous. To determine
which areas of the image needed further refinement, a contrast metric which operates
in RGB space was used, this was an attempt to obtain a perceptually based measure of
the variation. A differential weighting was then applied to each of the RGB channels
to account for colour variation in the spatial sensitivity of the HVS. Finally using multi-
stage filters to interpolate the non-uniform samples into the completed image. While this
approach has the beginnings of a perceptual method it is at best a crude model for the
visual system. This approach fails to consider the phenomenon of masking, and only uses
two levels of adaptivity in sampling.

Noting the fact that the HVS haspoor spatial acuity, Meyer and Li developed an adap-
tive image synthesis algorithm. An opponents processing model of colour vision, com-
prising chromatic and achromatic colour channels, forms the core of this algorithm. By
altering a screen subdivision raytracer to control the amount of chromatic and achromatic
detail present at the edges in a scene. To take advantage of colour acuity deficiencies, an
image synthesis procedure which computes low spatial frequency first, and high spatial
information last is required. This enables control of the amount of refinement used to
generate colour spatial detail. To meet this requirement, Painter and Sloan [84]adaptive
subdivision was used to generate a K-D tree representation of an images. Areas of the
image containing high frequency information are stored in the lower levels of the tree.
Traversing the tree to a lesser depth determined the chromatic channels of the final im-
ages. The technique has been validated using a simple psychophysical test, demonstrating
that the quality of the result is not degraded by employing the method.

Based onthe visibility of sampling artifacts, Bolin and Meyer [8] invented a frequency
based raytracer which controls the distribution of rays cast into a scene. Their approach
synthesised images directly into the frequency domain, enabling them to employ a simple
vision model to decide where rays are cast into a scene and determine how to spawn rays
that intersect objects in the scene. Following this procedure the artifacts that are most
visible in the scene can be eliminated from the image first then noise can be channeled
into areas of the image where it is not significant in terms of noticeability. This technique
is an improvement on Micthell’s because the vision model employed exploitsContrast
Sensitivity:The response of the eye is non-linear.Spatial FrequencyThe response of the
eye is less for patterns of pure colour than for patterns including luminance differences.
MaskingHigh spatial frequency in the field of view canmaskthe presence of other high
frequency information.

Gibson and Hubbold have used features of thethreshold sensitivitydisplayed by the
HVS to accelerate the computation of radiosity solutions. A perceptually based measure
controls the generation of view independent radiosity solutions. This is achieved with an
a-priori estimate of real-world adaptation luminance, and uses a tone reproduction op-
erator to transform luminance values to display colours and is then used as a numerical
measure of their perceived difference. The model stops patch refinement once the dif-
ference between successive levels of elements becomes perceptually unnoticeable. The
perceived importance of any potential shadow falling across a surface can be determined,
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this can be used to control the number of rays cast during visibility computations. Finally
they use perceptual knowledge to optimise the element mesh for faster interactive display
and save memory during computations. This technique was used on the adaptive element
refinement, shadow detection, and mesh optimisation portions of the radiosity algorithm.

Myskowski [77] applied a more sophisticated vision model to steer computation of a
Monte Carlo based raytracer. Aiming to take maximum advantage of the limitations of the
HVS, this model included threshold sensitivity, spatial frequency sensitivity and contrast
masking. A perceptual error metric is built into the rendering engine allowing adaptive
allocation of computation effort into areas where errors remain above perceivable thresh-
olds and allowing computation to be halted in all other areas (i.e. those areas where errors
are below perceivable threshold and thus not visible to a human observer). This percep-
tual error metric takes the form of Daly’s [21]Visible DifferencePredictor. The VDP
takes as input a pair of images. A model of human vision is then applied to these images,
transforming them into a visual representation. The ”distance” between the images is
then computed to form a local visual difference map. This map is then compared against
a perceptual threshold value to ascertain the whether or not the difference is perceptible.
The VDP is used by Myszkowski by applying it to two intermediate images computed at
consecutive time steps of the solution to give a functional error estimate.

Bolin and Meyer [9] devised a similar scheme, also using a sophisticate vision model
in an attempt to make use of all HVS failings. They used Sarnoff VDM during image
generation to direct subsequent computational effort. They used upper and lower bound
images from the computation results at intermediate stages and used the predictor to get
an error estimate for that stage. Hence this approach estimates the error bounds.

Applying a complex vision model at each consecutive time step of image generation
requires repeated evaluation of the embedded vision model. The VDP can be expensive to
process due to the multiscale spatial processing involved in some of its components. This
means that the cost of recomputing the vision model may offset the savings gained by em-
ploying the perceptual error metric to speed up the rendering algorithm. To combat this
Ramasubramanian [88] introduced a metric which handles luminance-dependent process-
ing and spatially-dependent processing independently, allowing the expensive spatially-
dependent component to beprecomputed.

3.2 Perceptually Based Image Quality Metrics

Reliable image quality assessments are necessary for the evaluation of realistic images
synthesis algorithms. Typically the quality of the image synthesis method is evaluated
using image to image comparisons. Often comparisons are made with a photograph of
the scene that the image depicts, as shown in figure 3.1.

Several image fidelity metrics have been developed whose goals are to predict the
amount of differences that would be visible to a human observer. It is well established
that simple approaches like mean squared error do not provide meaningful measures of
image fidelity, figure refjan so more sophisticated measures which incorporate a represen-
tation of the HVS are needed. It is generally recognised that more meaningful measures of
image quality are obtained using techniques based on visual (and therefore subjective) as-
sesement of images, afterall most final uses of computer generated images will be viewed
by human observers.

A number of experimental studies have demonstrated many features of how the HVS
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Figure 3.1: Photograph of a Conference Room(left) & Photo-Realistic Rendering(right)

works. However, problems arise when trying to generalise these results for use in com-
puter graphics. This is because, often, experiments are conducted under limited laboratory
conditions and are typically designed to explore a single dimension of the HVS. As de-
scribed in chapter 2, the HVS comprises complex mechanisms, which rather than working
independently, often features work together, so it makes sense to examine the HVS as a
whole. Instead of reusing information from previous psychophysical experiments, new
experiments are needed which examine the HVS as a whole rather than trying to probe
individual components.

Usingvalidatedimage models that predict image fidelity, programmers can work to-
ward achieving greater efficiencies in the knowledge that resulting images will still be
faithful visual representations. Also in situations where time or resources are limited and
fidelity must be traded off against performance, perceptually based error metrics could be
used to provide insights into where corners could be cut with least visual impact.

Using a simple five sided cube as their test environment Meyer et al [74] presented
an approach to image synthesis comprising separate physical and perceptual modules.
They chose diffusely reflecting materials to built a physical test model. Each module is
verified using experimental techniques. The test environment was placed in a small dark
room. Radiometric values predicted using a radiosity lighting simulation of a basic scene
are compared to physical measurements of radiant flux densities in the real scene. Then
the results of the radiosity calculations are transformed to the RGB values for display,
following the principles of colour science.
Measurements of irradiation were made at 25 locations in the plane of the open face for
comparison with the simulations. Results show that irradiation is greatest near the centre
of the open side of the cube. This area provides the best view of the light source and
other walls. The calculated values are much higher than the measurements. In summary,
there is good agreement between the radiometric measurements and the predictions of the
lighting model. Meyer et al. then proceeded by transforming the validated simulated value
to values displayable on a television monitor. A group of twenty experiment participants
were asked to differentiate between real environment and the displayed image, both of
which were viewed through the back of a view camera. They were asked which of the
images was the real scene. Nine out of the twenty participants (45%) indicated that the
simulated image was actually the real scene, i.e. selected the wrong answer, revealing
that observers would have done just as well by simple guessing. Although participants
considered the overall match and colour match to be good, some weaknesses were cited
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Figure 3.2:Comparing top images to the image on the bottom use RMSE:The image on the left has
been slightly blurred, the image on the right has deliberate scribbles. The rmse value for blurred image is
markedly higher than the rmse for the image on the right. However, a human observer might indicate a
higher correlation between the image on the left. This illustrates the use of rmse is not sufficient, after [86]

in the sharpness of the shadows (a consequence of the discretisation in the simulation)
and in brightness of the ceiling panel ( a consequence of the directional characteristics of
the light source). The overall agreement lends strong support to the perceptual validity of
the simulation and display process.

Rushmeier et al. [89] explored using perceptually based metrics, based on image ap-
pearance, to compare image quality to a captured image of the scene being represented.
The following image comparison metrics were derived from [21],[32], [65] in a study
which compared real and synthetic images by Rushmeieret al [89]. Each is based on
ideas taken from image compression techniques. The goal of this work was to obtain re-
sults from comparing two images using these models that were large if large differences
between the images exist, and small when they are almost the same. These suggested
metrics include some basic characteristics of human vision described in image compres-
sion literature. First, within a broad band of luminance, the eye senses relative rather
than absolute luminances. For this reason a metric should account for luminance varia-
tions, not absolute values. Second, the response of the eye is non-linear. The perceived
“brightness” or “lightness” is a non-linear function of luminance. The particular non-
linear relationship is not well established and is likely to depend on complex issues such
as perceived lighting and 3-D geometry. Third, the sensitivity of the eye depends on the
spatial frequency of luminance variations. The following methods attempt to model these
three effects. Each model uses a different Contrast Sensitivity Function (CSF) to model
the sensitivity to spatial frequencies.

Model 1 After Mannos and Sakrison[65]: First, all the luminance values are nor-
malised by the mean luminance. The non linearity in perception is accounted for by
taking the cubed root of each normalised luminance. A Fast Fourier Transform (FFT) is
computed of the resulting values, and the magnitude of the resulting values are filtered
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with a CSF to an array of values. Finally the distance between the two images is com-
puted by finding the Mean Square Error (MSE) of the values for each of the two images.
This technique therefore measures similarity in Fourier amplitude between images.

Model 2 After Gervais et al[32]: This model includes the effect of phase as well as
magnitude in the frequency space representation of the image. Once again the luminances
are normalised by dividing by the mean luminance. An FFT is computed producing an
array of phases and magnitudes. These magnitudes are then filtered with an anisotropic
CSF filter function constructed by fitting splines to psychophysical data. The distance
between two images is computed using methods described in [32].

Model 3 After Daly:adapted from[21]: In this model the effects of adaptation and
non-linearity are combined in one transformation, which acts on each pixel individually.
In the first two models each pixel has significant global effect in the normalisation by
contributing to the image mean. Each luminance is transformed by an amplitude non-
linearity value. An FFT is applied to each transformed luminance and then they are filtered
by a CSF (computed for a level of 50 cd/m2). The distance between the two images is then
computed using MSE as in model 1.

TheVisible DifferencePredictor (VDP) is a perceptually based image quality metric
proposed by Daly [21]. Myskowski [77] realised the VDP had many potential applications
in realistic image synthesis. He completed a comprehensive validation and calibration of
VDP response via human psychophysical experiments. Then using the VDP local error
metric to steer decision making in adaptive mesh subdivision, and in isolating regions
of interest for more intensive global illumination computations. The VDP was tested to
determine how close VDP predictions come to subjective reports of visible differences be-
tween images by designing two human psychophysical experiments. Results from these
experiments showed a good correspondence with VDP results for shadow and lighting
pattern masking by masking and in comparison of the perceived quality of images gener-
ated as subsequent stages of indirect lighting solutions.

The VDP is one of the key Image Quality Metrics presented in this course and as such
it will be described in detail in the next chapter.

These perception based image quality metrics have demonstrated the success of im-
plementing a visual model, in spite of the fact that knowledge of the visual process is as
yet incomplete. However, there is a fundamental problem with all these methods from
the point of view ofvalidation. Although these methods are capable of producing images
based on models of the HVS, there is no standard way of telling if the images “capture
the visual appearance” of scenes in a meaningful way. One approach to validation could
compare observers’ perception and performance in real scenes against the predictions of
the models. This enables calibration and validation of the models to assess the level of
fidelity of the images produced. This will be described in detail in chapter 5.

3.3 Tone Mapping

The range of luminance we encounter in natural environments (and hence the range of
luminances that can be computed by a physically based rendering algorithm) is vast. Both
the absolute and dynamic ranges of light we encounter in natural environments are vast.
Over the course of the day the absolute level of illumination can vary by more than a
100,000,000 to 1 from bright sunlight down to starlight. The dynamic range of light en-
ergy in a single environment can also be large, on the order of 10,000 to 1 from highlights
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to shadows. However, typical display media have useful luminance ranges of approxi-
mately 100 to 1. This means some mapping function must be used to translate real world
values into values displayable by the device in question, be is electronic (CRT) or print
media. Initial attempts to develop such a mapping were simplead-hocmethods which
failed miserably for high dynamic range scenes. These ad-hoc methods proceeded by em-
ploying a linear arbitrary scaling either mapping the average of a luminance in the real
world to the average of the display, or the maximum non-light source luminance to the
maximum displayable value. While such a scaling proved appropriate for scenes with
similar dynamic range to the display media, it failed to preserve visibility in scenes with
high dynamic ranges of luminance. This is due the fact that to very bright or very dim val-
ues must be clipped to fall within the range of displayable values. Also, using this method
all images are mapped in the same manner irrespective ofabsolutevalue. This means a
room illuminated by a single candle could be mapped to the same image as a room illu-
minated by a search light, resulting in loss of the overall impression of brightness and so
losing the subjective correspondence between real and displayed scene. It follows more
sophisticated mappings were required.Tone Mapping, originally developed for use in
photography and television, addresses the problem of mapping to a display, and is an at-
tempt to recreate the sameperceptualresponse in the viewer of a synthetic image as they
would have if looking at the real scene. The human eye is sensitive torelativeluminances
rather thanabsoluteluminances. Taking advantage of this allows the overall subjective
impression of a real environment to be replicated on some display media, despite the fact
that the range of real world luminances often dwarfs the displayable range.

Tone reproduction operators can be classified according to the manner in which values
are transformed.Single-scaleoperators proceed by applying thesamescaling transfor-
mation for each pixel in the image, and that scaling only depends on the current level of
adaptation, and not on the real-world luminances.Multi-scaleoperators take a differing
approach and may apply a different scale to each pixel in the image, this time the scaling
is influenced by many factors.

3.3.1 Single Scale Tone Reproduction Operators

Tumblin and Rushmeier were the first to apply the dynamics of tone reproduction to the
domain of realistic image synthesis [105]. Using a psychophysical model of brightness
perception first developed by Stevens and Stevens, they produced a tone reproduction op-
erator that attempted to match the brightness of the real scene to the brightness of the
computed image displayed on a CRT. To achieve this anobserver modelis built which
describes how real world and display luminances are perceived, and adisplay modelthat
describes how a frame-buffer value is converted into displayed luminance. The image is
presented to a hypothetical real world observer, who adapts to a luminanceLa(w). Apply-
ing Stevens’ equation, which relates brightness to target luminance, the perceived value
of a real world luminance,Lw, is computed as:

Bw = 10�(La(w))(� � 10�4Lw)
�(La(w))

where�(La(w)) and�(La(w) are functions of the real world adaptation level:

�(La(w)) = 0:4 log10(La(w)) + 1:519
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�(La(w)) = �0:4(log10(La(w)))
2 � 0:218 log10(La(w)) + 6:1642

Luminances are incdm�2. If it is assumed that a display observer viewing a CRT screen
adapts to a luminance,La(d), the brightness of a displayed luminance value can be simi-
larly expressed:

Bd = 10�(La(d))(� � 10�4Ld)
�(La(d))

where�(La(d)) and�(La(d) are as before. To match the brightness of a real world lu-
minance to the brightness of a display luminance,Bw must equalBd. The luminance
required to satisfy this can be determined:

Ld =
1

� � 10�4
10

�a(w)��a(d)

�a(d) (� � 10�4Lw)

�a(w)

�a(d)

This represents the concatenation of the real-world observer and the inverse display ob-
server model. To determine,n, the frame buffer value the inverse display system model is
applied to give:

n = [
Ld � Lamb

Ldmax

]
1


giving

�TUMB(Lw) = [
10

�a(w)��a(d)

�a(d) (� � 10�4Lw)

�a(w)

�a(d)

� � 10�4
]

Taking a slightly approach, Ward [112] searched for a linear transform a similar result,
while keeping computational expense to a minimum,. He proposed transforming real
world luminances,Lw, to display luminances,Ld, throughm, a scaling factor:

Ld = mLw

The consequence of adaptation can be thought of as a shift in the absolute difference
in luminance required in order for a human observer to notice a variation. Based on
psychophysical data collected by Blackwell, Ward defines a relationship which states that
if the eye is adapted to luminance levelLa, the smallest alteration in luminance that can
be seen satisfies:

4(La) = 0:0594(1:219 + L0:4
a )2:5

Real world luminances are mapped to the display luminances so the smallest discernible
differences in luminance can also be mapped, using:

4L(La(d)) = m4L(La(w))

WhereLaw andLa(d) are the adaptation levels to the real world scene and display device
respectively. The scaling factor,m, dictates how to map luminances from the world to the
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display such that a Just Noticeable Difference (JND) in world luminances maps to a JND
in display luminances :

m =
4L(La(d))

4L(La(d))
= (

1:219 + L0:4
a(d)

1:219 + L0:4
a(w)

)2:5

To estimate the adaptation levels,LawtoLad, Ward assumed the adaptation level is ap-
proximately half the average radiance of the image, (La(d) = Ldmax=2). Substituting in to
equation (above) results in values from 0 toLdmax, dividing byLdmax then gives values
in the required range from [0..1]. The scaling factor is then given by:

m =
1

Ldmax

[
1:219 + (Ldmax=2)

0:4

1:219 + (L0
a(w):4)

]2:5

whereLdmax is typically set to100cdm�2.
In 1996, Ferwerda et al developed a model conceptually similar to Ward’s, but in ad-

dition to preserving threshold visibility, this model also accounted for changes in colour
appearance, visual acuity, and temporal sensitivity. Different tone reproduction operators
are applied depending on the level of adaptation of the real world observer. Athreshold
sensitivity functionis constructed for both the real world and display observers given their
level of adaptation. A linear scale factor is then computed to relate real world luminance
to photopic display luminance. The required display luminance is calculated by combin-
ing the photopic and scotopic display luminances using a parametric constant,k which
varies between 1 and 0 as the real world adaptation level goes from top to bottom of the
meopic range.

To account for loss in visual acuity, Ferwerda et al used data obtained from experiments
that related the detectability of square wave gratings of different spatial frequencies to
changes in background luminance. By applying a Gaussian convolution filter, frequencies
in the real world image which could not be resolved when adapted to the real world
adaptation level are removed. Light and dark adaptation are also consider by Ferwerda, a
parametric constant,b is added to the display luminance, the value of which changes over
time. The value of b is set so that...remains constant over time. This means the overall
luminance of the displayed image remains the same during the time dependent adaptation
process.

A critical and underdeveloped aspect of all this work is the visual model on which the
algorithms are based. As we move through different environments or look from place to
place within a single environment our eyes adapt to the prevailing conditions of illumina-
tion both globally and within local regions of the visual field. These adaptation processes
have dramatic effects on the visibility and appearance of objects and on our visual perfor-
mance. In order to produce realistic displayed images of synthesised or captured scenes,
we need to develop a more complete visual model of adaptation. This model will be es-
pecially important for immersive display systems that occupy the whole visual field and
therefore determine the viewer’s visual state.

3.3.2 Multi Scale Tone Reproduction Operators

After careful investigation of the effects of tone mapping of a small test scene illuminated
only by a single incandescent bulb, Chiu et al [12] believed it was incorrect to apply the
same mapping to each pixel. By uniformly applying any tone mapping operator across
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the pixel of an image, incorrect results are likely. They noted that the mapping applied to
a pixel should be dependent on the spatial position in the image of that pixel. This means
that some pixels having the same intensities in the original images may have differing in-
tensity values in the displayed image. Using the fact that the human visual system is more
sensitive torelative changes in luminance rather thanabsolutelevels, they developed a
spatially non-uniform scaling function for high contrast images. First the image is blurred
to remove all the high frequencies, and the result is inverted. This approach was capable
of reproducing all the detail in the original image, but reverse intensity gradients appeared
in the image when very bright and very dark areas were close to each other. Schlick, [91]
proposed a similar transformation based on a rational tone reproduction operator rather
than a logarithmic one. Neither of these methods accounted for differing levels of adap-
tation. Their solutions are based purely on experimental results, no attempt is made to
employ psychophysical models of the HVS.

Larson et al, [57] developed a histogram equalization technique that used a spatial
varying map of foveal adaptation to transform a histogram of image luminances in such
away that the resulting image lay within the dynamic range of the display device and im-
age contrast and visibility were preserved. Fist a histogram of brightness (approximated
as a logarithm of real-world luminances) is created for a filtered image in which each
pixel corresponds to approximately1o of visual field. A histogram a cumulative distri-
bution function were the obtained for this reduced image. Using threshold visibility data
from Ferwerda, an automatic adjustment algorithm is applied to create an image with the
dynamic range of the original scene compressed into the range available on the display
device, subject to certain restrictions regarding limits of contrast sensitivity of the human
eye.

In addition to tone reproduction operators being useful for rendering calculated lumi-
nance to the screen, they are also useful for giving a measure of the perceptible difference
between two luminance at a given level of adaptation. This function can then be used
to guide algorithms, such a s discontinuity meshing where there is a need to determine
whether some process would be noticeable or not to the end user.

3.4 Summary

Recent years have seen an increase in the application of visual perception to computer
graphics. In certain applications it is important that computer images should not only be
physically correct but also perceptually equivalent to the scene it is intended to represent.
But realism implies computational expense, research is beginning to emerge to investigate
how knowledge of the human visual system can be used to “cut corners” and minimise
rendering times by guiding algorithms to compute only what is necessary to satisfy the ob-
server. Visual perception is used in many guises in graphics to achieve this required level
of realism. As the application of graphics continues to diversify to increasingly safety
critical applications such as industrial and military applications the correct perception of
imagery becomes a priority. In principle, physically based image synthesis can potentially
generate images that are faithful visual representation of real or imaginary environments,
thus enabling image synthesis to be usefully applied in a wide variety of disciplines.

Future applications will require perceptual accuracy in addition to physical accuracy.
Without perceptual accuracy it is impossible to assure users of computer graphics that
the generated imagery is anything like the scene it depicts. Imagine a visualisation of an
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architectural design, without perceptual accuracy it is difficult to guarantee the architect
that the visualisation sufficient represents their design, and that the completed building
will look anything like the computer representation. This chapter discussed how knowl-
edge of the HVS is being incorporated at various stages in the image synthesis pipeline.
The problem is that much of the data used has been obtained from specific psychophysi-
cal experiments which have been conducted in specialised laboratory environments under
reductionistic conditions. These experiments are designed to examine a single dimension
of human vision, however, evidence exists to indicate that features of the HVS do not op-
erate individually, but rather functions overlap and should be examined as a whole rather
than in isolation.

There is a strong need for the models of human vision currently used in image synthesis
computations to bevalidatedto demonstrate their performance is comparable to the actual
performance of the HVS.
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Chapter 4

Perception-driven global illumination
and rendering computation

1

As we stated in the Introduction the basic goal of realistic rendering is to create images
which are perceptually indistinguishable from real scenes. Since the fidelity and quality
of the resulting images are judged by the human observer, the perceivable differences
between the appearance of a virtual world (reconstructed on a computer), and its real
world counterpart should be minimised. Thus, perception issues are clearly involved in
realistic rendering, and should be considered at various stages of computation such as
image display, global illumination computation and rendering.

In this chapter, we focus on embedding the characteristics of the Human Visual Sys-
tem (HVS) directly into global illumination and rendering algorithms to improve their
efficiency. This research direction, has recently gained much attention of the computer
graphics community [41, 43], motivated by the progress in physiology, psychophysics,
and psychology in providing computational models of the HVS. Since global illumination
solutions are costly in terms of computation, there are high prospects for their efficiency
improvements by focusing computation on those scene features which can be readily per-
ceived by the human observer under given viewing conditions. This means that those
features that are below perceptual visibility thresholds, can be simply omitted from the
computation without causing any perceivable difference in the final image appearance.

Current global illumination algorithms usually rely on energy-based metrics of solu-
tion errors, which do not necessarily correspond to the visible improvements of the image
quality [59]. Ideally, one may advocate the development of perceptually-based error met-
rics which can control the accuracy of every light interaction between surfaces. This can
be done by predicting the visual impact those errors may have on the perceived fidelity
of the rendered images. In practice, there is a trade-off between the robustness of such
low-level error metrics and their computational costs. In Section 4.1 we give some exam-
ples of such low-level metrics applied in the context of hierarchical radiosity and adaptive
meshing computations.

Another approach is to develop a perceptual metric which operates directly on the
rendered images. If the goal of rendering is just a still frame, then the image-based error
metric is adequate. In the case of view-independent solutions, the application of the metric
becomes more complex because a number of “representative” views should be chosen. In
practice, instead of measuring the image quality in absolute terms, it is much easier to

1written by Karol Myszkowski
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derive a relative metric which predicts the perceived differences between a pair of images
[90]. (It is well-known that a common mean-squared error metric usually fails in such a
task [21, 99, 90, 31].) A single numeric value might be adequate for some applications;
however, for more specific guiding of computation, a local metric operating at the pixel
level is required. In Section 4.2, we briefly overview applications of such local metrics
to guide the global illumination and rendering solutions. Such metrics usually involve
advanced HVS models, and might incur non-negligible computation costs. An important
issue becomes whether these costs can be compensated by the savings in computation that
are obtained through the usage of such metrics.

A representative example of such an advanced image fidelity metric is the Visible Dif-
ferences Predictor (VDP) developed by Daly [21]. In Section 4.2.1, we overview briefly
the VDP, which we use extensively in this work. The VDP metric, when applied in global
illumination computation, provides a summary of the algorithm performance as a whole
rather than giving a detailed insight into the work of its particular elements. However,a
priori knowledge of the current stage of computation can be used to obtain more specific
measures for such tasks as adaptive meshing performance, accuracy of shadow recon-
struction, convergence of the solution for indirect lighting, and so on. Since the VDP
is a general purpose image fidelity metric, we validate its performance in these tasks.
In Section 4.2.2, we report the results of comparisons of the VDP predictions when the
model incorporates a variety of contrast definitions, spatial and orientation channel de-
composition methods, and CSFs derived from different psychophysical experiments. The
goal of these experiments was to test the VDP integrity and sensitivity to differing mod-
els of visual mechanisms, which were derived by different authors and for different tasks
than those which have been originally used by Daly. Also, we conducted psychophysical
experiments with human subjects to validate the VDP performance in typical global illu-
mination tasks (Section 4.2.3). An additional goal of these experiments was to test our
implementation of the complex VDP model.

When our rigorous validation procedure of the VDP performance was successfully
completed, we were able to apply the metric in our actual global illumination applica-
tions. We used the VDP to monitor the progression of computation as a function of time
for hierarchical radiosity and Monte Carlo solutions (Section 4.3.1). Based on the ob-
tained results, we propose a novel global illumination algorithm which is a mixture of
stochastic (density estimation) and deterministic (adaptive mesh refinement) algorithms
that are used in a sequence optimised to reduce the differences between the intermediate
and final images as perceived by the human observer in the course of lighting computation
(Section 4.3.2). The VDP responses are used to support selection of the best component
algorithms from a pool of global illumination solutions, and to enhance the selected al-
gorithms for even better progressive refinement of the image quality. The VDP is used to
determine the optimal sequential order of component-algorithm execution, and to choose
the points at which switch-over between algorithms should take place. Also, we used the
VDP to decide upon stopping conditions for global illumination simulation, when further
continuation of computation does not contribute in perceivable changes to the quality of
the resulting images (Section 4.3.3).
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4.1 Low-level perception-based error metrics

One of the research directions towards the perception-driven improvement of global il-
lumination computation performance relied on direct embedding of some simple error
metrics in decision making on the level of light interactions between surfaces. Gibson
and Hubbold [33] proposed a perception-driven hierarchical algorithm in which TMO
and perceptually uniform colour space CIEL�u�v� are used to decide when to stop the
hierarchy refinement. Links between patches are not refined anymore once the differ-
ence between successive levels of elements becomes unlikely to be detected perceptually.
Gibson and Hubbold applied a similar error metric to measure the perceptual impact of
the energy transfer between two interacting patches, and to decide upon the number of
shadow feelers that should be used in visibility test for these patches. A similar strategy
was assumed by Martin et al. [70], their oracle of patch refinement operates directly in
the image space and tries to improve the radiosity-based image quality for a given view.
More detailed analysis of these and other similar techniques can be found in [87].

Perceptually-informed error metrics were also successfully introduced to control the
adaptive mesh subdivision [81, 33, 46] and mesh simplification [111] in order to min-
imise the number of mesh elements used to reconstruct lighting function without visible
shading artifacts. The quality of lighting reconstruction is judged by the human observer,
so it is not a surprise that purely energy-based criteria used in the discontinuity meshing
[61, 25] and adaptive mesh subdivision [16, 107, 60] methods are far from optimal. These
methods drive meshing refinement based on the measures of lighting differences between
sample points, which are expressed as radiometric or photometric quantities. However,
the same absolute values of such differences might have a different impact on the final im-
age appearance, depending on the scene illumination and observation conditions, which
determine the eye sensitivity. To make things even more complicated TMO must also be
taken into account because it determines the mapping of simulated radiometric or photo-
metric values into the corresponding values of the display device.

Myszkowski et al. [81] noticed that mesh refinement can be driven by some metrics
measuring quantitatively visual sensation such as brightness instead of commonly used
radiometric or photometric quantities. Myszkowski et al. transformed the stimulus lu-
minance values to predicted perceived brightness using Stevens’ power law [105], and
a decision on the edge splitting was made based on the local differences in brightness.
The threshold differences of brightness, which triggered such subdivision, corresponded
to the Just Noticeable Difference (JND) values that were selected experimentally, and had
different values depending on the local illumination level. Ideally, the local illumination
should correspond to the global illumination. However, in the radiosity technique [78]
only direct illumination is known at the stage of mesh refinement, which might result
in a too conservative threshold selection. In such conditions, some lighting discontinu-
ities predicted as perceivable could be washed out in the regions of significant indirect
lighting. Obviously, this could lead to excessive mesh refinement which is a drawback
of the technique presented in [81]. Gibson and Hubbold [33] showed that the meshing
performance can be improved even if some crude approximation of global illumination
such as the ambient correction term [14] is used. Also, Gibson and Hubbold improved
[81] further by introducing colour considerations into their mesh subdivision criteria. Fur-
ther improvement of meshing performance was achieved by Volevich et al. [108], whose
lighting simulation algorithm (discussed in more detail in Section 4.3.2) provides local
estimates of global illumination quickly. Those estimates are available at the mesh refine-
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ment stage, which make it a possibly more reliable evaluation of the contrast at lighting
discontinuities. Thus, the prediction of discontinuities perceivability becomes also more
robust, and excessive mesh subdivision can be avoided. In the example given in [108], the
uniform mesh built of 30,200 triangles was subdivided into 121,000, 97,000, and 86,000
elements using techniques proposed in [81], [33], and [108], respectively, without any
noticeable difference in the resulting images quality.

The perception-based criteria have also been used to remove superfluous mesh ele-
ments in the discontinuity meshing approach [46]. Also, a similar perception-driven mesh
simplification was performed as post-processing to a density estimation solution applying
a dense, uniform mesh [111].

All techniques discussed so far used perceptual error metrics on the atomic level (e.g.,
every light interaction between patches, every mesh element subdivision), which put a
significant amount of overhead on procedures that are repeated thousands of times in the
course of the radiosity solution. This imposes severe limitations on the complexity of
human spatial vision models, which in practice are restricted to models of brightness and
contrast perception. Recently, more complete (and costly) vision models have been used
in rendering to develop higher level perceptual error metrics which operate on the com-
plete images. In the following section, we overview briefly applications of such metric to
global illumination and rendering solutions.

4.2 Advanced perception-based error metrics

The scenario of embedding advanced HVS models into global illumination and rendering
algorithms is very attractive, because computation can be perception-driven specifically
for a given scene. Bolin and Meyer [9] have developed an efficient approximation of
the Sarnoff Visual Discrimination Model (VDM) [63], which made it possible to use this
model to guide samples in a rendered image. Because samples were only taken in areas
where there were visible artifacts, some savings in rendering time compared to the tra-
ditional uniform or adaptive sampling were reported. Myszkowski [77] has shown some
applications of the VDP to drive adaptive mesh subdivision taking into account visual
masking of the mesh-reconstructed lighting function by textures. Ramasubramanianet
al. [88] have developed their own image quality metric which they applied to predict
the sensitivity of the human observer to noise in the indirect lighting component. This
made possible more efficient distribution of indirect lighting samples by reducing their
number for pixels with higher spatial masking (in areas of images with high frequency
texture patterns, geometric details, and direct lighting variations). All computations were
performed within the framework of the costly path tracing algorithm [53], and a signifi-
cant speedup of computations was reported compared to the sample distribution based on
purely stochastic error measures.

A practical problem arises that the computational costs incurred by the HVS models
introduce an overhead to the actual lighting computation, which may become the more
significant the more rapid is the lighting computation. This means that the potential gains
of such perception-driven computation can be easily cancelled by this overhead depending
on many factors such as the scene complexity, performance of a given lighting simulation
algorithm for a given type of scene, image resolution and so on. The HVS models can
be simplified to reduce the overhead, e.g., Ramasubramanianet al. [88] ignore spatial
orientation channels in their visual masking model, but then underestimation of visible
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image artifacts becomes more likely. To prevent such problems and to compensate for
ignored perceptual mechanisms, more conservative (sensitive) settings of the HVS models
should be applied, which may also reduce gains in lighting computation driven by such
models.

It seems that keeping the HVS models at some high level of sophistication and embed-
ding them into rendering algorithms which are supposed to provide a meaningful response
rapidly, e.g., in tens of seconds or single minutes may be a difficult task. For example, full
processing of the difference map between a pair of images at a resolution of256�256 pix-
els using the VDP model [21] takes about 20 seconds on a R10000, 195 MHz processor,
and such processing should be repeated a number of times to get a reasonable monitor-
ing of the image quality progression. In this work, we explore approaches in which the
advanced HVS models are used both off-line and on-line. In the former case, the VDP
is used only at the design stage of the global illumination algorithms and the tuning of
their parameters. Thus, the resulting algorithms can spend 100% of the computation time
for lighting simulation, and the costs of HVS processing (which is performed off-line) are
of secondary importance. In the latter case, the VDP processing is performed along with
time-consuming global illumination computation to decide upon its stopping condition.
However, in this application the VDP computation is performed exclusively at later stages
of computation, and involves only a small fraction of the overall computation costs.

In the following section, we briefly describe the VDP as a representative example of
advanced image fidelity metrics, which is strongly backed by findings in physiology and
psychophysics.

4.2.1 Visible Differences Predictor

Although, substantial progress in physiology and psychophysics studies has been achieved
in recent years, the Human Visual System (HVS) as the whole, and in particular, the higher
order cognitive mechanisms, are not fully understood. Only the early stages of the visual
pathway beginning with the retina and ending with the visual cortex are considered as
mostly explored [23]. It is believed that the internal representation of an image by cells
in the visual cortex is based on spatial frequency and orientation channels [66, 114, 122].
The channel model explains such visual characteristics well as:

� the overall behavioral Contrast Sensitivity Function (CSF) - visual system sensitivity
is a function of the spatial frequency and orientation content of the stimulus pattern;

� spatial masking - detectability of a particular pattern is reduced by the presence of a
second pattern of similar frequency content;

� sub-threshold summation - adding two patterns of sub-threshold contrast together
can improve detectability within a common channel;

� contrast adaptation - sensitivity to selected spatial frequencies is temporarily lost
after observing high contrast patterns of the same frequencies; and,

� the spatial frequency aftereffects - as result of the eye adaptation to a certain grating
pattern, other nearby spatial frequencies appear to be shifted.

Because of these favorable characteristics, the channel model provides the core of
the most recent HVS models that attempt to describe spatial vision. Our application of
the HVS model is concerned with how to predict whether a visible difference will be
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Figure 4.1: Block diagram of the Visible Differences Predictor (heavy arrows indicate parallel processing
of the spatial frequency and orientation channels).

observed between two images. Therefore, we were most interested in the HVS models
developed for similar tasks [127, 62, 71, 21, 99, 18, 119, 28, 31, 97], which arise from
studying lossy image compression, evaluating dithering algorithms, designing CRT and
flat-panel displays, and generating computer graphics. Let us now describe briefly the
Visible Differences Predictor (VDP) developed by Daly [21] as a representative example,
which was selected by us for our experiments on global illumination algorithms.

The VDP is considered one of the leading computational models to predicting the
differences between images that can be perceived by the human observer [58]. The VDP
receives as input a pair of images, and as output it generates a map of probability values,
which characterize perceivability of the differences. The input target and mask images
undergo an identical initial processing (Figure 4.1). At first, the original pixel intensities
are compressed by the amplitude non-linearity based on the local luminance adaptation,
simulating Weber’s law-like behavior. Then the resulting image is converted into the
frequency domain and processing of CSF is performed. The resulting data is decomposed
into the spatial frequency and orientation channels using the Cortex Transform, which is
a pyramid-style, invertible, and computationally efficient image representation. Then the
individual channels are transformed back to the spatial domain, in which visual masking
is processed. For every

channel and for every pixel, the elevation of detection threshold is calculated based on
the mask contrast for that channel and that pixel. The resulting threshold elevation maps
can be computed for the mask image, or mutual masking can be considered by taking
the minimal threshold elevation value for the corresponding channels and pixels of the
two input images. These threshold elevation maps are then used to normalize the contrast
differences between target and mask images. The normalized differences are input to
the psychometric function which estimates probability of detecting the differences for a
given channel. This estimated probability value is summed across all channels for every
pixel. Finally, the probability values are used to visualize visible differences between the
target and mask images. It is assumed that the difference can be perceived for a given
pixel when the probability value is greater than 0.75, which is standard threshold value
for discrimination tasks [122]. When a single numeric value is needed to characterize the
differences between images, the percentage of pixels with probability greater than this
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threshold value is reported.
The main advantage of the VDP is a prediction of local differences between images

(on the pixel level). The Daly model also takes into account the visual characteristics
that we think are extremely important in our application: a Weber’s law-like amplitude
compression, advanced CSF model, and visual masking function.

The original Daly model also has some disadvantages, for example, it does not process
chromatic channels in input images. However, in global illumination applications many
important effects such as the solution convergence, or the quality of shadow reconstruction
can be relatively well captured by the achromatic mechanism, which is far more sensitive
than its chromatic counterparts.

The VDP seems to be one of the best existing choices for our current tasks involv-
ing prediction of image quality for various settings of global illumination solutions. This
claim is supported by our extensive VDP integrity checking, and validation in psychophys-
ical experiments that we briefly summarize in the following two sections (more extensive
documentation of these tests is provided on the WWW page [1]).

4.2.2 VDP integrity

The VDP model predicts many characteristics of human perception. However, the compu-
tational models of these characteristics were often derived from the results of various un-
related experiments, which were conducted using completely different tasks. As pointed
out by Taylor et al. [97] this is a potential threat for the VDP integrity. The approach pro-
moted in [97, 123] was to execute psychophysical experiments that directly determined
the model parameters. However, such experiments usually cover significantly less visual
mechanisms, for example, the model proposed by Taylor et al. does not support visual
masking. In this respect, the strategy taken by Daly results in a more complete model,
although, perhaps at the expense of its integrity.

We decided to examine the Daly model integrity to understand how critical are its ma-
jor components in maintaining a reasonable output. We replaced some model components
by functionally similar components, which we obtained from well-established research re-
sults published in the literature. We investigated how the VDP responses will be affected
by such replacements.

We experimented with three types of CSF used in the following HVS models: [21],
[71, 28], and [31]. The response of the VDP was very similar in the former two cases,
while for the latter one discrepancies were more significant. A possible reason for such
discrepancies is that the CSF used in [31] does not take into account luminance adaptation
for our test, which could differ from the conditions under which the CSF was originally
measured.

Also, we experimented with different spatial and orientation channel decomposition
methods. We compared the Cortex transform [21] with 6 spatial and 6 orientation chan-
nels (on the WWW page [1] we show a typical output of every channel for our standard
test image), and the band-pass (Laplacian) pyramid proposed by Burt [10] with 6 spatial
frequency channels, and extended to include 4 orientation channels. While the quantita-
tive results are different, the distribution of probabilities of detection differences between
images corresponds quite well. The quantitative differences can be reduced by an appro-
priate scaling of the VDP responses.

Daly’s original VDP model used an average image mean to compute the global contrast
for every channel of the Cortex transform. We experimented with the local contrast using a
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low-pass filter on the input image to provide an estimate of luminance adaptation for every
pixel. This made the VDP more sensitive to differences in dark image regions, and we
found that in many cases the VDP responses better matched our subjective impressions.

In experiments we performed, we found that the VDP prediction was quite robust
across the tasks we examined and variations in the configuration of VDP modules. While
the quantitative results we obtained were different in many cases (i.e., the probability
values that the differences can be perceived which are reported for every pixel), the distri-
bution of predicted perceivable differences over the image surface usually matched quite
well. On the WWW page [1], we provide a comparison of the VDP output for all experi-
ments discussed in this section.

In [77] we report representative results of more specialised VDP experiments, which
were focused on prediction of the perceived shadow quality as a function of the visual
masking by texture, the CRT device observation distance, and the global illumination
solution convergence. In all cases tested we obtained predictions that matched well with
our subjective judgements. On the WWW page [1], we provide input images along with
the VDP predictions for the full set of experiments that we performed. We disseminate
this material so that it can be used for testing other metrics of differences between images.

4.2.3 Psychophysical validation of the VDP

Since the VDP is a general purpose predictor of the differences between images, it can
be used to evaluate sets of images from a wide range of applications. In our experiments,
we chose to test its performance in global illumination tasks, which correspond to our
intended use of the VDP. In this work, we discuss one selected experiment in which we
compared VDP responses with those obtained from human subjects for a series of image
pairs resulting from successive refinement in a progressive hierarchical radiosity solution.
We chose this experiment because it validates the VDP role in development of our novel
global illumination algorithm described in Section 4.3.2. The description of our other psy-
chophysical experiments with subjects concerning visual masking of shadows by textures,
and image fidelity following JPEG compression can be found in [69, 68]. As postulated in
[41] the experiments were performed in cooperation with an experimental psychologist.

In the experiment reported here, subjective judgements from 11 human observers were
collected for pairs of images presented on a high-quality CRT display under controlled
viewing conditions. The experimental subjects were requested to rank on a scale from 1 to
9 the perceived global difference between each of a pair of images. In every pair, the final
image for the fully converged radiosity solution was presented side-by-side with an image
generated at an intermediate stage of radiosity computation. In total ten intermediate
images taken at different stages of computation were considered, and presented to subjects
in a random order. We used the HTML forms to present stimuli, and the subjects could
freely scroll the display and adjust their ranking (we include examples of our HTML
forms on the WWW page [1]). The prediction of differences for the same pairs of images
was computed using the VDP, and compared against the subjects’ judgements. Figure 4.2
summarises the obtained results. A good agreement was observed between VDP results
and subjective ratings, as indicated by the high coefficient of determination,R2 = 0:93.
The standardised VDP values (circular symbols) almost always lay within one standard
error of the mean standardised rating. This means that as the progressive radiosity solution
converged, close agreement between the VDP predictions and the subjective judgements
was maintained.
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Figure 4.2: The standardised mean ratings (squares) at each of 10 cumulative computation times are shown
along with corresponding VDP predictions (filled circles).

Encouraged by the positive results of VDP validation in psychophysical experiments
and integrity tests, we used the VDP in actual applications whose the main goal was to
improve the performance of global illumination computation. In the following section,
we discuss a number of examples of such applications.

4.3 VDP applications in global illumination computation

A common measure of the physical convergence of a global illumination solution is the
Root Mean Square (RMS) error computed for differences between pixel values of the in-
termediate and final images. Myszkowski [77] has shown that the RMS error it is not
suitable to monitor the progress of computation because it poorly predicts the differences
as perceived by the human observer (a similar conclusion on this metric, although reached
for different applications was reported in [21, 99, 90, 31]). The results of our psychophys-
ical experiment suggest that the VDP can be used to estimate what might be termed “per-
ceptual” convergence in image quality rather than “physical” convergence. Myszkowski
[77] used this observation to measure and compare the performance of various global il-
lumination algorithms using the VDP responses. We discuss this VDP application more
in detail in Section 4.3.1. As the result of such a comparison, a hybrid global illumination
solution has been proposed in [108], in which the technique that performs best in terms
of the perceptual convergence is selected at every stage of computation. We discuss this
hybrid technique in Section 4.3.2.

As can be seen in Figure 4.2 the ranking for the final stages of the radiosity solution
(70–200 minutes) was considerably more difficult because the corresponding images were
very similar. This suggests a novel application of the VDP (and other similar metrics)
to decide upon the computation stopping conditions, when further computation will not
result in noticeable changes in the image quality as perceived by the human observer. We
discuss this topic more in detail in Section 4.3.3.
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4.3.1 Evaluating progression of global illumination computation

In many practical applications it is important to obtain the intermediate images which
correspond well to the final image at possibly early stages of solution. A practical problem
arises how to measure the solution progression, which could lead to the selection of an
optimal global illumination technique for a given task. Clearly, since the human observer
ultimately judges the image quality, basic characteristics of the HVS must be involved in
such a measure of the solution progression. In Section 4.2.3 we discussed a new measure
of the solution progression, which we called the perceptual convergence in image quality.
We used the VDP to provide the quantitative measures of the perceptual convergence by
predicting the perceivable differences between the intermediate and final images [77].

We investigated the perceptual convergence of the following view-independent algo-
rithms:

� Deterministic Direct Lighting (DDL) computation with perceptually-based adaptive
mesh subdivision [81].

� Shooting iteration Hierarchical (link-less and cluster-based) Radiosity (SHR) [78,
79] for indirect lighting computation. By default, a pre-calculated fixed mesh is used
to store the resulting lighting. .

� Density Estimation Photon Tracing (DEPT) from light sources with photons buck-
eted into a non-adaptive mesh [108]. By Direct DEPT (DDEPT) we denote buckets
with photons coming directly from light sources, and by Indirect DEPT (IDEPT) we
denote a different set of buckets with photons coming via at least one reflection.

The DDL and SHR techniques are deterministic, while the DEPT algorithm is stochas-
tic. Obviously, direct (DDL and DDEPT) and indirect (SHR and IDEPT) lighting compu-
tation techniques are complementary, but in practice the following combinations of these
basic algorithms are used: DDL+SHR, DDL+IDEPT, and DDEPT+IDEPT (DEPT for
short).

We measured the performance of these basic techniques in terms of perceived dif-
ferences between the intermediate and final images using the VDP responses. As we
discussed in Section 4.2.1, the VDP response provides the probability of difference de-
tection between a pair of images, which is estimated for every pixel. We measured the
difference between images as the percentage of pixels for which the probability of the
difference detection is over 0.75, which is the standard threshold value for discrimination
tasks [122]. In all tests performed we used images of resolution 512�512. The diagonal
of images displayed on our CRT device was 0.2 meter, and we assumed that images were
observed from the distance of 0.5 meter.

We assumed that the final images used for the VDP computation are based on the
DDL+SHR and DDL+IDEPT global illumination solutions which are converged within
some negligible error tolerance. The final images obtained using these methods are usu-
ally only slightly different (these minor discrepancies can be explained by various ap-
proximations assumed by each of these completely different algorithms, e.g., different
handling of the visibility problem, the lighting function discretization during computation
used by the SHR technique). To eliminate the influence of these differences on the VDP
response, for every method we considered the final image generated using this particular
method. The only exception is the DDEPT+IDEPT method, for which we use the fi-
nal image generated using the DDL+IDEPT technique because it provides more accurate
direct lighting reconstruction for a given mesh/bucket density.
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In this work, we report results obtained for a scene, which we will refer to as the
POINT (in [108] we consider three different scenes of various complexity of geometry and
lighting). Both direct and indirect lighting play a significant role in the illumination of the
POINT scene. The scene is built of about 5,000 polygons, and the original scene geometry
was tessellated into 30,200 mesh elements.

a) b) c)

Figure 4.3: Test scenePOINT: a) full global illumination solution, b) indirect lighting only, c) direct lighting
only.
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Figure 4.4: Plots of the VDP results (predicted differences between the intermediate and final images)
measuring the performance of the DEPT, DDL+IDEPT, and DDL+SHR algorithms for thePOINT scene.

The graph in Figure 4.4 shows that the perceptual convergence of the indirect lighting
solution for the SHR technique is slower than for the IDEPT approach (direct lighting is
computed using the same DDL method). We did not use the ambient light approximation
or overshooting techniques [96], because we are interested in physically-sound interme-
diate results. In our experience, the difference in performance between the IDEPT over
SHR methods is far more significant for complex scenes. The SHR technique shows bet-
ter performance only for simple scenes. Based on these results, we use the DDL+SHR
technique for scenes built of less than 500 polygons. For scenes of more practical com-
plexity we consider the DDL, DDEPT and IDEPT techniques to optimise the progressive
refinement of image quality.

The graph in Figure 4.4 shows that at initial stages of computation the combination of
DDEPT+IDEPT provides the best performance and rapidly gives meaningful feedback to
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the user. At later stages of computation the DDL+IDEPT hybrid shows faster perceptual
convergence to the final image. In both cases, we used the same fixed mesh to bucket
photons. Because of the basic mesh-element granularity, many subtle details of direct
lighting distribution could not be captured well using the DDEPT technique. For example,
small and/or narrow lighting patterns may be completely washed out. Also, when shadows
are somehow reconstructed, they can be distorted and shifted with respect to their original
appearance, and their boundaries can be excessively smooth. The problem of excessive
discretization error, which is inherent in our DDEPT method is reduced by the adaptive
mesh subdivision used by the DDL technique.

The graph in Figure 4.4 shows that the algorithms examined have different perfor-
mance at different stages of computation. This makes possible development of a hybrid
(composite) algorithm which uses the best candidate algorithm at a given stage of com-
putation. This idea is investigated in the following section.

4.3.2 Optimising progression of global illumination computation

Based on the results of experiments measuring the perceptual convergence which were
presented in the previous section for thePOINT scene, and similar results obtained for
different scenes we investigated (e.g., refer to [108]), a new hybrid technique which uses
DDEPT, IDEPT and DDL can be proposed:

1. At first stochastic computations of direct and indirect lighting should be performed.

2. Then the stochastically computed direct component should be gradually replaced by
its deterministically computed counterpart, to reconstruct fine details of the lighting
function.

3. Finally, the stochastic indirect computation should be continued until some stopping
criterion is reached, e.g., a criterion that is energy-based in terms of the solution
variance (some engineering applications may require precise illumination values),
or perception-based in terms of perceivable differences between the intermediate
and final images [77].

All discussed algorithms use mesh vertices to separately store the results of direct and
indirect lighting computations, so switching between them can easily be performed. Only
in the case of the DDL technique, the mesh is adaptively refined to fit the lighting distri-
bution better, but then indirect lighting computed using the IDEPT can be interpolated at
the new vertices.

While the obtained ordering of the basic algorithms was the same across all tested
scenes (refer also to [108]), the optimal selection of switch-over points between the se-
quentially executed algorithms depended on a given scene characteristics. Ideally, the
switch-over points should be selected automatically based on the performance of com-
ponent algorithms for a given scene, which could be measured by the on-line VDP com-
putation. However, performing the VDP computation at the runtime of the composite
algorithm computation is not acceptable because of the high costs of the VDP processing
(Section 4.2). To overcome this problem we decided to elaborate a robust heuristic of the
switch-over points selection which provides good progression of the image quality for a
wide range of indoor scenes. For this purpose, we designed another experiment involving
the VDP off-line, and our experimental setting is shown in Figure 4.5.2 Within this frame-

2This setting is of general use and can be easily applied to any set of global illumination algorithms to select the best basic algorithm
for a given task and computation stage.
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Figure 4.5: Experimental setting for evaluation of the image quality progression and selection of the switch-
over points between global illumination algorithms (the human-assisted selection is based on minimising
the perceptual distance between the intermediate and final images).

work, we applied the VDP to get quantitative measures of the image quality progression
as a function of time pointsTi at which switching between our basic algorithms DEPT
(DDEPT+IDEPT), DDL and IDEPT was performed.

The results of our experiments for thePOINT test are summarised in Figure 4.6a. The
thick line between two switching pointsT1 andT2 depicts possible performance gains
if DEPT is replaced by DDL atT1, and then DDL is replaced by IDEPT atT2. Also,
we tried a different switching strategy, which involvesN switching pointsT1; : : : ; TN .
We investigated various choices ofTi, which controlled switching between the DDL and
IDEPT algorithms. For example, we performed the switching after completion of every
single iteration of the DDL computation, or every two such iterations and so on. Also, we
changedT1, which effectively controls the initial DEPT computation time. The thin line
in Figure 4.6a shows an envelope of all graphs depicting our composite algorithm per-
formance for all combinations of switching points investigated by us. This envelope ap-
proximates the best expected performance of our composite technique assuming an “opti-
mal” switching strategy between the DDL and IDEPT algorithms with multiple switching
pointsT1; : : : ; TN . As can be seen, gains in performance achieved using theT1; : : : ; TN
strategy were negligible compared to the strategy based on well chosen switching points
T1 andT2.

For the sake of simplicity of our composite algorithm, we decided to use just two
switching pointsT1 andT2. We investigated various choices ofT1, which measures dura-
tion of the initial DEPT computation (we assumed thatT2 is decided automatically when
the DDL computation is completed). The composite algorithm performance for various
T1 is shown in Figure 4.6b. As can be seen our composite algorithm performs much bet-
ter than the standalone DDL+IDEPT or DEPT methods for all choices ofT1 which are
considered in Figure 4.6b. In [108] we show that the choice ofT1 is not extremely critical
in terms of the image quality progressive refinement. However, a too shortT1 may result
in poor quality indirect lighting which cannot be improved during the DDL computation.
On the other hand, a too longT1 may result in an undesirable delay in reconstruction of
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Figure 4.6: Plots of the VDP results (magnified from Figure 4.4) measuring the performance of DEPT and
DDL+DEPT algorithms for thePOINT test. a) The thick line between two switching pointsT1 andT2 depicts
possible performance gains if the DEPT is replaced by the DDL atT1, and then the IDEPT is activated at
T2. The thin line depicts an “optimal” switching strategy between the DDL and IDEPT algorithms with
multiple switching pointsT1; : : : ; TN . b) Performance gains for various choices of switching timeT1.

shadows and other shading details. Because of this, in our heuristic ofT1 selection, we
assumed that the upper bound forT1 should be comparable with the computation time of
the first iterationTi0 of the DDL processing, after which the first rendering of a complete
direct lighting distribution becomes possible. We can estimateTi0 quite well by measur-
ing timings of tracing pilot photons, and knowing the number of the initial mesh vertices,
the number of light sources, and estimating the average number of shadow feelers (i.e.,
rays traced to obtain visibility information) for area and linear light sources.

Our heuristic for theT1 selection proceeds as follows. At first, we run the DEPT
computation for timeT� = �Ti0 (where� = 0:1, andT� � 0:5 seconds because in
our implementation we assumed that 0.5 seconds is the minimal interval for the DEPT
solution error sampling). Then, we estimate theRMS error ~E of the indirect lighting
simulation (we provide a derivation of theRMS error measure for the DEPT algorithm
in [109]). Based on the results of DEPT computation for multiple scenes, we assume
that a reasonable approximation of indirect lighting can usually be obtained for theRMS
error threshold valueEthr � 15%. Taking into account the basic properties of stochastic
solution convergence [96], we estimate the required computation timeTthr to reach the
accuracy levelEthr as:

Tthr = T�
~E2

E2
thr

;

and finally, we setT1 as:
T1 = min(Tthr; Ti0):

For simplicity, our heuristic relies on the energy-based criterion of indirect lighting ac-
curacy. Obviously, in the perceptual sense this criterion does not guarantee the optimal
switching pointT1 selection. However, we found that this heuristic provided quite sta-
ble progressive enhancement of the rendered images quality for all performed tests with
multiple scenes. This robust behaviour of our heuristic can be explained by the relative
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insensivity of our composite algorithm to theT1 selection [108], and strong low-pass fil-
tering properties of our lighting reconstruction method at the initial stages of computation.

Figure 4.7 shows an example of fast perceptual convergence of the intermediate solu-
tions in terms of the perceived quality of the corresponding images. TheTHEATRE scene
is built of 17,300 polygons (tessellated into 22,300 mesh elements) and is illuminated by
581 light sources. Figures 4.7a and b depict non-filtered and filtered illumination maps,
which were obtained after 30 seconds of the DEPT computation. Figure 4.7b closely re-
sembles the corresponding image in Figure 4.7c, which took 20 and 68 minutes of the
DEPT and DDL computations, respectively. The final antialiased image (Figure 4.7d)
was rendered using ray tracing, which took 234 minutes (the image resolution was 960
� 740 pixels). In ray tracing computation, the direct lighting was recomputed for every
image sample. This solution is typical for multi-pass approaches, e.g., [50]. The indi-
rect lighting was interpolated based on the results of the IDEPT computation, which are
stored at mesh vertices. Since all surfaces of the scene in Figure 4.7 exhibit the Lamber-
tian properties of light reflection, the illumination maps (Figures 4.7b and c) are of similar
quality to that obtained using the ray tracing computation (Figure 4.7d). Obviously, once
calculated, illumination maps make possible walkthroughs of adequate image quality al-
most immediately, while the ray tracing approach requires many hours of computation if
the viewing parameters are changed. This example shows the advantages of high quality
view-independent solutions for rendering environments with prevailing Lambertian prop-
erties.

a) b)

c) d)

Figure 4.7: Comparison of various renderings for theTHEATRE scene: a) photon tracing without illumina-
tion map filtering (30 seconds), and b) photon tracing with filtering (30 seconds), c) enhanced accuracy of
direct illumination (88 minutes), d) ray traced image (234 minutes).
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The composite algorithm discussed in this section was implemented in the commercial
package Specter (Integra, Inc., Japan), and was selected as a default global illumination
solution because of rapid and meaningful responses for interactive scene changes per-
formed by the user.

It was impractical to use the VDP on-line (because of its computational costs) in al-
gorithms that produce some intermediate results (images) rapidly, which was the case of
our composite global illumination solution. However, for applications which require the
substantial computation time, embedding advanced HVS models might be profitable. In
the following section, we discuss an example of using the VDP on-line to decide upon the
stopping conditions for global illumination computation which often requires many hours
to be completed.

4.3.3 Stopping conditions for global illumination computation

Global illumination computation may be performed just to generate realistic images, or
for some more demanding engineering applications. In both cases, quite different criteria
to stop computation proved to be useful [77]. In the former case, computation should be
stopped immediately when the image quality becomes indistinguishable from that of the
fully converged solution for the human observer. A practical problem here is that the final
solution is not known, and it is actually the goal of the computation. In the latter case,
stopping conditions usually involve estimates of the simulation error in terms of energy,
which is provided by a lighting simulation algorithm, and compared against a threshold
value imposed by the user. For some algorithms such as radiosity it might be difficult
to obtain a reliable estimate of simulation accuracy, while it is a relatively easy task for
Monte Carlo techniques [106, 110, 109].

A common practice is to use energy-based error metrics to stop computation in realistic
rendering applications. In our observation, such error metrics are usually too conservative,
and lead to excessive computation times. For example, significant differences of radiance
between the intermediate and final stages of solution which may appear in some scene
regions, can lead to negligible differences in the resulting images due to the compressive
power of the TMO used to convert radiance to displayable RGB. Occasionally, energy-
based metrics are not reliable as well, and visible image artifacts may appear although the
error threshold value is set very low. Since the error is measured globally, it may achieve
a low value for the whole scene but locally it can be still very high.

Clearly, some perception-informed metrics, which capture well local errors are needed
to stop global illumination computation without affecting the final image quality. We de-
cided to use the VDP for this purpose, encouraged by positive results of psychophysical
experiments in similar tasks that we reported in Section 4.2.3. We assume that computa-
tion can be stopped if the VDP does not report significant differences between interme-
diate images. A practical problem is to select an appropriate intermediate image which
should be compared against the current image to get robust stopping conditions.

We attempt to find a heuristic solution for this problem through experiments with the
DDL+IDEPT technique which we discussed in Section 4.3.1. In this work, we discuss the
results obtained for a scene shown in Figure 4.3. However, we achieved similar results for
other scenes we tested.

Let us assume that the current imageIT is obtained after the computation timeT , and
let us denote byV DP (IT ; I�T ) the VDP response for a pair of imagesIT andI�T where
0 < � < 1. We should find an� to get a reasonable match betweenV DP (IT ; I�T ) and
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Figure 4.8: The VDP predicted differences betweenIC andIT , andIT andI�T images.

V DP (IC ; IT ), whereIC is an image for the fully converged solution. Figure 4.8 shows
the numerical values ofV DP (IC; IT ) and V DP (IT ; I�T ) for T = f100; 400; 1600g
seconds and various�, for scene shown in Figure 4.3. While the numerical values of
V DP (IT ; I0:5T ) provide the upper bound forV DP (IC; IT ) over all investigatedT , it is
even more important that the image regions with the perceivable differences are simi-
lar in both cases (refer to the WWW page [1] for colour images withV DP (IC ; IT ) and
V DP (IT ; I0:5T )). This means that for certain regions ofI0:5T andIT the variance of the
luminance estimate is very small (below the perceived level), and it is likely that it will be
so forIC . For other regions such variance is high, and it is likely that luminance estimates
for I0:5T andIT which fluctuate around the converged values forIC will be different, and
can be captured by the VDP. Thus, the choice of� is a trade-off. The� should be small
enough to capture such perceivable fluctuations. However, it cannot be too small because
I�T may exhibit high variance in the regions in which the solution forIT converged to that
of IC , with luminance differences below the noticeable level. In our experiments with
stopping conditions for the DEPT technique for various scenes we found that� = 0:5
(50% of photons are the same forIT andI0:5T ) is such a reasonable trade-off.
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Chapter 5

A Psychophysical Investigation

This Chapter outlines the steps involved in building a psychophysical experiment to facil-
itate easy comparison of real scenes and synthetic images by a human observer [73, 102].
This comprises, a calibrated light source, a well articulated scene containing three di-
mensional objects placed within a custom built environment to evoke certain perceptual
cues such as lightness constancy, depth perception and the perception of shadows (the
real scene), paired with various synthetic images of that scene. Measurements of virtual
environments are often inaccurate. For some applications1 such estimation of input may
be appropriate. However, for the application we are considering an accurate description
of the environment is essential to avoid introducing errors at such an early stage. Also,
once the global illumination calculations have been computed, it is important to display
the resulting image in the correct manner while taking into account the limitations of the
display device. The measurements required for this study, the equipment used to record
them are described herein, along with the rendering process and the final, important, but
often neglected, stage of image display. In this study we conduct a series of psychophys-
ical experiments to assess the fidelity of graphical reconstruction of real scenes. A 3D
environment of known composition and methods developed for the study of human visual
perception (psychophysics) are used to provide evidence for a perceptual, rather than a
mere physical, match between the original scene and its computer representation. Re-
sults show that the rendered scene has high perceptual fidelity compared to the original
scene, which implies that a rendered image can convey albedo. This investigation is a step
toward providing a quantitative answer to the question of just how “real” photo-realism
actually is.

5.1 Psychophysics

Psychophysics is used to determine the sensitivity of perceptual systems to environmental
stimuli. This study seeks to study to establish an empirical relationship betweenstimuli
(aspects of theenvironment), andresponses(aspects of behaviour). This involves the
study of the response (psycho) to a known stimulus (physics). Psychophysics comprises a
collection of methods used to conduct non-invasive experiments on humans, the purpose
of which is to study mappings between events in an environment and levels of sensory
responses, this thesis is concerned with the levels of visual responses. More precisely,
psycho-physicist are interested in the exploration of thresholds, i.e. what is the minimum

1The level of realism required is generally application dependent. In some situations a high level of realism is not required, for
example games, educational techniques and graphics for web design
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change in brightness sensible by the human eye. The goal of this thesis is to discover facts
about the visual perception of computer imagery though psychophysics.
Our use of the psychophysical lightness-matching procedure is chosen because it is sensi-
tive to errors in perceived depth. Lightness constancy depends on a correct representation
of the three dimensional structure of the scene [35], [34]. Any errors in depth perception,
when viewing the computer model, will result in errors of constancy, and thus a poor psy-
chophysical matching performance.
The lens of the human eye projects onto the retina a two dimensional images of a three
dimensional physical world. The visual system has a remarkable ability to correctly per-
ceive the physical colour of a surface in spite of wide variations in the mixture of wave-
lengths in the illumination. This is the phenomenon of colour constancy. Again the visual
system has an exceptional capability to determine the lightness of a neutral surface in spite
of wide variations in the intensity of the illumination. Such it the phenomenon of light-
ness constancy, which is analogous to the phenomenon of colour constancy for coloured
surfaces.

5.2 The Pilot Study

When conducting experiments it is common to conduct a relatively small, preliminary
study designed to put the experimenter in a better position to conduct a fuller investiga-
tion. Such studies,pilot studies, are useful for working through the practical details that
are difficult to anticipate, and also help to familiarise the experimenter with logical and
theoretical facets of the experiment that might not be apparent from just thinking about
the situation. Often during the pilot study, the experimenter recognises needed controls,
flaws in logic and so on. For these reasons a small preliminary study preceded the main
experiments. For the pilot study a simple test scene was constructed which allows im-
plementation and testing of various conditions. The main function of this section is to
describe precisely how the pilot study was conducted, discuss the results obtained and
the modifications necessary to eliminate some unwanted influences present in the pilot
method. Following the pilot experiments were more intensive studies, involving more
complex conditions. In this work we inspect perceptual, as opposed to physical, cor-
respondence between a real and graphical scene by performing tests of visual function
in both situations and establishing that both sets of results are identical (allowing for
measurement noise). Such an identity will provide strong evidence that no significantly
different set of perceptual parameters exist in each situation.

5.2.1 Participants in the Pilot Study

Fifteen observers participated in each experiment. In each condition participants were
naive as to the purpose of the experiment. All reported to have normal or corrected-
to-normal vision. Participants are assigned to groups in such a way that groups are ap-
proximately equivalent, this is achieved throughrandomisation, a term used extensively
throughout this chapter.
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5.2.2 Apparatus

This study required an experimental set-up comprised of a real environment and a com-
puter representation of that environment. Here we describe the equipment used to con-
struct the real world test environment, along with the physical measurements performed
to attain the necessary input for the synthetic representation.

5.2.3 The Real Scene

The test environment was a small box of 557 mm high, 408 mm wide and 507 mm deep,
with an opening on one side, figure 5.1. All interior surfaces of the box were painted with
white matt house paint. To the right of this enclosure a chart showing thirty gray level

Figure 5.1: Experimental Set up

patches, labelled as in figure 5.2, were positioned on the wall to act as reference. The
thirty patches were chosen to provide perceptually spaced levels of reflectance from black
to white, according to the Munsell Renotation System [125]. A series of fifteen of these
gray level patches were chosen at random, reshaped, and placed in no particular order
within the physical environment.
A small front-silvered, high quality mirror was incorporated into the set up to allow the
viewing conditions to facilitate alternation between the two settings, viewing of the orig-
inal scene or viewing of the modelled scene on the computer monitor. When the optical
mirror was in position, subjects viewed the original scene. In the absence of the optical
mirror the computer representation of the original scene was viewed. The angular sub-
tenses of the two displays were equalised, and the fact that the display monitor had to be
closer to the subject for this to occur, was allowed for by the inclusion of a +2 diopter lens
in its optical path; the lens equated the optical distances of the two displays.
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Figure 5.2: Reference patches

5.2.4 Illumination

The light source consisted of a 24 volt quartz halogen bulb mounted on optical bench
fittings at the top of the test environment. This was supplied by a stabilised 10 amp DC
power supply, stable to 30 parts per million in current. The light shone through a 70 mm by
115 mm opening at the top of the enclosure. Black masks, constructed of matt cardboard
sheets, were placed framing the screen and the open wall of the enclosure, a separate black
cardboard sheet was used to define the eye position. An aperture in this mask was used to
enforce monocular vision, since the VDU display did not permit stereoscopic viewing.

5.2.5 The Graphical Representation

The geometric model of the real environment was created using Alias Wavefront [118].
The photometric instrument used throughout the course of the experiments was the Mi-
nolta Spot Chroma meter CS-100. The Minolta chroma meter is a compact, tristimulus
colourimeter for non contact measurements of light sources or reflective surfaces. The one
degree acceptance angle and through the lens viewing system enables accurate targeting
of the subject. The chroma meter was used to measure the chromaticity and luminance
values of the materials in the original scene and from the screen simulation. The lumi-
nance meter was also used to take similar readings of the thirty reference patches. For
input into the graphical modelling process the following measurements were taken.

Geometry:A tape measure was used to measure the geometry of the test environment.
Length measurements were made with an accuracy of the order of one millimetre.

Materials:The chroma meter was used for material chromaticity measurements. To
ensure accuracy of the measurements five measurements were recorded for each material,
the highest and lowest luminance magnitude recorded for each material discarded and an
average was taken of the remaining three values. The CIE (1931) x, y chromaticity co-
ordinates of each primary were obtained and the relative luminances for each phosphor
were recorded using the chroma meter. Following Travis [101], these values were then
transformed to screen RGB tristimulus values as input to the renderer by applying a matrix
based on the chromaticity coordinates of the monitor phosphors and a monitor white point.

Illumination: The illuminant was measured by illuminating an Eastman Kodak Stan-
dard White powder, pressed into a circular cavity, which reflects 99% of incident light in
a diffuse manner. The chroma meter was then used to determine the illuminant tristimulus
values.

The rendered image was created using the Radiance Lighting simulation package [112]to
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generate the graphical representation of the real scene. Radiance is a physically based
lighting simulation package, which means that physically meaningful results may be ex-
pected, provided the input to the renderer is meaningful.

The entire experimental set-up resides in an enclosed dark laboratory in which the only
light sources are the DC bulb (shielded from direct view) or illumination from the monitor.
Gilchrist [11],[35],[36] has shown that such an experimental environment is sufficient for
the purposes of this experiment.

5.2.6 Procedure

The subjects’ task was to match gray level patches within a physical environment to a set
of control patches. Then subjects were asked to repeat the same task with the original
environment replaced by its computer representation, and in addition some slight varia-
tions of the computer representation, such as changes in Fourier composition (blurring),
see figure 5.3. In theOriginal Scene, physical stimuli were presented in the test environ-

Figure 5.3: Rendered Image (left) with blurring (right)

ment, described in the following section. Subjects viewed the screen monocularly through
a fixed viewing position. The experiment was undertaken under constant and controlled
illumination conditions.

While viewing theComputer Simulated Scene, representation of the stimuli, rendered
using Radiance, were presented on the monitor of a Silicon Graphics 02 machine. Again,
subjects viewed the screen monocularly through a fixed viewing position.

5.2.7 Results and Discussion of Pilot Study

For the pilot study data were obtained for fifteen subjects; fourteen of these were naive
as to the purpose of the experiment. Subjects had either normal or corrected-to-normal
vision. Each subject performed a number of conditions, in random order, and within each
condition the subject’s task was to match the fifteen gray test patches to a reference chart
on the wall. Each patch was matched once only and the order in which each subject
performed the matches was varied between subjects and conditions.

Figure 5.4 shows the results obtained for comparison of a rendered and a blurred scene
to the real environment. The x-axis gives theactual Munsell value of each patch, the
y-axis gives thematchedMunsell value, averaged across the subjects. A perfect set of
data would lie along a450 diagonal line. The experimental data for the real environment
lie close to this line, with some small but systematic deviations for specific test patches.
These deviations show that lightness constance is not perfect for the original scene. What
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Figure 5.4: Comparison of average matchings of Munsell values

this means is as follows: when observing a given scene, small (but significant) errors of
lightness perception are likely to occur. A perceptually-perfect reconstruction of the scene
should produce a very similar pattern of errors if it is perceptually similar to the original.
The two other graphs relating to the rendered and the blurred rendered images are plotted
on the same axes. In general, it can be seen that the matched values are very similar to
those of the original scene, in other words, the same (small) failures of constancy apply
both to the rendered and the blurred rendered images. This, in turn suggests that there is no
significant perceptual difference between the original scene and both the rendered version
and the blurred rendered version. This is in spite of the fact that the mean luminance of the
rendered versions was lower by a factor of about 30 compared to the original; also, under
our conditions the blurred version looked very different subjectively, but again similar
data were obtained. It is possible to reduce the pattern of results to a single value as
follows :

� taking the matches to the original scene as reference, calculate the mean signed de-
viation for the rendered and blurred rendered functions.

� Compute the mean and standard deviation of these

Table 5.1 shows the results obtained. A value of zero in this table would indicatepercep-
tually perfectmatch; the actual values given come close to this and are statistically not
significantly different from zero. This, therefore, again indicates high perceptual fidelity
in both versions of the rendered scene. How do these values compare to other methods?
Using the algorithm of Daly [21] we found a 5.04% difference between the rendered and
blurred rendered images. As a comparison, a left-right reversal of the image gives a dif-
ference value of 3.71%; and a comparison of the image with a white noise grey level
image results in a difference value of 72%. Thus, the algorithm suggests that there is a
marked difference between the rendered image and blurred rendered image; for example
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Compared to Real Mean Munsell Value Deviation
Rendered Scene -0.37 (� = 0:44)
Blurred Scene -0.23 (� = 0:57)

Table 5.1: Comparison of Rendered and Blurred Scene to Real Environment

this is a 36% greater difference than that with a left-right reversed image. (This difference
increases for less symmetrical images). However, our method suggests that these two
scenes are perceptually equivalent in terms of our task. Itmaytherefore be that there is a
dissociation between our method and that of the Daly technique. In addition, the algorith-
mic method cannot give a direct comparison between the original scene and the rendered
version; this could only be achieved by frame grabbing the original which is a process
likely to introduce errors due to the non-linear nature of the capture process. Further work
is planned to attempt to capture a scene without errors of reproduction. Figure 5.5 shows
the results obtained for comparison of the real scene and rendered images of the environ-
ment after the depth has been altered by 50% and the patches specularity increased from
0% to 50%. As can be seen from the graph, for simple scenes lightness constancy is ex-
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Figure 5.5: Comparison of average matchings of Munsell values

tremely robust against changes in depth, specularity and blurring. In summary: the results
show that the rendered scenes used in this study have high perceptual fidelity compared to
the original scene, and that other methods of assessing image fidelity yield results which
are markedly different from ours. The results also imply that a rendered image can convey
albedo.
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5.3 Necessary Modifications to Pilot Study

Although the pilot study demonstrated the usefulness of the technique, more importantly
it highlighted some of the flaws in the framework which may otherwise have escaped
unnoticed. These flaws and the actions taken to remedy them are addressed here before
moving on to the discussion of the main set of experiments which form the foundations
for the new image comparison algorithm. To introduce more complexity into the environ-
ment, two dimensional patches were extended to three dimensional objects allowing the
exploration of effects such as shadowing and depth perception

5.3.1 Ordering Effects

In the pilot experiments, participants were asked to match patches in the physical scene to
patches on the Munsell Chart. Each participant started on a different (randomly selected)
patch, but then followed the same path as before, for example, patch 4 was always ex-
amined directly after patch 15 and directly before patch 6. This leads to what is known
in experimental psychology asordering effects. To explain this phenomenon consider
how observing a dark object immediately after a brighter object may influence perception
of the dark object. In an extreme example bear in mind the experience of matinee cin-
ema goers, when on emerging from the dark cinema theatre find themselves temporarily
”blinded” by their bright environment. Ordering effects are perhaps the reason for such
sharp “spikes” in the data collected during the pilot experiments. To eliminate any doubts
and error introduced by ordering effects, participants were asked to examine objects in the
new set up in a random order.
Each participant began by examining a different randomly selected object, followed by
another randomly selected object, and so on, examining randomly selected objects until
each object in the scene had been tested.
In addition to randomisation of object examination, the order of presentation of images
was conducted in a completely random manner. For example, if a high quality image
was presented first to every participant, this may affect their perception of lower quality
images. To avoid this scenario images are presented randomly, including presentation of
the real environment.

5.3.2 Custom Paints

Due to the three dimensional nature of objects in the new scene, simple two dimensional
patches were no longer appropriate. To accommodate the three dimensional objects, cus-
tom paints were mixed, using precise ratios to serve as the basis for materials in the scene.
To ensure correct, accurate ratios were achieve, 30ml syringes were used to mix paint in
parts as shown in Table 5.3.2

5.3.3 Three Dimensional Objects

While the pilot study gave confidence in the method, it became obvious that a full inves-
tigation would require a more complex scene, showing shadows and three dimensional
objects. Several objects were chosen ranging from household objects, to custom made
wooden pillars. The objects and their dimensions are given in table 5.3.3
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Appearance Parts Black Paint Parts White Paint Percentage White

Black 1 0 0%
Dark Gray 9 1 10%
Dark Gray 8 0 20%
Dark Gray 7 0 30%
Dark Gray 6 0 40%
Gray 5 0 50%
Gray 4 0 60%
Light Gray 3 0 70%
Light Gray 2 0 80%
Light Gray 1 0 90%
Almost White .5 0 95%
Almost White .25 0 97.5%
Almost White .625 0 98.25%
White 0 0 100%

Table 5.2: Quantities of Black and White Paint used to Achieve Grey Levels

5.3.4 Matching to Patches

Through the course of the pilot study it became apparent that moving the eye between
the screen and the control patches was unacceptable. In addition to adding to time taken
to complete each experiment this procedure introduced possible errors due to accommo-
dation effects. A new method of matching to patches was devised for the main experi-
ment. Subjects were asked to match numbered patches to a random selection of patches
as shown in figure 5.6, then asked to repeat the process with the numbered chart removed.
The difference between the two can be accounted for and then scaled back to match. For
example, consider a patch number 6. If in the presence of the chart participants matched
patch 6 to patch 7, and in the absence of the chart it is matched to patch 8, then this is
corrected for after all results are collected.

Figure 5.6: Patches

5.4 Conclusions Drawn from Pilot Study

The main purpose of the pilot study was to test the feasibility of using psychophysical
techniques to give an index of image fidelity. The results are summarised in figure. Shad-
ows are important for the correct perception of a scene. Although the pilot study gave..
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Object Dimensions Paint

Pyramid 1 1:9
Small Cylinder 9 0:1
Ledge on Small Cylinder 8 3:2
Small Sphere at Front 7 4:1
Small Cube at Front 6 9:1
Tall Rectangle on Right 5 2:3
Large Sphere 4 2:3
Tall Cylinder on Right 3 1:4
Ledge on Tall Cylinders 2 1:1
Small Cylinder 1 0:1
Tall Cylinder on Left .5 0:1
Tilted Box .25 2:1
Box Under Tilted Box .625 1/4:93/4
Ledge on Rectangle on Right .625 3:7
Tall Rectangle of Right 0 1/8:97/8
Right Wall 0 0:1
Left Wall 0 0:1
Back Wall 0 0:1
Floor 0 0:1
Ceiling 0 0:1

Table 5.3: Objects, their placement and assigned paint

This suite of pilot experiments was conducted using fifteen participants. This instilled
confidence in the methodology, while establishing some common methods and conditions.

5.5 Modifications to the Original Apparatus

To extend the environment to a more complex scene, some additional measurements were
needed. In the pilot study the patches were generated using known reflectance, then ver-
ified using the Minolta CS-100 Chromameter. For the main experiment, although the
ratiosof the paint were known, theirreflectanceneeded to be measured.

The test environment was a five sided box. The dimensions of the box are shown
in figure as are the dimensions of the objects that were placed within the box for ex-
amination. The spectral reflectance of the paints were measured using a TOPCON-100
spectroradiometer.

5.5.1 Spectral Data to RGB

Resulting chromaticity values were converted to RGB triplets by applying a matrix based
on the chromaticity coordinates of the monitor phosphors and a monitor white point, de-
scribed as follows [101].

The CIE (1931) x, y chromaticity co-ordinates of each primary were obtained using
the Minolta chroma meter. Then these values were transformed to screen RGB tristimulus
values as input to Radiance using the following method. Using these x, y, values the z for
each primary can be computed using the relationship
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x+ y + z = 1

For each phosphor the relative luminances are recorded using the chroma meter. These
are normalised to sum to 1, the normalisation being achieved by dividing by the sum
of the three luminances. The resulting values are the Y tristimulus values. From the Y
tristimulus values and the chromaticity co-ordinates for each primary we compute the X
and Z tristimulus values using the formulas

Xr = Yr �
xr
yr

Zr = Yr �
zr
yr

And the same for blue and green primaries.
By this method we can construct matrix

T =

�������
Xr Xg Xb

Yr Yg Yb
Zr Zg Zb

�������
(Note Y tristimulus values total to give 1)
Now in order to compute the tristimulus (RGB) values given chromaticity co-ordinates

x and y and luminance Y. First, the tristimulus values need to be calculated:

(X = x * fracY y) (Y = Y ) (Z = (1 - x - y) * fracY y)

Then �������
R
G
B

�������
=
��� T�1

���
�������
X
Y
Z

�������

5.5.2 Spectroradiometer

Radiometry is the measurement of radiation in the electromagnetic spectrum. This in-
cludes ultraviolet (UV), visible and infrared (IR) light. Electromagnetic radiation is char-
acterised by its frequency of oscillation. This frequency determines the ”colour” of the
radiation.

A Spectroradiometer is an instrument used for detecting and measuring the intensity
of radiant thermal energy. The radiometer is essentially a partially evacuated tube within
which is mounted a shaft with four light vanes. One side of the vanes is blackened and the
other is of polished metal. Upon receiving external radiation, the blackened side absorbs
more heat than the polished side, and the free molecules in the bulb react more strongly
on the dark side, pushing the dark side away from the source of radiation. The spectro-
radiometer used for these measurements was a TOPCON spectroradiometer (model sr-1)
2. The sr-1 outputs the spectral radiance of the sample under examination, in 5nm incre-
ments.

5.6 Display Devices

Display processes are limited in dynamic range, linearity repeatability and colour range
that can be produced. The problem of verification of correctness is amplified by these

2kindly on loan from DERA
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limitations of colour display devices. While it is not yet possible to eliminate these prob-
lems, understanding them can provide and insight into compensations that minimise the
adverse affects of these limitations.

A minimum warm up time of thirty minutes in a stable environment is required for all
monitors. It is standard practice to leave monitors running at all times, as was the case for
this set of experiments.

5.6.1 Gamma Correction

Regardless of the care taken in modelling the behaviour of light and maintaining the spec-
tral information, an image will not look right unless the monitor on which it is displayed
is correctly calibrated and placed in a reasonable viewing environment. In an ideal dis-
play, the function relating display luminance and voltage would be linear. In practice this
function is non-linear, the actual luminance is typically modelled by a function of the form

L = D

where is constant. Gamma correction is the process where voltage values are com-
puted to generate required luminances.

5.7 Experimental Design

5.7.1 Participants

Eighteen observers participated in each experiment. In each condition participants were
naive as to the purpose of the experiment. All reported to have normal or corrected-
to-normal vision. Participants are assigned to groups in such a way that groups are ap-
proximately equivalent, this is achieved throughrandomisation, a term used extensively
throughout the remainder of this chapter.

5.7.2 Randomisation and Counterbalancing

Experiments are designed to detect the human visual response to a certain condition, and
to detect the response toonly that condition. It may seem the best manner to control for
other effects would be to identify them and eliminate their effects. However, to identify
all variables might conceivably influence an experimental outcome. Byrandomising, an
experiment is arranged so that extraneous features tend to be equally represented in exper-
imental groups. Random assignment to conditions in an experiment is inclined to produce
equal representation of variables requiring control.
Randomisation of order of presentation means conditions are as likely to occur in one
order as another. It also means that presenting a condition in one position for a given
participant, say light environment first, has no influence on whether the same condition is
presented in any other position, last say. If order of presentation is completely randomised
this would mean no “balancing” occurs. It is assumed a truly random process will even-
tually result in a fairly even balance of various orders of presentation. Randomisation has
the distinct disadvantage that imbalances in order of presentation may occur simply on a
chance basis. This is especially true if the number of conditions is small. Randomisation
will even things out in thelong runbut only if the experiment is extensive. It is even pos-
sible that the same condition will be presented in the same manner each and every time
just as it is possible to draw four aces from a deck of cards without cheating.
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To avoid such imbalancescounterbalancingis often used instead of randomisation. Coun-
terbalancing means that the experimenter ensures that various possible presentation orders
occur equally often. In this study there are three distinct conditions, the design of the ex-
periment is counter balanced by ensuring each condition is presented first one third of the
times, second one third of the time and last one third of the time. By counterbalancing
the effect of either of the three conditions being presented first will be present equally
in each condition. By examining results when a treatments comes first and comparing
results when the same treatment comes second or third, effects of ordering can be seen.
Many variables have effects that need to be taken into account. Fatigue or hunger for
example can be present depending on the time of day the experiment is conducted. This
condition must therefore be counterbalanced to avoid unwanted influences on the data. For
this experiment time was divided into three zones, namely morning, middle of day and
afternoon. This division worked out neatly resulting in eighteen different combinations
of time of day/condition. Using eighteen subjects, one for each combination counterbal-
ances the experiment, thus removing any time of day or ordering effects.
Experimentation time for each condition was approximately 45 minutes, with 54 condi-
tions meant the experiments ran over 50 hours.

5.8 Procedure

The experimental conditions were kept constant over each subject, and the instructions
given were the same in each case. To avoid data contamination it is critical to keep treat-
ments as similar as possible across participants. In general, such explanations were given
when the question was raised by an observer, the task being clear to most observers. The
following steps outline a single experiment.

5.9 Experiment

5.9.1 Training on Munsell Chips

Observers were asked to select, from a grid of 30 achromatic Munsell chips presented on a
white background, a sample to match a second unnumbered grid simultaneously displayed
on the same background, under constant illumination. At the start of each experiment par-
ticipants were presented with two grids, one an ordered numbered regular grid the other
an unordered unnumbered irregular grid comprising one or more of the chips from the
numbered grid. Both charts were hung on the wall approximately one meter from the
participant, there was constant illumination across the wall. Each participant was asked to
match the chips on the unnumbered grid to one of the chips on the numbered grid on the
left. In other words they were to pick a numbered square on the left and place it right next
to the grid on the right which in the grid would match it exactly. This is done in a random
manner, a laser pointer3 was used to point to the unnumbered chip under examination.
Then the numbered chart was removed, and the unnumbered chart replaced by a similar
chart but one where the chips had a different order. Participants repeated the task, this time
working from memory to recall the number each chip would match to. Figure ? shows the

3non-invasive medium
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results of this training exercise, data from a student t-test, which gives the probability that
two sets of data are from the same source, give confidence that this method is sufficient
to allow the numbered chart used in the pilot study to be eliminated from the set up and
training to be used in its place. This has the dual benefit of speeding up the time taken per
condition, as well as ensuring participants do not need to move their gaze from image to
chart, thus eliminating any influence due to adaptation.

5.9.2 Matching to Images

Each participant was presented with a series of images, in a random order, one of which
was the real environment. Participants were not explicitly informed which image was
the physical environment. The images presented were : Three conditions were run, each

Figure 5.7: Mixed Environment

condition having a number of variations. The environments are shown in figure 5.7

5.9.3 Instructions

Each observer was asked to match the small squares on the left to one of the squares on
the numbered grid on the left. In other words they were to pick a numbered square on the
left and place it right next to the grid on the right which in the grid would match it exactly.
In general such an explanations were given when the question was raised by an observer,
the task being clear to most observers.

5.10 Summary

We have introduced a method for measuring the perceptual equivalence between a real
scene and a computer simulation of the same scene. Because this model is based on
psychophysical experiments, results are produced through study of vision from a human
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Mixed Environment Dark Environment Light Environment

Real Environment
p p p

2 ambient bounces
p p p

8 ambient bounces
p p p

Photograph
p p p

Tone Mapped
p p p

Raytracing
p p

Radiosity
p p

Guessed Illumination
p p p

Guessed Materials
p p

Default
p p p

Brighter
p p p

Table 5.4: Experimental Conditions: Notes some of the Dark Environments were too dark to use so were
not considered

rather than a machine vision point of view. We have presented a method for modelling a
real scene, then validated that model using the response of the human visual system. By
conducting a series of experiments, based on the psychophysics of lightness perception,
we can estimate how much alike a rendered image is to the original scene.

We conduct a series of psychophysical experiments to assess the fidelity of graphical
reconstruction of real scenes. Methods developed for the study of human visual perception
are used to provide evidence for a perceptual, rather than a mere physical, match between
the original scene and its computer representation. Results show that the rendered scene
has high perceptual fidelity compared to the original scene, which implies that a rendered
image can convey albedo4. This enables us to evaluate the quality of photo-realistic
rendering software, and develop techniques to improve such renderer’s ability to produce
high fidelity image

Because the complexity of human perception and the computational expensive render-
ing algorithms that exist today, future work should focus on developing efficient methods
from which resultant graphical representations of scenes yield the same perceptual effects
as the original scene. To achieve this the full gamut of colour perception, as opposed to
simply lightness, must be considered by introducing scenes of increasing complexity.

4albedois the proportion of light or radiation reflected by a surface
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Chapter 6

Perception-driven rendering of
high-quality walkthrough animations

1

Rendering of animated sequences proves to be a very computation intensive task,
which in professional production involves specialised rendering farms designed specif-
ically for this purpose. Data revealed by major animation companies show that rendering
times for the final antialiased frames are still counted in tens of minutes or hours [3],
so shortening this time becomes very important. A serious drawback of traditional ap-
proaches to animation rendering is that error metrics controlling the quality of frames
(which are computed separately one by one) are too conservative, and do not take advan-
tage of various limitations of HVS.

It is well-known in the video community that the human eye is less sensitive to higher
spatial frequencies than to lower frequencies, and this knowledge was used in designing
video equipment [24]. It is also conventional wisdom that the requirements imposed on
the quality of still images must be higher than for images used in an animated sequence.
Another intuitive point is that the quality of rendering can usually be relaxed as the ve-
locity of the moving object (visual pattern) increases. These observations are confirmed
by systematic psychophysical experiments investigating the sensitivity of the human eye
for various spatiotemporal patterns [55, 113]. For example, the perceived sharpness of
moving low resolution (or blurred) patterns increases with velocity, which is attributed
to the higher level processing in the HVS [120]. This means that all techniques attempt-
ing to speed up the rendering of every single frame separately cannot account for the eye
sensitivity variations resulting from temporal considerations. Effectively, computational
efforts can be easily wasted on processing image details which cannot be perceived in the
animated sequence. In this context, a global approach involving both spatial and temporal
dimensions appears promising and is a relatively unexplored research direction.

In this work, we present a framework for the perceptually-based accelerated render-
ing of animated sequences. In our approach, computation is focused on those selected
frames (keyframes) and frame fragments (inbetween frames), which strongly affect the
whole animation appearance by depicting image details readily perceivable by the hu-
man observer. All pixels related to these frames and frame fragments are computed using
a costly rendering method (we use ray tracing as the final pass of our global illumina-
tion solution), which provides images of high quality. The remaining pixels are derived
using inexpensive Image-Based Rendering (IBR) techniques [72, 67, 92]. Ideally, the

1written by Karol Myszkowski
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differences between pixels computed using the slower and faster methods should not be
perceived in animated sequences, even though such differences can be readily seen when
the corresponding frames are observed as still images. The spatiotemporal perception-
based quality metric for animated sequences is used to guide frame computation in a fully
automatic and recursive manner.

In the following section, we recall briefly basics of IBR techniques, and we show their
non-standard applications in the context of animation walkthrough. Then we propose our
animation quality metric, and we show its application to improve efficiency of rendering
animation walkthrough sequences.

6.1 Image-based rendering techniques

In recent years, Image-Based Rendering (IBR) techniques became an active research di-
rection. The main idea behind the IBR is to derive new views of an object based on a
limited number of reference views. The IBR solutions are especially appealing in the
context of photographs of the real-world, because the high level of realism of the derived
frames can be obtained while tedious geometric modelling required by the traditional
(geometry-based) rendering can be avoided. A practical problem with the IBR techniques
is that depth (range) data registered with every image are required to properly solve oc-
clusions which arise when the camera translational motion is involved. For the real-world
scenes this problem can be addressed using costly range scanning devices, or using com-
puter vision methods, e.g., the stereo-pair method, which are usually far less accurate and
robust.

The IBR approach is also used for generated images, in which case the geometrical
model is available, so depth data of high accuracy can be easily obtained. The main
motivation of using IBR techniques for synthetic scenes is rendering efficiency (it is rel-
atively easy to achieve the rendering speed of 10 or even more frames per second on an
ordinary PC without any graphics accelerator [92]). Figure 6.1 depicts the process of ac-
quiring an image for the desired view based on two reference images, and corresponding
depth maps (the distance to the object is encoded in grey scale). At first 3D warping [72]
and reprojection of every pixel in the reference image to its new location in the desired
image is performed. Usually a single reference image does not depict all scene regions
that are visible from the desired view, which results in holes in the warped reference
images. Such holes can be removed by combining information from multiple reference
images during the blending step (in the example shown in Figure 6.1 just two images
are blended), which complements the desired image rendering. This requires a careful
selection of the reference images to cover all scene regions which might be visible from
desired views. For walkthrough animation along a predefined path a proper selection of
reference (keyframe) images is usually easier because of constraints imposed on the cam-
era locations for desired views. We exploit this observation to improve the efficiency of
high-quality rendering of walkthrough animations, which we discuss in Section 6.3.

3D warping [72] has one more application in the context of walkthrough animation
sequences. As a result of the 3D warping of a selected frame to the previous (following)
frame in the sequence, the displacement vector between positions of the corresponding
pixels which represent the same scene detail is derived (refer to Figure 6.2). Based on
the displacement vector, and knowing the time span between the subsequent animation
frames (e.g., in the PAL composite video standard 25 frames per second are displayed)
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reference2

reference1

desired view

object

desired imagewarped reference1 warped reference2

Figure 6.1: IBR: derivation of an image for the desired view based on two reference images.

it is easy to compute the corresponding velocity vector. A vector field of pixel velocities
defined for every image in the animation sequence is called the Pixel Flow (PF) which is
the well-known notion in the digital video and computer vision communities [98]. In this
work, we focus on walkthrough animation sequences that deal exclusively with changes
of camera parameters,2 in which case the PF of good accuracy can be derived using the
computationally efficient 3D warping technique. In Section 6.2.1, we show an application
of the PF to estimate the human eye sensitivity to spatial patterns moving across the image
plane.

frame frame+1frame-1

Figure 6.2: Displacement vectors for a pixel of the current frame in respect to the previous (frame-1) and
following (frame+1) frames in an animation sequence. All marked pixels depict the same scene detail.

2In the more general case of scene animation the PF can be computed based on the scripts describing motion of characters,
changes of their shape and so on [93]. For the natural image sequences sufficient spatial image gradients must exist to detect pixel
displacements, in which case so called the optical flow can be computed [98]. The optical flow computation is usually far less accurate
and more costly than the PF computation for synthetic sequences.
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6.2 Animation quality metric

Assessment of video quality in terms of artifacts visible to the human observer is becom-
ing very important in various applications dealing with digital video encoding, transmis-
sion, and compression techniques. Subjective video quality measurement usually is costly
and time-consuming, and requires many human viewers to obtain statistically meaning-
ful results [100]. In recent years, a number of automatic video quality metrics, based on
the computational models of human vision, have been proposed. Some of these metrics
were designed specifically for video [24, 124], and are often specifically tuned (refer to
[126]) for the assessment of perceivability of typical distortions arising in lossy video
compression such as blocking artifacts, blurring, colour shifts, and fragmentation. Also,
some well-established still image quality metrics were extended into the time domain
[64, 115, 100].

Lack of comparative studies makes it difficult to evaluate the actual performance of the
discussed metrics. It seems that the Sarnoff’s Just-Noticeable Difference (JND) Model
[64] is the most developed, while a model based on the Discrete Cosine Transform which
has been proposed by Watson [115] is computationally efficient and retains many basic
characteristics of the Sarnoff model [116]. In this work, we decided to use our own
metric of animated sequence quality, which is specifically tuned for synthetic animation
sequences.

Before we move on to the description of our metric, we recall basic facts on the spa-
tiotemporal Contrast Sensitivity Function (CSF) which is an important component of vir-
tually all advanced video quality metrics. We show that in our application it is far more
convenient to use the spatiovelocity CSF, which is a dual representation of the commonly
used spatiotemporal CSF.

6.2.1 Spatiovelocity CSF model

Spatio-temporal sensitivity to contrast, which varies with the spatial and temporal fre-
quencies is an important characteristics of the HVS. The sensitivity is characterised by so
called spatiotemporal CSF, which defines the detection threshold for a stimulus as a func-
tion of its spatial and temporal frequencies. The spatiotemporal CSF is widely used in
multiple applications dealing with motion imagery. One of the most commonly used ana-
lytical approximations of the spatiotemporal CSF are the formulas derived experimentally
by Kelly [55]. Instead of experimenting with flickering spatial patterns, Kelly measured
contrast sensitivity at several fixed velocities for travelling waves of various spatial fre-
quencies. Kelly used the well-known relationship of equivalence between the visual pat-
terns flickering with temporal frequency!, and the corresponding steady patterns moving
along the image plane with velocity~v such that [113]:

! = vx�x + vy�y = ~v � ~� (6.1)

wherevx andvy denote the horizontal and vertical components of the velocity vector~v,
which is defined in the image planexy, and�x and�y are the corresponding components
of the spatial frequency~�. Kelly found that the constant velocity CSF curves have a very
regular shape at any velocity greater than about 0.1 degree/second. This made it easy
to fit an analytical approximation to the contrast sensitivity data derived by Kelly in the
psychophysical experiment. As a result, Kelly obtained the spatiovelocity CSF, which he
was able to convert into the spatiotemporal CSF using equation (6.1).
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We use the spatiovelocity CSF model provided by Daly [22], who extended Kelly’s
model to accommodate for the requirements of current CRT display devices (characterised
by the maximum luminance levels of about 100cd=m2), and obtained the following for-
mula:

CSF (�; v) = c0(6:1 + 7:3j log(
c2v

3
)j3)c2v(2�c1�)

2 exp(�
4�c1�(c2v + 2)

45:9
) (6.2)

where� = k~�k is the spatial frequency in cycles per degree,v = k~vk is the retinal velocity
in degrees per second, andc0 = 1:14, c1 = 0:67, c2 = 1:7 are coefficients introduced by
Daly. In [22, 80] more extended discussion on estimates of the retinal velocity is available,
which takes into account the eye natural drift, smooth pursuit, and saccadic movements.

Although, the spatiotemporal CSF is used by widely known video quality metrics, we
chose to include the spatiovelocity CSF to our animation quality metric. In this design
decision, we were encouraged by an observation that it is not clear whether the vision
channels are better described as spatiotemporal (e.g., Hess and Snowden [48] and many
other results in psychophysics) or spatiovelocity (e.g., Movshon et al. [76] and many
other results especially in physiology). Also, accounting for the eye movements is more
straightforward for a spatiovelocity CSF than for a spatiotemporal CSF [22]. Finally,
the widely used spatiotemporal CSF was in fact derived from Kelly’s spatiovelocity CSF,
which was measured for moving stimuli (travelling waves). However, the main reason
behind our choice of the spatiovelocity CSF is that in our application we deal with syn-
thetic animation sequences for which it is relatively easy to derive the PF (as shown in
Section 6.1). Based on the PF and using the spatiovelocity CSF, the eye sensitivity can
be efficiently estimated for a given image pattern in the context of its motion across the
image space.

6.2.2 AQM algorithm

As the framework of our Animation Quality Metric (AQM) we decided to expand the
perception-based visible differences predictor for static images proposed by Eriksson et
al. [27]. The architecture of this predictor was validated by Eriksson et al. through
psychophysical experiments, and its integrity was shown for various contrast and visual
masking models [27]. Also, we found that the responses of this predictor are very robust,
and its architecture was suitable for incorporation into the spatiovelocity CSF.

Figure 6.3 illustrates the processing flow of the AQM. Two comparison animation
sequences are provided as input. As for the VDP (refer to Section 4.2.1), for every pair of
input frames a map of probability values is generated as output, which characterises the
difference in perceivability. Also, the percentage of pixels with the predicted differences
over the Just Noticeable Differences (JND) unit [64, 21] is reported. Each of the compared
animation frames undergoes the identical initial processing. At first, the original pixel
intensities are compressed by amplitude non-linearity and normalised to the luminance
levels of the CRT display. Then the resulting images are converted into the frequency
domain, and decomposition into spatial and orientation channels is performed using the
Cortex transform which was developed by Daly [21] for the VDP. Then, the individual
channels are transformed back to the spatial domain, and contrast in every channel is
computed (the global contrast definition [27] with respect to the mean luminance value of
the whole image was assumed).
In the next stage, the spatiovelocity CSF is computed according to the Kelly model. The
contrast sensitivity values are calculated using equation (6.2) for the centre frequency� of
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each Cortex frequency band. The visual pattern velocity is estimated based on the average
PF magnitude between the currently considered frame, and the previous and following
frames (refer to Figure 6.2). As we discussed in Section 6.1, the PF can be estimated
rapidly using the 3D warping technique, which requires access to the range data of current
frame, and the camera parameters for all three involved frames. This means that the access
to well localised data in the animation sequence is required. Since the visual pattern is
maximally blurred in the direction of retinal motion, and spatial acuity is retained in the
direction orthogonal to the retinal motion direction [26], we project the retinal velocity
vector onto the direction of the filter band orientation. The contrast sensitivity values
resulting from such processing are used to normalise the contrasts in every frequency-
orientation channel into the JND units. Next the visual masking is modelled using the
threshold elevation approach [27]. The final stage is error pooling across all channels.
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Figure 6.3: Animation Quality Metric. The spatiovelocity CSF requires the velocity value for every pixel,
which is acquired from the PF. The PF is computed for the previous and following frames along the anima-
tion path in respect to the input frame0 (or frame00 which should closely correspond to frame0).

In this work, we apply the AQM to guide inbetween frame computation, which we
discuss in the following section.

6.3 Rendering of the animation

For animation techniques relying on keyframing the rendering cost depend heavily upon
the efficiency of inbetween frame computation because the inbetween frames usually sig-
nificantly outnumber the keyframes. We use IBR techniques [72, 67] described in Sec-
tion 6.1 to derive the inbetween frames. Our goal is to maximise the number of pixels
computed using the IBR approach without deteriorating the animation quality. An appro-
priate selection of keyframes is an important factor in achieving this goal. We assume that
initially the keyframes are placed sparsely and uniformly, and then adaptive keyframe se-
lection is performed, which is guided by the AQM predictions. At first the initial keyframe
placement is decided, and then every resulting segmentS is processed separately applying
the following recursive procedure.
The first framek0 and the last framek2N in S are generated using ray tracing (keyframes
are shared by two neighbouring segments and are computed only once). Then 3D warp-
ing [72] is performed, and we generate two frames corresponding tokN as follows:
k0N = Warp(k0) andk00N = Warp(k2N). Using the AQM we compute a map of perceiv-
able differences betweenk0N andk00N . As explained in Section 6.2.2, this quality metric
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incorporates the PF between frameskN�1 andkN , and frameskN andkN+1 to account for
the temporal sensitivity of the human observer.
In an analysis process, we first search for perceivable differences in the images of objects
with strong specular, transparent and glossy properties, which we identify using the item
buffer of framekN . Such surfaces cannot be properly reconstructed using basic IBR
techniques described in Section 6.1. Because of that all pixels depicting such objects
for which significant differences are reported in the perceivable differences map will be
recalculated using ray tracing. We mask out all ray-traced pixels from the map. In the
same manner, we mask out holes composed of pixels which could not be derived from
the reference images using 3D warping. If the masked-out difference map still shows
significant discrepancies betweenk0N andk00N then we split the segmentS in the middle
and we process recursively two resulting sub-segments using the procedure described in
the previous paragraph. Otherwise, we blendk0N andk00N (with correct processing of depth
[92]), and ray trace pixels for the remaining holes, and masked out specular objects to
derive the final framekN .
In the same way, we generate all the remaining frames inS. To avoid image quality
degradation resulting from multiple resamplings, we always warp the fully ray-traced
reference framesk0 andk2N to derive all inbetween frames inS.
We evaluate the animation quality metric only for framekN . We assume that derivation of
kN applying the IBR techniques is the most error-prone in the whole segmentS because
its minimal distance along the animation path to either thek0 or k2N frames is the longest
one. This assumption is a trade off between the time spent for rendering and for the
control of its quality but in practice, it holds well for typical animation paths.
Figure 6.4 summaries the computation and compositing of an inbetween frame. We used
a dotted line to mark those processing stages that are performed only once for segmentS.
All other processing stages are repeated for all inbetween frames.

As a final step, we apply a spatiotemporal antialiasing technique, which utilises the PF
to perform motion-compensated filtering (refer to [80] for more details).

On the Web page located under the URL:
http://www.u-aizu.ac.jp/labs/csel/aqm/ ,
we provide the walkthrough animation sequences which result from our techniques of
adaptive keyframe selection guided by the AQM predictions.
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Important Issues

Section by:

Scott Daly

Digital Video Department
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Outline

■ Overview of Visual Model Design and Approaches

■ Basic Spatio-temporal properties of detection by the Visual System

■ State-of-the-art visual distortion metrics:

� Spatial and Chromatic:
–         VDP
–         Sarnoff (Lubin and Brill)
–         Efficiency Versions

�  Spatiotemporal (Motion)
– Motion Animation Quality Metric

■ Validation of metrics:

� Modelling published psychophysical data

� Testing with system-based test targets

� Testing in actual applications
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3

Visual Model Design and Approaches

Visual Modeling utilizes published work from the following fields of basic research:

■ Anatomical
� Optics of eye

� Sampling structure of retina

� Cellular interconnections of visual pathway

■ Physiological
� Functional behavior of individual cells

� Functional behavior of regions in

� Data primarily from electrophysiology experiments (measurements of electrical responses of neurons)

� Retina is analog up to ganglion cells

� For remaining visual pathway, information is conveyed with neural spikes (i.e, digital, like PCM)

■ Psychophysical
� Experiments using human observer responses

� Used to test theories based on physiology and anatomy

� Signal detection theory and signal processing used to model psychophysical results

� Threshold (can or cannot see signal) vs. Suprathreshold (rank magnitude of signal)

� Empirical results (without theory) also useful for visual optimization of engineering efforts

4

Types of Visual Models

■ Mathematical, quantitative descriptions of  visual response under varying parameters

Historical Examples:
� CIELAB  standard lightness response (1976):

L* = 116(Y/YN)1/3 - 16 ,                           Y is luminance,                         YN is luminance of white point

� Contrast Sensitivity Function (CSF) = spatial frequency response   (Mannos & Sakrison ‘74)

CSF(u,v) = 2.6*(0.0192 + 0.144*r1/2)*exp(-{0.144*r 1/2} 1.1)      (u, v = horizontal and vertical frequencies)

r = (u2 + v2)1/2         (radial frequency)

■ Image processing models of visual thresholds and appearance (simulations)

Historical Example:
� Visual response in retina (Normann & Baxter ‘83)

IM A GE

LO G  I Θ

R =  I/(I+ S )

S IM U LATE D
R E TIN AL 

R E SP ON S E



3

5

Ways to use visual models

■ Visual Analysis:  of complete imaging systems or system components
� provide basic understanding, limitations, and opportunities

� typically extrema parameters of visual system are used

examples:

� maximum spatial frequencies that can be seen (cut-off frequency) to set needed resolution

� maximum temporal frequencies for setting frame update rates

� minimum gray level changes for setting bit-depth

� minimum noise levels

■ Visual Optimization :  used to improve existing designs
� use visual models of key aspects relevant to application like frequency response, luminance response...

� image capture systems: Color Filter Array (CFA) algorithms, field-sequential approaches...

� image processing algorithms: compression, enhancement, watermarking, halftoning,….

� display design: new triad patterns, subtriad addressing, ….

■ Visual Metrics:  used to compare visual effects on actual images rather than test patterns
� Image Fidelity: whether any distortions are visible compared to a benchmark system

                                may vary locally throughout image to help engineers improve system

� Image Quality: a graded scale, may not need benchmark so it can be absolute assessment

6

Properties of the Visual System

■ This talk will proceed through key properties
of the Visual System

■ Properties dissected along these dimensions:
� Luminance Level

� Spatial Frequency

� Local Spatial Content

� Temporal Frequency

� Motion

� Global Color

� Eccentricity
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Properties of Visual System: Luminance Nonlinearity

■ Luminance proportional to photon flux = “Linear”

■ Pixel and surround effects
� Photoreceptor and neighboring cells

� Grey-level nonlinearity (instantaneous)

� Light Adaptation

IMAG E
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Properties of Visual System: Luminance Nonlinearity

■ Local cone model (ignore PSF and eye movements)
� Visual response in retina close to cube root (~L*)  for practical video light levels

� Cube-root domain is close to gamma-corrected domain ( L1/3 ~= L1/2.4)
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Properties of Visual System: Luminance Nonlinearity: Example

■ Use gamma-corrected domain to process images (or local cone, L*, or cube-root)
� For light levels in typical video range (50-200 cd/m2)

� Technique works well for quantization, compression, watermarking
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■ For AC signals contrast is used

■ Linear Amplitude of signal in luminance units does not match perception

■ Contrast of signal is much better match
� Takes into account signal relative to its mean level

� Michelson contrast:

C = (LMAX  - LMIN) /(LMAX + LMIN )

   = (LMAX - LMEAN)/ LMEAN

■ Contrast behaves closer to logarithmic

■ Sensitivity, S, analogous to gain
� slope of visual response

S = 1/ CT

CT = Threshold Contrast

Properties of Visual System: Luminance Contrast
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Properties of Visual System: Spatial Frequency

■ Spatial behavior constant with visual angle (degrees)

■ Spatial frequencies specified in cycles/degree (cpd, cy/deg)

■ Spatial frequency behavior described with CSF (contrast sensitivity function)
� Similar to OTF of optics, MTF of electrical systems, but it is nonlinear and adaptive

� Measured with psychophysics

■ One of the most useful, and widely used properties of visual system

■ CSF changes with light adaptation level

■ But most practical applications are in range

       of top curve >100 cd/m2

0.0001 cd/m2

         Log spatial frequency (cpd)
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Properties of Visual System: Spatial Frequency

■ Mapping visual spatial frequencies to physical or digital frequencies
� Physical frequencies, examples = cy/mm, dpi, etc.  (when display is known)

� Digital frequencies = cy/pix, cy/radian, etc

■ Since viewing distance used to relate degrees to object size, it is important in applying CSF
� For physical frequencies, specify distance in physical units

� For digital frequencies,  specify distance in units of pixels (old way used multiples of picture heights)
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Properties of Visual System: Spatial Frequency

■ 2D frequencies important for images

■ 2D CSF is not rotationally symmetric (isotropic)

■ Lack of sensitivity near 45 degrees, called the oblique effect
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Properties of Visual System: Spatio-Chromatic Frequency

■ Color is captured in retina by LMS cones (Long, Middle, Short wavelengths ~= R,G,B cones)

■ But converted by ganglion cells and LGN to opponent color representation

■ L achromatic channel, R-G channel and B-Y channel (difference occurs in nonlinear domain)
� CIELAB A* ~= R-G channel,  B* ~= B-Y channel

■ R-G and B-Y channels have no luminance (isoluminant)

■ R-G and B-Y spatial frequency bandwidths and sensitivities are lower than L CSF
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Properties of Visual System: Local Spatial Content

■ Local spatial content of image affects local
visibility within image

■ Common engineering knowledge:
� Busy or complex images hide compression or other

distortions

� Noisy images hide distortions

■ But effect is complex:
� High frequencies don’t hide low frequencies

� Easy to see orthogonal artifacts on edges, such as
aliasing artifacts

� Luminance can sometimes hide color structure, but
sometimes can help see it

■ Quantitative description referred to as “Masking”

■ This property arises from the structure of the visual
cortex, shown to right

16

Properties of Visual System: Local Image Contrast: Masking

■ Typical result from
masking by noise

■  Noise is narrowband
� limited radial freq

� limited orientation

■ Little masking unless
frequencies of mask
are close to those of
signal

�  radially

� orientation

■ Effect also only occurs
locally, with spatial
extent depending on
frequency
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Properties of Visual System: Masking: Frequency Structure

■ Majority of psychophysical masking results consistent with visual system modeled as bank
of filter-detectors as shown below to right:

■ Key Features of frequency “channels”: Dyadic radial frequencies, orientation selectivity,
baseband, space frequency localization

■ Electrophysiology measures of common
orientation response in visual cortex

� gray lines = common orientation

� black lines = orientation boundary

18

Properties of Visual System: Masking: Frequency Structure

■ Channels overlap, and have the Fourier symmetry of real signals
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Properties of Visual System: Frequency Structure

  Wavelet Compression (JPEG2000)
�  Close in structure to the visual filter bank (H and V dyadic), Cartesian-separable wavelet
�  Problems with diagonal oriented band in wavelet due to cartesian-separable approach

�      Visual System Frequency Decomposition       Wavelet Algorithm Frequency Decomposition
                               (Cortex Transform)                                                                (JPEG2000)

20

■ Masking within “channel” = band of wavelet

■ Psychophysical results shown to the right:
� Dashed = Noise masking (phase incoherent)

� Solid     = Sine Masking (phase coherent)

■ Results are ~same for all frequencies once
normalized by frequency’s threshold = 1/CSF

■ Results modeled as bandpass filter followed by
nonlinear transducer function of contrast

Properties of Visual System: Masking: Transducer Function
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■ Transducer function, f (C), derived from integral
of inverse threshold data, T(C):

� Response:

� Threshold:

� Transducer function:

■ Transducer functions derived from sine masking
and noise masking data are shown to the right

� Note that plot is now with linear axes
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Properties of Visual System: Temporal Frequency

■ CSF for temporal frequencies also has been
measured and modeled

■ To right is shown temporal CSF for different light
adaptation levels for luminance

� Top curve is best for mid-bright display
applications

■ Opponent Color signals temporal CSF also has
about 1/2 the bandwidth and sensitivity of the
luminance

22

Properties of Visual System: Spatiotemporal and Motion

■ Motion occurs in area
V5 of visual cortex

■ Most psychophysical
data measures spatio-
temporal CSF

■ Test signal is product of
spatial and temporal
frequency

� Standing Wave

■ Data shows max visible
temporal frequency near
50 cy/sec

� Thus 60 fps usually
causes no visible
flicker

� Movie film at 24 fps
causes visible flicker,
so projectors shutter
each frame 2 or 3
times to increase
fundamental temporal
frequency
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Properties of Visual System: Motion: Eye Movements

■ Velocity as important as flicker

■ Smooth tracking eye movements can reduce image
velocity on the retina

■ Smooth tracking data  and model shown below

■ ω = vρ
� ω =temporal frequency v=velocity ρ=spatial frequency

■ Rotation into spatiotemporal CSF including effects of
eye movements

� Can be used to assess smoothness of motion
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Properties of Visual System: Global Color

■ Field of Color Reproduction, many standards
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Properties of Visual System: Eccentricity

■ Eccentricity : Position in visual field

� 0 degrees eccentricity refers to where your eyes are pointed,
corresponds to fovea in retina

� 90 degrees eccentricity is near edges of visual field (periphery)

■ Spatial Bandwidth of eye reduces in periphery

■ Cones are densely packed in fovea : high spatial sampling -> high
bandwidth

■ They become more less dense as eccentricity increases
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Properties of Visual System: Eccentricity

■ How eccentricity changes across image as viewing distance changes (left)
� Assuming viewer looking at center of image (pixel = 320)

■ Eccentricity model predictions of how visual sensitivity varies across image  (right)
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State of the Art Metrics

■ Spatial and Chromatic:
�   VDP

�   Sarnoff model

�   Efficiency Versions
– Bradley’s wavelet VDP for compression
– Mark Bolin
– USC Hadamard model

■ Spatiotemporal:
� Motion Animation Quality Metric

28

VDP = Visible Differences Predictor

■ Models basic visual effects of amplitude variations, spatial variations, and signal
dependent variations sensitivity in three separate stages:

■ Amplitude variations:  modeled as local cone model described previously, entire image is
processed through as point-nonlinearity

■ Spatial Variations: the 2D CSF is modeled as a global filter, filter described previously

■ Signal Dependent variations (masking) described in block diagram below:
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VDP = Visible Differences Predictor: Channel Design

■ Cascade of Isotropic radial filters (DOM filters) with fan filters

■ Radial filters shown to right , sum of all filters = 1.0 for reversibility in applications

■ Resulting dissection of frequency plane:

30

VDP = Visible Differences Predictor

■

■ Signal difference and masking
level signals are input to Weibull
psychometric function to give a
probability detection for each
position in each channel

■ Probabilities across channels are
summed at each location with
probability summation

■ Key effect of masking, while caused by transducer function, described previously, is
actually modeled as separate image processing pathway created in addition to signal
pathway

■ Physiologically unrealistic, but makes easier to test and fine tine to published
experiments,

■ Masking modeled with possibility to include learning effects, resulting in decreasing
masking slope
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Sarnoff Model

■ Spatial portion originally developed by Jeff Lubin, Color added by Michael Brill

32

Sarnoff Model

■ Visualization:

■ JNDs

■ no contrast polarity,

■ therefore no spatial gauge of appearance
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Key differences between VDP and Sarnoff Models

■ See paper by Li, Meyer, Bolin

■ Scope:
� VDP is threshold and achromatic, channel filters sum to 1.0 so is reversible for applications

such as watermarking, lossless compression, graphics rendering

� Sarnoff is supratheshold, and now has color and temporal, meant as metric more than as
model to place within applications

■ Physiological Soundness
� VDP channels are defined in digital frequency domain, engineering approach

� Sarnoff channels defined in cy/deg domain, and image must be resized for mapping

■ Efficiency in implementation
� VDP least efficient in memory

� Sarnoff least efficient in computations

■ Accuracy in predicting psychophysical results
� VDP most tested on core psychophysical experiments

� Sarnoff most tested on practical distortions at suprathreshold

■ Visualization Strategy
� VDP uses contrast polarity, allows shape of distortion to be simulated, but can’t imply

suprathreshold distortions (except where proportional to area)

� Sarnoff used JND scale, magnitude only, can do suprathreshold but shapes of distortions not
simulated

34

Key Visual Model detail differences

■ VDP model cone nonlinearity, Sarnoff models local contrast

■ VDP has no spatial pooling other than channel filter support

■ Sarnoff has front-end optics to affect LPF before any neural amplitude nonlinearity
(correct physiologically), VDP consolidates similar visual effects into basic stages

■ Sarnoff has Hilbert pair for each channel (a sine and cosine phase), VDP has all
phases combined in each channel (but models phase uncertainty separately)

■  more …..
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Efficiency Versions

■ Bradley’s wavelet VDP for compression

■ Mark Bolin’s Hadamard-based model for computer graphics

■ USC Hadamard model for signal processing

36

Moving Images, Spatiotemporal channels

■ Temporal channels as well as spatial
� Sustained and Transient

� Some evidence for 3rd temporal channel at low SFs

� How are spatio and temporal channels configured:

� Line with slope = 1, 1 deg/sec

� Solid lines = nondirectional, dashed lines = directional

� Version 4 is consistent with most amount of data = velocity channels + flicker channel

■ Spatiotemporal separability

■ Spatiovelocity separability
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Spatiotemporal : Sarnoff Model

■ Spatial model is basically doubled, each one having different temporal prefilter

■ No accounting for eye movements

38

Motion Animation Quality Metric

■ Spatiovelocity Approach

■ Allows for accounting for eye-movements

■ Details and illustrations by Karol here
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Validation of Metrics

■ Testing of the visual model is best to proceed from final detection stage toward front-
end processing (reverse visual pathway)

■ Example of testing given for VDP (achromatic and still images)

■ Fit of model to published psychophysical data

40

Validation of Metrics

■ Each of the following tests will explain
what is being tested, and I have slide
illustrations of the exact tests and the
VDP results in image form showing
where detection actually occurs (as
indicative of performance of most
current visual models )

■ Tests psychometric function, and it the
ability of all preceding components to
not adversely affect its modelling
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Validation of Metrics

■ Test masking function and integration
of energy within a channel

■ Tests CSF value and amplitude
nonlinearity calibrations for 12 cpd
single frequency

42

Validation of Metrics

■ Tests ability model contrast masking where
signal and mask are both narrowband and
phase coherent signals
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Validation of Metrics

■ Test radial frequency channels

■ Also tests interaction of psychometric
function, probability summation, and CSF
effects

44

Validation of Metrics

■ Tests shape of fan filters,

■ Also interaction of radial fan cascade to
create cortex filter

■ as well as off-frequency detection, and
probability summation
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Validation of Metrics

■ Here, the oriented noise has both
orientations to minimize off-frequency
looking

■ also tests similar model features as
previous test

46

Validation of Metrics

■ Tests CSF and its light adaptation
capabilities

■ Also interaction of CSF with all post-CSF
model components
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47

Validation of Metrics

■ Deviations from CSF model expectations

■ Error show underlying discrete channels,
when true HVS has more of a continuum of
channels

48

Validation of Metrics

■ Tests ability to predict the
effects of noise on the CSF

■ Tests masking in conjunction
with CSF
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49

Validation of Metrics

■ Tests amplitude nonlinearity in conjunction
with rest of model

■ Experiment is the detection of sharp
luminance edge at different gray levels

50

Validation of Metrics

■ Tests entire model

■ Practical test of ability to see blur as a
function of contrast
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51

Validation of Metrics

■ Vernier acuity tests entire model

■ Practical importance to visibility of
jaggies , form various aliasing/
antialiasing tradeoffs.

52

Validation of Metrics

■ Testing of Models in actual image applications

■ Demos in 35mm slide and S-VHS formats


