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Abstract

We present a review of perceptual image quality metrics and their application to still image compression. The review
describes how image quality metrics can be used to guide an image compression scheme and outlines the advantages,
disadvantages and limitations of a number of quality metrics. We examine a broad range of metrics ranging from simple
mathematical measures to those which incorporate full perceptual models. We highlight some variation in the models for
luminance adaptation and the contrast sensitivity function and discuss what appears to be a lack of a general consensus
regarding the models which best describe contrast masking and error summation. We identify how the various perceptual
components have been incorporated in quality metrics, and identify a number of psychophysical testing techniques that
can be used to validate the metrics. We conclude by illustrating some of the issues discussed throughout the paper with
a simple demonstration. ( 1998 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Wir geben einen U® berblick über Wahrnehmungsmodelle und ihre Anwendung auf Bildkompression. Der U® berblick
beschreibt wie Ma{e der Bildkompression eine Kompressionsmethode lenken können, und deutet Vor- und Nachteile
sowie Einschränkungen mehrerer Bildqualitätma{e an. Wir überprüfen einen Umfang Kompressionsma{e, von ein-
fachen mathematischen Ma{en bishin zu vollständigen Wahrnehmungsmodellen. Wir heben eine beträchtliche Schwan-
kung der vorgeschlagenen Helligkeits- bzw. Kontrastempfindlichkeitsfunktionen vor, und erörtern eine scheinbare
Mangel an U® bereinstimmung über die Grundsätze der Kontrastmaskierung und der Fehlersummierung. Wir erörtern
dann die Gültigkeitsprüfung dieser Modelle, und besprechen mehrere psychophysische Testverfahren, die die vorge-
schlagenen Modelle vergleichen können. Zum Schlu{ veranschaulichen wir die vorangegangene Diskussion mit einer
einfachen Vorführung. ( 1998 Elsevier Science B.V. All rights reserved.

Résumé

Nous présentons un court état des qualités métriques de perception visuels et leur application sur la compression
d’images fixes. Cet état de l’art décrit comment des mesures de la compression des images peuvent être utilisées pour
guider la phase de compression et souligner les avantages, inconvenients et limitations de certaines mesures de la qualité
de l’image. Nous examinons un vaste choix de mesures de complexité diverse allant de la simple mesure mathématique
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à la perception complète du modèle. Nous mettons également en valeur les variations dans les fonctions existantes de
luminescence et de sensibilité au contraste. Nous evoquons ensuite l’apparant manque de consensus général sur les
principes sous-jacents du masquage du contraste et la sommation d’erreurs. Nous discutons ensuite de la manière dont
ces modèles ont été validés et nous recommendons un nombre de techniques de tests psychologiques qui devraient être
utilisées pour comparer ces modèles. Nous concluons en illustrant à l’aide d’une démonstration simple, certains des
problèmes présentés dans l’article. ( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

After years of image compression research, one
of the main problems hindering further develop-
ment of compression schemes is the lack of a well-
accepted metric for the prediction of image quality.
The most commonly used metrics still remain
simple, mathematically defined measures such as
peak signal to noise ratio (PSNR) or mean squared
error (MSE). When the quantisation is varied on
a single image in a straightforward manner, such as
by varying the scale factor in JPEG compression,
these metrics do correlate with image quality. How-
ever, they often fail to predict image quality when
different compression techniques are used. Even
more importantly, the metrics do not accurately
predict visual quality across a set of images with
varying content such as edges, textured regions,
and large luminance variations. In response to the
failure of standard mathematical metrics, image
quality metrics that incorporate perceptual factors
to varying degrees have been proposed. The num-
ber and variety of these perceptual metrics de-
scribed in the literature is stunning. Some only use
the contrast sensitivity function to weight the im-
portance of spatial frequencies before computing
errors, while others are complex multiple frequency
channel models replete with non-linearities. Usu-
ally, perceptual metrics are reported to provide
more consistent estimates of image quality than
mathematically defined metrics when artefacts are
near the visual threshold. However, the implemen-
tation of the metrics is often so complex, and the
psychophysical testing required to validate them so
time consuming, that a comprehensive validation
and direct comparison of performance between
metrics is rarely performed. There are, however,

some exceptions to this [8,31,57,72]. When tests are
performed, they often illustrate disappointing inac-
curacies in the predictions of the perceptual quality
metrics, albeit when artefacts are significantly
above the visual threshold. Our knowledge of vis-
ual factors continues to progress, though areas of
controversy which affect observer quality ratings
need further investigation, particularly contrast
masking, summation of distortion artefacts, search
strategies, and attention. Because of rapid progress
in recent years, one can expect that a model that
provides acceptable performance over a wide range
of image quality will soon be demonstrated.

There are a number of notable reviews of image
quality metrics. In particular, Ahumada [2] pro-
vides a succinct summary of perceptual metrics
applied to image quality research. Eskicioglu [27]
surveys a number of quality metrics, but concen-
trates primarily on mathematically oriented met-
rics. Jayant et al. [37] describe how perceptual
characteristics have been applied to signal com-
pression, but concentrate on audio rather than im-
age compression. Daly [17] provides a useful
discussion of a number of visual factors which
should be incorporated in a perceptual metric de-
signed to predict image quality.

The purpose of this paper is to discuss image
quality metrics as applied to image compression.
We review how the metrics are used in image com-
pression schemes, discuss some of the visual factors
which are incorporated in the metrics, describe
a number of quality metrics commonly used by
image compression researchers, and discuss the dif-
ficulties associated with validating them in psycho-
physical experiments. We conclude with a simple
demonstration which illustrates the difficulty that
metrics have in predicting image quality.
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Fig. 1. Optimising quantisation using a quality metric defined in the space domain.

Fig. 2. Optimising quantisation when the quality metric is de-
fined in the transform domain.

2. The utility of image quality metrics

One of the primary uses of an image quality
metric is to accurately measure the visual quality of
the compressed image during the compression pro-
cess without feedback from the user. Without
a metric to assess quality, it is often left to a human
observer to manually adjust the quantisation level,
usually by multiplying the quantisation matrix with
a scale factor, until an acceptable level of visual
quality is reached. Ideally, the quality metric
should be able to predict the visually lossless com-
pression point as well as provide a perceptually
meaningful scale when distortions are significantly
above the visual threshold. Such a metric should be
validated using psychophysical experiments, a task
which can be surprisingly difficult (see Section 5).

Selectable quality image compression can be im-
plemented by feeding the original image and the
compressed image into a quality computation, as
illustrated in Fig. 1. The output of the perceptual
model guides the quantisation until the desired
level of perceptual quality is achieved. This process
can be implemented using any quality metric,
though the efficiency of computation is rather low
when each iteration requires the application of
quantisation, the inverse transform, and computa-
tion of the metric. Computational efficiency be-
comes a significant issue when using a perceptual
metric, because the number of computations will
be significantly greater than most mathematical
metrics.

The issue of computational efficiency has been
addressed by Safranek and Johnston [73] and
Watson [89,90], both of whom implemented a per-
ceptual model in the transform domain as illus-
trated in Fig. 2. This approach is more efficient as
the computations are performed in the linear trans-

form domain and the transform need only be ap-
plied once. The approach has been modified to
work with other linear transforms such as the lap-
ped orthogonal transform (LOT) and the wavelet
transform [26]. The primary limitation of this ap-
proach is that linear transforms used in compres-
sion schemes have deficiencies with respect to the
spatial frequency characteristics of human visual
channels which can lead to mis-predictions of im-
age quality.

An image quality metric should be able to char-
acterise spatial variations in quality across an im-
age. This is because the visibility of artefacts is
highly dependent upon local image content. For
this reason, many perceptual metrics provide a 2-D
quality map, assigning a level of perceived distor-
tion to each location in an image. The ability to
predict local image quality in a 2-D map signifi-
cantly improves spatially adaptive compression
techniques because it allows one to spread quan-
tisation noise over an image in a perceptually uni-
form manner. This is particularly appropriate for
any image that varies in spatial content, such as an
image which contains texture, sharp edges, smooth
areas, or large intensity differences. Rosenholtz
and Watson [69], Tran and Safranek [83], and
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Hontsch and Karam [34,35] describe examples
of perceptually guided adaptive compression
schemes.

2.1. Some difficulties associated with the design and
validation of an image quality metric

While a 2-D quality map is useful as part of an
adaptive compression process, a selectable quality
compression scheme should only require the user to
specify a single quality number for the entire image.
As a result, there is a need to collapse the 2-D
quality map to produce a single number that re-
flects overall image quality. Several approaches
have been proposed to do this, ranging from taking
an average of local error measurements [13], per-
forming a nonlinear summation of errors over an
entire image and across all frequency bands
[89,95], to specifying quality in terms of the worst
quality region in the image [17,26,47]. All of these
2-D to 1-D reductions are based on reasonable
arguments in terms of how an observer will rate
image quality, but are somewhat artificial unless
the observer is instructed to rate image quality in
a corresponding fashion in validation experiments.
After all, an observer is easily able to see the differ-
ences in quality across the image and can change
the rating technique depending on what is required
in the psychophysical experiment. As a result, the
predictive ability of a quality metric, when ex-
pressed as a single number for an entire image, is
closely tied to the psychophysical methods used to
validate the metric.

Care must be taken in using and validating
a quality metric at high compression ratios, when
compression artefacts are significantly above the
threshold of visibility. In this situation, it is possible
to undertake the laborious process of a full multi-
dimensional scaling analysis to assess the quality
dimensions for suprathreshold compression arte-
facts [4,49], but the quality dimensions obtained
from this analysis will depend on the compression
artefacts present in the image set used in the analy-
sis, i.e., a multidimensional scaling analysis per-
formed only with a set of JPEG compressed images
would not produce a quality dimension which in-
cludes wavelet ringing artefacts. This limits the gen-

erality of any model developed using this tech-
nique. Furthermore, the objectionability of differ-
ent types of artefacts will depend on the personal
preference of the observer [4,49]. As an example,
a blocking artefact from JPEG compression may
be more acceptable to one group of observers (such
as employees of companies who sell JPEG com-
pression hardware), than it would be to a different
group of observers (such employees of companies
who sell wavelet compression hardware). One can
ignore the differences between observers, and form
a model based on the preferences of an “average”
observer, in which case there will always be a resid-
ual variability in the prediction of image quality.
Attempts to deal with preferences for suprathres-
hold artefacts include directly incorporating them
into the model [39,51], or by ignoring them. Most
mathematical metrics take the latter approach, as
do perceptual metrics based on threshold visual
factors [17,47,89]. For the case of perceptual
metrics, a metric designed using threshold visual
factors, and validated using threshold visual experi-
ments, can be expected to provide accurate predic-
tions of quality at distortion ranges near the visual
threshold, but will not always provide good predic-
tions of quality when distortions reach levels where
observer preferences become a significant factor.
Unfortunately, there is no consensus regarding the
distortion levels at which observer preferences be-
gin to play a significant role.

3. Visual factors used in perceptual image
quality metrics

There are a number of well accepted perceptual
factors which influence the visibility of distortions
in an image. Admittedly, even a perceptual at-
tribute as simple as the shape of the contrast thre-
shold curve will change depending on the stimulus
configuration used to measure it, but the import-
ance of each of the characteristics listed in this
section is well recognised, even if the particular
implementation may vary between perceptual met-
rics. Our knowledge of perceptual factors is patchy,
with well accepted models for visual factors such as
contrast sensitivity functions and luminance ad-
aptation, and incomplete models for perceptual
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Fig. 3. The CSF for the block DCT basis functions was gener-
ated from the model of Ahumada and Peterson [1] with
a 20 cd/m2 background luminance. Ahumada and Peterson [3]
suggest modifying the curves to be a low pass function of spatial
frequency (dashed lines) to ensure that low frequency artefacts
will not be more visible as viewing distance increases. The CSF
for wavelet basis functions was generated from the model of
Watson et al. [94]. This paper defined contrast threshold in
terms of grey levels, so luminance contrast was estimated by
assuming that each grey level step is approximately 0.321 cd/m2

on the 20 cd/m2 background luminance used in the experiments.

factors such as contrast masking and error summa-
tion. The purpose of this section is to discuss a few
of the primary perceptual factors used in perceptual
quality metrics, and to concentrate on the differ-
ences in interpretation and implementation of these
factors.

3.1. Contrast sensitivity functions

The contrast threshold function (CTF), or its
inverse, the contrast sensitivity function (CSF), is
the most widely used perceptual attribute for both
simple and complex image quality metrics. The
CTF defines the contrast at which frequency com-
ponents become just visible. A reasonable inter-
pretation is that the CTF specifies the internal
noise levels across spatial frequencies, thus identify-
ing the relative amount of quantisation that can be
applied near the visibility threshold for the same
perceptual error. Models of contrast sensitivity
curves abound in the literature, and it is only neces-
sary for the designer of a perceptual quality metric
to pick one of them [1,9,14,67,94].

An excellent summary of contrast sensitivity
curves for various stimulus configurations is
provided by Peli [59], who measured contrast sen-
sitivity functions for sine waves with different aper-
tures and Gabor patches of various bandwidths
using a variety of temporal windows. The curves
illustrate that differences in temporal presentation,
stimulus, and stimulus aperture can significantly
change the shape of the CSF. In particular, the
assumption that the CSF is band-pass with spatial
frequency is usually obtained only for sinusoids
within a fixed spatial aperture. The CSF measured
for Gabor patches with an octave frequency band-
width is typically more of a low-pass function of
spatial frequency [59,88]. As examples, Fig. 3 illus-
trates the CSF for block DCT basis functions
and wavelet basis functions for a background
luminance of 20 cd/m2 [1,62,94]. Note the signifi-
cant difference in shape at low frequencies. The
question is whether to use the low frequency at-
tenuation which arises in contrast sensitivity ex-
periments conducted under fixed aperture
conditions. When used in a perceptually optimised
compression scheme, this low frequency attenu-

ation implies that quantisation can be increased for
low spatial frequencies relative to mid range spatial
frequencies. However, increasing the viewing dis-
tance will shift the low frequency artefacts to spatial
frequencies for which the observer has greater sen-
sitivity. Thus, an artefact which is invisible for
a given viewing distance can become visible when
viewing distance is increased. Ahumada and Peter-
son [3] suggest that the best approach, in the
context of image compression, is to assume a low-
pass function (illustrated by dashed lines) to ensure
that quantisation artefacts will become less visible
for increasing viewing distances.

3.2. Luminance adaptation

The second most commonly used perceptual at-
tribute is luminance adaptation. It is well known
that sensitivity to intensity differences is dependent
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on the local luminance in regions of the image.
The basic model for this dependence is the
Weber—Fechner law, which states that sensitivity to
luminance differences in a stimulus is proportional
to the mean luminance of the stimulus (contrast
threshold remains constant for increasing
luminance levels). The Weber—Fechner regime
holds for background luminance levels above ap-
proximately 10 cd/m2 [36]. Below this level the
contrast threshold increases as luminance de-
creases. The importance of luminance masking for
compression purposes is that as local luminance
increases, an increased level of quantisation can be
tolerated. In the Weber—Fechner regime, quantisa-
tion of frequency components can be approxim-
ately doubled for every doubling of the background
luminance for the same perceptual error.

The more interesting aspect of the luminance
adaptation is how it is incorporated in the various
models. Luminance adaptation can be imple-
mented either in the spatial domain [9,17] or in the
frequency domain [1,47,58,89]. In the spatial do-
main, luminance adaptation is modelled by sending
the image through a compressive point non-lin-
earity, typically using a logarithmic, cube root, or
square root function before applying the linear
transform. Daly [17] comments that using a logar-
ithmic nonlinearity overestimates visual sensitivity
in low intensity regions and that a cube root non-
linearity is a better model. A frequency domain
implementation of luminance masking is obtained
by dividing the AC coefficients by an estimate of the
local luminance. As an example, Peli [58] and
Lubin [47] implement luminance masking by
dividing the energy in a frequency band by an
estimate of local luminance obtained from low pass
filtered version of the image. Similarly, Watson
[89] scales the frequency coefficients in the block
DCT by an estimate of local luminance obtained
from the DC coefficient in each block. In general,
a spatial domain or frequency domain implementa-
tion of luminance masking will make only a small
impact in predictions of the models, except in cases
where image contrast is large [43], or spatial local-
isation of luminance masking becomes significant.

It is well known that luminance masking is a spa-
tially localised phenomenon, but the effect of vari-
ations between local luminance levels and global

(mean) luminance has not been extensively investi-
gated. Most measurements of contrast sensitivity
are performed with the background luminance
equal to the mean luminance of the stimulus, but in
complex images there are often large differences in
local luminance. One of the few experiments that
allowed for the background luminance to be differ-
ent than the local luminance around the stimulus is
the contrast threshold curve model of Rogers and
Carel [67], also reported in [12,14]. Their results
suggest that when local luminance is significantly
less than the surrounding luminance in the image,
the standard model of luminance masking over-
predicts human visual sensitivity. Fig. 4 shows the
amplitude and contrast threshold for a sinusoid as
the local luminance changes. The top graph illus-
trates the changes in the amplitude threshold when
the average background luminance remains fixed at
50 cd/m2 (¸

t
"50) and the local luminance in the

region of the stimulus varies over a wide range. The
bottom graph illustrates the amplitude threshold
when local luminance varies with the average
luminance (¸

t
"¸

b
). Note the large increase in the

contrast threshold for luminance levels below
10 cd/m2, indicating that the curve exits the
Weber—Fechner region below this point.

An issue which seems to be occasionally forgot-
ten among engineers, though not visual scientists, is
that most psychophysical results are defined in
terms of image luminance (with SI units of candelas
per meter2), not an arbitrary grey level representa-
tion. Because CRT monitors have an expansive
nonlinear mapping between grey levels and
luminance, images are usually represented in
gamma compressed form, i.e., g"255(¸/¸

.!9
)0.45,

where ¸ is displayed luminance, ¸
.!9

is the max-
imum luminance on the monitor, and g is the grey
level. One could define a quality metric in the
gamma domain, but this makes a priori assump-
tions regarding both the display and image repres-
entation. This assumed relationship does not hold
for many applications, and image grey levels may
be in a gamma domain, density domain, reflectance
domain, or film domain with a specific H&D curve.
Printers often operate in a density (log) domain.
Scanners, such as a laser scanner for X-ray film
(LUMISCAN 100, Lumysis Corp Sunnyvale,
CA), may operate in either a density domain, or in
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Fig. 4. Amplitude (top figure) and contrast (bottom figure) thre-
sholds for a sinusoid under two cases from the contrast thre-
shold model of Rogers and Carel [67]. The ¸

b
"¸

t
curves

illustrate the case when the average luminance around the target
is the same as the background luminance for the entire image.
The ¸

b
"50 curves illustrate the case when the background

luminance is constant at 50 cd/m2 and the local average
luminance varies. Luminance masking in most images will have
a curve more analogous to the top curve since the local
luminance varies significantly across most images.

a linear domain if the scanner uses CCD elements.
LCD displays, which are becoming increasingly
common, have a linear mapping between grey level
and luminance. Perceptually linearised displays,

proposed for use in medical imaging applications
[12] have a well defined relationship between grey
level and luminance which is significantly different
than for most CRT monitors. Because the relation-
ship between grey levels and luminance cannot be
guaranteed, we argue that a perceptual quality met-
ric which is to be used for a broad number of
applications should accept a luminance image as
the input and make explicit the grey level to
luminance mapping for specific applications.

3.3. Linear transforms: their use in image
compression and perceptual quality metrics

Most psychophysical evidence suggests that hu-
man vision consists of a number of parallel visual
channels [56]. These channels are selective to spa-
tial frequency with approximately an octave band-
width and to orientation with a sensitivity between
15 and 60 degrees, depending on the stimulus used
in the experiment. A number of requirements and
desirable properties for linear transforms used to
model the frequency selective nature of human vi-
sion have been described in both Watson [87] and
Daly [17]. In summary, they include frequency and
orientation selectivity, linear and/or quadrature
phase, minimum overlap between adjacent chan-
nels (minimal aliasing), unity frequency response,
shift invariance, and scale variancy (small spatial
extent at high frequencies). In addition, a number of
mathematical properties such as invertability and
orthogonality are advantageous. Most linear trans-
forms in common use meet some, but not all, of
these properties. For example, the wavelet trans-
form and other quadrature mirror filters only have
three orientation sensitive channels (0, 90 and
45/135 degrees) and when they are critically sam-
pled, they are not shift invariant. Gabor transforms,
on the other hand, are not easily invertible and do
not normally have unity frequency response. Block
transforms, such as the DCT, are not scale variant,
i.e., high frequencies have large spatial extent, and
are also not selective to diagonal frequencies. Rela-
tively few transforms meet all of these requirements
and the transforms that are commonly used in
image compression usually have more than one
failing. The first transform which did meet all of
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these requirements was the cortex transform [87]
which was used, and subsequently modified, by
Daly [17] in his perceptual metric. More recently,
the shiftable pyramid [76], which uses steerable
filters [30] meets all of the above requirements in
addition to being computationally efficient and self
inverting.

There are slight differences in the implementa-
tion of the linear transforms in the perceptual mod-
els. Daly [17] applies a series of filter stages, namely
a contrast sensitivity filter followed by a frequency
and orientation selective filter bank. This approach
allows one to easily combine existing contrast sen-
sitivity models with different filter banks. Watson
[89], Safranek and Johnston [73], and Chou and
Li [16] simply weight each frequency band by the
contrast threshold of the basis functions in the
transform. The latter approach is more computa-
tionally efficient as well as providing a method of
direct psychophysical validation of the first stages
of the perceptual model, but requires a significant
amount of psychophysical testing to identify the
visual system weighting for each filter band.

3.4. Masking: contrast masking, noise masking,
and mutual masking

Contrast or pattern masking is a phenomenon
whereby a signal can be masked, i.e., its visibility
reduced, by the presence of another signal. In the
context of compression, we are interested in the
ability of image content to mask quantisation
noise. For an image signal to maximally mask
a noise signal, both signals must occur in approx-
imately the same spatial location, be of approxim-
ately the same spatial frequency, and have their
spatial frequencies in approximately the same ori-
entation. Both psychophysical and physiological
experiments of visual masking led to the develop-
ment of perceptual processing models as parallel,
octave bandwidth, and orientation selective visual
channels. Some of this work is detailed in Sakrison
[75] and Mostafavi and Sakrison [52].

Taking advantage of masking in a perceptual
metric is fraught with difficulty, and incorrect pre-
dictions of contrast masking are likely to be a ma-
jor reason why perceptual metrics fail. The reason

for this is that masking results obtained in experi-
ments are highly dependent on masker and target
stimulus used. Masking thresholds will vary de-
pending upon whether the masker/target has nar-
row or broad bandwidth, the target/masker phase,
target/masker orientation, and the familiarity of the
target/masker to the observer. The accepted model
of contrast masking [44,77], estimates the degree to
which a sinusoidal target is masked by the presence
of sinusoidal maskers. This model has since been
modified by Foley [28], Foley and Boynton [29],
Teo and Heeger [81], and Watson and Solomon
[91]. The modifications suggest that masking de-
pends not only on the energy within a band, but
also the energy in bands at other orientations.
These models correctly predict the threshold elev-
ation for contrast detection or contrast discrimina-
tion for a signal, typically a sinusoid or Gabor
patch, in the presence of a masker, a sinusoid or
Gabor patch of a different frequency, phase and
contrast.

Another body of research examined the masking
of a signal (typically a sinusoid) with additive
broadband noise. This research showed that the
elevation of contrast discrimination was propor-
tional to the added noise energy [45,52,60]. Noise
masking experiments predict significantly larger
amounts of masking than found for contrast mask-
ing of narrowband signals. The situation is made
even murkier when considering the results of Swift
and Smith [80], who showed that if an observer
was given enough time to become familiar with
a noise mask, the contrast masking elevation for
noise masks reduced to that of a sinusoid. This
issue was recently reinvestigated by Watson et al.
[92], who used maskers such as a white noise
masker, band-pass noise masker, cosine masker,
and even an image as a masker. They also found
that learning could bring the noise masking effect
down to the same level as the cosine masker, essen-
tially confirming the results of Swift and Smith.
These results suggest that the degree of masking
experienced in local regions in an image will de-
pend on the familiarity of the image to the observer.
When an image is first shown to an observer,
simple image structures such as edges or curves will
have only a small degree of masking compared to
textured regions, even if the energy content is
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similar, because the edge region is simpler and the
observer typically has prior information about
what an edge looks like. A texture is less predictable
and more difficult to learn, and thus one would
expect significant masking in this region. However,
the masking in a textured region will lessen as an
observer becomes familiar with the image through
repeated observations. This presents a problem to
the designer of a perceptual metric, because one
cannot predict the familiarity of an image to the
observer, and thus the amount of contrast masking.
Daly [17] settled on an interesting compromise,
setting the contrast masking parameter for the
base-band (low frequencies) to that for a sinusoid
masker and for middle and high frequencies to that
of a noise like masker. Daly’s rationale is that an
area in an image which contains energy at mid and
high frequencies will be less familiar or predictable,
and thus more difficult to “learn” in the context of
the Swift and Smith [80] and Watson [92] results,
so the image content is better modelled as a noise
like masker. However, for specific instances of im-
age regions consisting of only low frequencies, these
regions are quite predictable and easily “learned”,
even without prior familiarity with the specific im-
age, so masking is better modelled using data based
on sinusoidal maskers. The learning effect also has
significant consequences for the psychophysical
validation experiments. As an image is repeatedly
displayed during an experiment, the observer will
become more familiar with the image, and the level
of masking will reduce as the number of presenta-
tions increase. This means that caution must be
used when evaluating the just noticeable difference
compression point using repeated displays of
a single image.

Fig. 5 provides a simple illustration of contrast
masking. In the figure, a Gabor stimulus is added
to a constant background, a white noise back-
ground, a 1/f noise background, and a “mountain
image” background. The backgrounds provide dif-
fering amounts of masking: The stimulus is well
masked by the 1/f noise background, somewhat
masked by the white noise background and the
“mountain image” background, and not at all mas-
ked by the constant background. The local vari-
ance in the vicinity of the distortion is the same for
all backgrounds except the constant background,

and the “in band” noise is the same for the “moun-
tain image” and 1/f noise image, but significantly
lower for the white noise background. The differ-
ences in masking between the white noise back-
ground and 1/f noise background can be explained
in terms of the differing amounts of “in band” noise.
However, the higher visibility of the Gabor stimu-
lus in the “mountain image” background compared
to the 1/f noise image is difficult to explain, except
for the fact that the “mountain image” has a more
familiar or predictable structure, and thus there is
less masking than would be anticipated from the
level of “in band” noise.

Another aspect of masking which needs further
investigation is the spatial extent of masking. The
standard approach is to model masking as a spa-
tially localised phenomenon, so that the response of
a filter at a location in space is masked only by the
response of itself and other filters at the same loca-
tion. However, recent evidence suggests that mask-
ing effects are not completely localised, and may
extend up to eight times the wavelength of the
centre frequency band [24]. This would signifi-
cantly change the masking models as presently
implemented in most perceptual metrics.

Daly [17] describes the phenomenon of “mutual
masking”, which essentially states that the level of
masking should take into account both the original
image and the compressed image. For example, if
the original image contains a textured area, one
might assume that we could expect a significant
masking to occur in that area. However, if quan-
tisation in the compression scheme significantly
reduces the contrast of the texture, as often happens
in quantisation schemes which possess a “dead
zone” for the frequency coefficients, then this as-
sumption would be incorrect. In this case, little or
no visual masking will occur, and the observer will
report differences in image quality. This reduction
or removal of contrast in textured regions is often
the first visible sign of compression artefacts in
X-ray bone radiographs which contain large re-
gions of low contrast texture (mottle). In addition,
high frequency compression artefacts may be intro-
duced into an area which contains little or no
energy at high frequencies, in which case the arte-
fact will be highly visible because of the lack of
masking at high frequencies. A common example is
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Fig. 5. Example of a Gabor stimulus obscured by various maskers. Top left is uniform background, top right is random white noise,
bottom left is noise with a 1/f magnitude spectrum, and bottom right is an image. With the exception of the constant background, all the
maskers contain approximately the same variance.

JPEG block artefacts appearing in regions contain-
ing a smooth luminance gradient. This situation
can be handled by using both the original and
compressed image to compute the level of masking
and taking the minimum of the two. The applica-
tion of mutual masking in a perceptual metric is
essential for compression when artefacts are signifi-
cantly above the visual threshold, but will have
less effect for compression at or near the visual
threshold.

3.5. Summation of errors

The standard model of visual processing assumes
that the image is filtered using a bank of parallel

band-pass channels (filters) to produce a filtered
image for every channel. As an example, if one
assumes the filter bank consists of one low-pass and
three band-pass frequency bands at four orienta-
tions, then there will be a total of thirteen filters
across all orientations and scales. Using this filter
bank in a perceptual metric results in a bank of
thirteen visible distortion maps. Not surprisingly,
this is a glut of information, even if the channels are
critically sampled, and some assumptions must be
made about how these distortions can be combined
into a single map, and then perhaps into a single
number.

The logical way of reducing the dimensionality is
to sum the responses in the frequency bands across
frequency or space or both. Most approaches to
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reducing the dimensionality sum errors across fre-
quency bands to obtain a 2-D visible difference
map, and if required, then sum across space to
obtain a single number [13,17,47]. The exception to
this is Watson [89] who applies summation across
space as the first step followed by summation
across frequency bands. Preferably, the summation
rule should be analogous to the summation rule
used in vision. Probability summation, a non-linear
(exclusive or) summation rule, is the most well
accepted basis for summation of signal energy
across frequency channels and across spatially
distributed channels, though this has only been
verified when signals are near threshold. An ap-
proximation to probability summation, as well as
energy summation, is the Minkowski metric [65],

M"A+
i
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i
DbB

1@b
,

where s
i
is the response of a single frequency band

at a specific location in space, the index i refers to
channels distributed across space, frequency or
both, and b is the summation parameter. Energy
summation is modelled with b"2, probability
summation is well modelled with b+3.5, and
a MAX operator is obtained for b"R.

3.5.1. Summation across frequency bands
The psychophysical evidence suggests that sum-

mation across frequency bands is best modelled as
probability summation, approximated using the
Minkowski metric with b+3.5 [85]. Recent work
with DCT basis functions confirms summation
across frequency channels, but found that the sum-
mation rule is better modelled with a summation
parameter of b"2.4, with a range between 2 and
3 [63]. Daly [17] directly implements probability
summation, which is essentially equivalent to using
a Minkowski metric with b"3.5, Lubin [47] uses
a Minkowski metric with b"2.4, and Watson
[89,90] selects the maximum value across all fre-
quency bands which is essentially b"R. Needless
to say, this is an area which requires further re-
search, particularly regarding the summation of
broadband and suprathreshold signals.

3.5.2. Summation across space
The model for the summation of errors across

space is as murky as the model for summation
across frequencies. The evidence that it exists is
clear [66], but the spatial extent of the summation
and summation parameter seems to depend on
both eccentricity dependent changes in the CSF as
well as whether the signal is coherent or noncoher-
ent [52]. As an example, for spatial summation of
DCT coefficients, Peterson et al. [64] found that
the summation parameter changed significantly as
the spatial extent increased. This dependence of
summation on eccentricity agrees with the qualitat-
ive observation that image distortions are not per-
ceived as being significantly worse when an image
is increased to very large sizes, and that closely
spaced errors are more perceptible than spatially
distributed errors. When a single number is re-
quired as an output, both Lubin [47] and Daly
[17,20] implement summation across space as
a MAX operator (b"R). Watson [89,90] sums
across space using a Minkowski metric with
b"3.5. In a comparison of various metrics applied
to target detection problems [68], it was found that
b"4 provided the best prediction of psychophysi-
cal results.

As mentioned in Section 2.1, the technique for
summation of errors across space may have to be
modified when artefacts are significantly above the
visual threshold. In this regime, the observer will be
able to easily identify artefacts at different locations
in the image, and the summation rule used by the
observer will depend on the instructions given for
the psychophysical experiment. As an example, the
observer can be instructed to rate image quality
based strictly on the location in the image with the
largest distortion (b"R), or the instructions
could be to rate the “average” level of quality over
the entire image (b"1 to 3).

4. Image quality metrics

In this section, we place the various image qua-
lity metrics into a number of broad classes. First,
there are the mathematical metrics which measure
quality in terms of relatively simple mathematical
functions, usually with point processing. Second,
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there are models which incorporate simple percep-
tual characteristics, such as the contrast sensitivity
function and luminance adaptation. Third, there
are the models which incorporate perceptual char-
acteristics which include suprathreshold prefer-
ences of observers, but also use measurements of
image characteristics, such as texture content, edge
content, smoothness, spectral slope, etc. Finally,
there are perceptual metrics which attempt to
model early visual processing in as complete a man-
ner as possible and thus provide a perceptually
meaningful measure of image quality near the
visual threshold.

4.1. Mathematical metrics

A number of mathematically defined metrics
have been used in the literature, including signal to
noise ratio (SNR), peak signal to noise ratio
(PSNR), mean absolute error (MAE), mean
squared error (MSE), local mean squared error,
and distortion contrast [23,31,32,71]. These met-
rics perform well when using images with con-
straints on the image content or for particular
stimulus configurations. As an example, Limb [46]
showed that mean squared error works well for
predicting error visibility in smooth areas. How-
ever, extensive evaluation of these metrics has
shown that they do not work well across images
which contain significantly different content [31].
In the context of a compression scheme that at-
tempts to implement selectable quality compres-
sion, this means that there will be significant
quality variations from image to image when com-
pressed to the same predicted level of quality, e.g.,
the same PSNR or MSE.

The primary advantage of mathematical quality
metrics is their ease of use. They do not require any
information about viewing conditions, do not
adapt to local image content, and the computations
are simple. Interestingly, it has been argued that
mathematical metrics are superior to perceptual
metrics because they do not depend on viewing
conditions or image content. It is not clear why this
is argued as being desirable since viewing condi-
tions and image content clearly play a major role in
human perception of image quality. The fact that

a metric is defined without consideration for visual
factors does not make visual factors insignificant,
rather it simply ignores them, and relies on luck to
provide correlation with perceived quality. One
apparent argument used against mathematical
metrics is that they typically provide a single num-
ber for the entire image, and thus cannot reflect
spatial variations in image quality. However, any of
the metrics described above could be easily modi-
fied to operate on local regions in a sliding window
and thus provide such a spatially varying quality
map. An example of this is the local mean squared
error metric used by Girod [32].

4.2. Metrics which incorporate the CSF and
luminance adaptation

One of the first attempts to incorporate visual
characteristics into an image quality metric is that
of Mannos and Sakrison [48], who used two
well-known aspects of visual perception, namely
luminance adaptation and the CSF. However, the
model has only a single visual channel, does not
incorporate contrast masking, and so would fail to
accurately predict quality in many circumstances.
This metric is equivalent to a weighted mean
squared error metric.

More recent metrics include those proposed by
Nill [53,54] and Saghri [74]. These metrics include
a compressive nonlinearity for luminance adapta-
tion, filter the image according to the contrast sen-
sitivity function, and then calculate a difference
metric between the original and compressed im-
ages. Ahumada [5] also incorporates estimates of
image contrast in an attempt to capture some of the
properties of contrast masking.

Peli [58] describes a metric which incorporates
CSF weighting as well as localised luminance
masking, but no contrast masking within the fre-
quency bands. Zetsche and Hauske [96] incorpor-
ate CSF weighting, and use a ratio of Gaussian
filter bank to implement luminance and contrast
masking. Both of these metrics include a multiple
frequency band decomposition with no orientation
selectivity.

Recent metrics include attempts to incorporate
visual factors into wavelet compression schemes
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[6,10,42,55]. These schemes weight the wavelet
bands by the contrast sensitivity function, and
implement luminance adaptation by providing
the metric with a gamma compressed version
of the image (though this is not explicitly stated in
the references).

4.3. Metrics which incorporate observer preferences
for suprathreshold artefacts

There are a number of quality metrics which
incorporate threshold perceptual factors, some-
what ad hoc mathematical measures, and penalties
for specific suprathreshold artefacts. Mathematical
measures include “correlation quality” or “local
image activity”. Suprathreshold compression arte-
facts which invoke penalties include blocking arte-
facts of JPEG compression or ringing artefacts
around edges [11,39]. As an example of such a met-
ric, we can consider the picture quality scale (PQS)
developed by Miyahara et al. [51]. They incorpor-
ate luminance adaptation, the CSF, block artefacts,
edge artefacts, and local summation of errors in
a 5]5 pixel window. Each factor is weighted in
a linear regression model to obtain a single quality
number for the image. The spatial masking factors
allow the model to predict differences in observer
judgements of quality for smooth regions, edge
regions and textured regions. Unlike many of the
metrics which only incorporate threshold level per-
ceptual factors, these metrics attempt to explicitly
model the objectionability of suprathreshold com-
pression artefacts. However, none of the above met-
rics were implemented using a formalised multi-
dimensional scaling analysis [49]. While there is
wide variability in the implementation of masking
for these types of models, as would be expected in
attempts to model observer preferences, there is still
significant agreement on threshold visual factors,
namely the CSF and luminance adaptation.

4.4. Threshold perceptual metrics

The development of computational models cul-
minated in the early 1990s with two computational
models of early vision based on psychophysical and

physiological evidence. The models are able to pre-
dict threshold visibility levels of distortions for both
simple and complex stimuli. Complete descriptions
of these models are provided in Daly [17] and
Lubin [47]. These two papers contain in-depth
descriptions of the development of general purpose
perceptual metrics and the psychophysical evidence
on which they are based. As far as the authors are
aware, no other models exist which purport to
provide as consistent a prediction of the visibility of
distortions near the visual threshold as the models
described in these two papers.

Lubin and Daly’s models are quite similar and
include modelling the visual system as a series of
linear and non-linear stages, including a filter
model for the CSF, octave bandwidth frequency
decomposition in oriented bands, luminance mask-
ing, contrast masking, a distance computation, and
summation of errors across frequency bands to
produce a visible difference map. A block diagram
of the steps in the Daly perceptual model is pro-
vided in Fig. 6. The result of both models is a vis-
ible difference map which specifies the probability
of seeing a difference between the two images at
each pixel location. The Lubin model has been
validated against psychophysical experiments, and
has been shown to predict psychometric curves for
simple contrast discrimination experiments and
edge sharpness discrimination. Daly [18,19] re-
ports extensive validation using known psycho-
physical results.

It is interesting to examine the aspects of visual
processing which these models do not include. Spe-
cifically, neither the Daly nor the Lubin model
include masking across orientations. They only im-
plement contrast masking using energy within
a band at a single orientation, which is in agree-
ment with the known literature at the time the
models were developed. As mentioned previously,
recent developments suggest that significant mask-
ing can occur across orientations. Second, the mod-
els predate the work of D’zmura and Singer [24], so
neither model extends masking effects using spa-
tially adjacent responses. Finally, neither model
incorporates summation of errors across space
when computing the visible difference map, prefer-
ring to produce a visible difference map by sum-
ming errors across frequency channels.
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Fig. 6. Sketch of Daly’s [17] visible difference predictor. Image 1 and Image 2 are the original and distorted images (in either order). (a).
This diagram illustrates the steps involved in computing the visible difference map, P(x,y), which specifies the visibility of errors at every
point in the image. The bottom figures illustrates human visual system modelling including local luminance masking, the CSF, the
division into multiple frequency bands, and global luminance masking.

One of the more recent, and complete, perceptual
metrics is described by Westen et al. [95]. The
metric incorporates all of the threshold visual fac-
tors discussed earlier, namely weighting by the
CSF, luminance adaptation in a manner similar to
Peli [58], decomposition into multiple, oriented
frequency bands, contrast masking in a manner
similar to Daly [17], and summation of errors
using the Minkowski metric, first over frequency
bands of the same orientation, then over frequency
bands over different orientations, and then over
space. A significant difference between this model
and previous models is that it allows a different

summation exponent for different orientations,
which has some validity when considering recent
contrast masking experiments.

The DCTune algorithm of Watson [89,90] in-
corporates a perceptual metric, though it attempts
only to predict the quality of JPEG compressed
images. The Watson model contains similar ele-
ments to the Lubin and Daly models, with the
exception that it uses block DCT basis functions as
its frequency decomposition rather than more
physiologically realistic filters. One notable differ-
ence between the DCTune algorithm and most
other perceptual metrics is that it first implements
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summation of errors across space rather than sum-
mation of errors across frequency. The output of
the model is not a visible difference map, but rather
an 8]8 matrix of values specifying the visibility of
errors within each frequency band. The advantage
of such an approach is that it allows independent
modification of each element in a quantisation
matrix, but at the cost of losing the ability to create
a visible difference map. The reduction of image
quality prediction to a single number is performed
with a MAX operator (a Minkowski metric with
b"R), which means that overall image quality is
determined by identifying the frequency band with
the most visible artefacts. Watson [89] imple-
mented summation of errors across the entire im-
age. Eckert [26] found that for very large images,
this predicts that image quality is significantly
worse than found in subjective experiments. This
problem was avoided by implementing spatial sum-
mation of errors over a sliding window rather than
the entire image.

The mismatch between the block DCT basis
functions and spatial frequency characteristics of
the channels in human vision can limit the ability of
the DCTune perceptual model to predict certain
types of artefacts. In particular, a block DCT based
perceptual model will fail to predict ringing arte-
facts around edges because it integrates energy over
the entire block, and thus is not sensitive to errors
localised in sub-block regions. Neither will the
block DCT based perceptual model directly predict
the visibility of blocking artefacts at lower bit rates.
This is due to the fact that the block boundaries in
the compression scheme and perceptual model dir-
ectly align, and thus these quantisation errors will
be invisible to the perceptual model.

Eckert [26] proposed variants of the DCTune
algorithm in which the linear filter bank has been
replaced with the lapped orthogonal transform
(LOT) and wavelet transform. The LOT has similar
problems to block DCT associated with predicting
artefacts near edges. In fact, this problem was ex-
acerbated in the LOT because the basis functions
for high spatial frequency components spread en-
ergy over a 16]16 pixel region. Note that for both
the block DCT and LOT based perceptual model,
the problem does not lie in the fact that compres-
sion with these techniques produce quantisation

artefacts (such as ringing around edges), but rather
that the perceptual model which uses these basis
functions cannot predict the visibility of these par-
ticular artefacts.

Safranek and Johnston [73], Johnston and
Safranek [38], and Chou [16] implement a percep-
tual model using subband coding filters. The model
incorporates a multiple frequency channel de-
composition using equal bandwidth subband fil-
ters, weighting of each subband according to the
CSF, luminance adaptation, and a contrast mask-
ing component referred to as “texture masking”.
The use of equal bandwidth subband filters means
that spatial localisation of high frequencies is not
matched to that of the human visual system.
Hontsch and Karam [34,35] implement a similar
model in the context of a spatially adaptive com-
pression scheme, but also include a component of
interband contrast masking.

Bradley [13] produced a model similar to that of
Daly’s except that he experimented with both
over-complete and critically sampled wavelet trans-
forms. The aim of this work was to produce a sim-
plified visual model based on the wavelet transform
that could be applied directly to wavelet compres-
sion schemes. He found that the main problems
with the wavelet transform were the amount of
overlap between adjacent frequency channels (lead-
ing to aliasing in the subbands) and the shift invari-
ance of the critically sampled wavelet transform.
However, the over-complete wavelet transform was
found to improve the reliability of predictions.

Barten [9] presented a metric designed to predict
observer ratings for factors such as image size and
image sharpness (spatial resolution). The metric
includes a CSF which depends on image size and
the average luminance. Sakrison [75] presented an
early, but quite thorough, description of how a per-
ceptual metric can be constructed with multiple
frequency channels, luminance adaptation, con-
trast masking, and error summation. However, the
model was neither implemented nor validated.

In summary, there are a number of similarities in
all of the perceptual metrics referenced in Sec-
tion 4.4: All of these metrics incorporate CSF
weighting and luminance adaptation, in slightly
different, but probably insignificant ways. All
of these metrics implement a multiple-channel
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frequency decomposition, with fixed or octave
bandwidth filters, some with full orientation selec-
tivity and others without orientation selectivity for
the 45/135° diagonal. None of these metrics incor-
porate factors involving suprathreshold observer
preferences. The primary differences lie in the differ-
ent implementations of contrast masking and the
different ways in which errors are summed across
space and frequency. Not surprisingly, the variabi-
lity of the implementations of masking and summa-
tion of errors reflects the fact that there is no
consensus of opinion as to the best psychophysical
model for these two perceptual factors.

5. Psychophysical validation

One of the problems associated with validating
an image quality metric is that the “gold standard”
is a human observer. This means that the accuracy
and robustness of a perceptual metric is closely tied
to the psychophysical experiments used to validate
the metric. Unfortunately, there seem to be as many
psychophysical techniques used to validate metrics
as there are metrics. Here we describe a number of
approaches that have been used to validate quality
metrics in the literature and discuss some of the
difficulties that may arise.

5.1. Assessing quality in images with suprathreshold
compression artefacts

The simplest approach for evaluating the accu-
racy of a metric is to use a rating scale as suggested
in CCIR Recommendation 500-3 [15]. This scale
has a range of 1—5, with the adjective descriptions,
bad, poor, fair, good and excellent. In a typical
rating experiment an image from a set is displayed
to an observer who rates the image using the scale.
This continues until all images have been rated
a number of times by different observers. These
scores can be used to validate an image quality
metrics in a number of ways [79]:
1. The raw scores can be correlated with the pre-

dictions of the image quality metric to evaluate
its accuracy [51].

2. The raw scores can be converted to z-scores and
correlated with the image quality metric. z-
scores are used to account for biases between
individuals, and are obtained by subtracting the
mean score for each individual and dividing by
the standard deviation of the scores computed
over the set of images for an individual [84].

3. Thurstone scaling can be used to create an inter-
val scale, so that the scale represents equal per-
ceptual distances [82,84].

4. Multi-dimensional scaling can be performed to
extract the different quality dimensions. This
provides the quality dimensions and relative
weighting of the dimensions for each observer
[4,49].
The limitations of a rating scale assessment are

that it will only characterise relatively large differ-
ences in image quality and may produce inconsist-
ent results when evaluating an image set which
contains different types of artefacts. Both van Dijk
et al. [84] and de Ridder and Majoor [22] report
acceptable results with rating experiments as long
as the type of artefacts in the compressed images
are similar. A common difficulty with a rating scale
technique is a lack of consistency across laborator-
ies, but Roufs [70] reports good consistency as long
as care is taken in the design of the test conditions.
Minor modifications to this technique include as-
signing ratings to sub-image regions rather than
a single number for the entire image in order to
account for quality variations across the image.

Paired comparison experiments are also used to
assess images with suprathreshold compression
artefacts [21,84]. A set of images, compressed at
different bit rates, are compared to one another.
A typical technique is to provide a comparison
scale ranging from !3 to 3 for the judgements much
worse, worse, slightly worse, same, slightly better,
better, much better. Alternatively, two point scales
can be used, such as identifying the image of higher
quality [31], or instructions to judge the “dissimil-
arity” between images [50]. The observer compares
two images from the set and makes a judgement
until all images have been compared to one an-
other. The advantage of this technique is that com-
parisons can be made using images with different
types of artefacts and observers are forced to link
judgements of quality for the different artefact types
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[84]. The data from paired comparison experi-
ments can be used in a number of ways. The simple-
st approach is to reduce the paired comparison
results to a rank ordering of the images in order to
correlate the ability of the perceptual model to
predict the rank ordering of image quality [31].
Alternatively, multidimensional scaling can be ap-
plied to the results to evaluate the number of qual-
ity dimensions and weighting of each dimension by
observers [4,40,41,49].

5.2. Assessing quality in images with threshold
compression artefacts

Just noticeable difference (JND) testing is used to
evaluate the ability of a metric to predict the vis-
ually lossless point between the compressed and
original image. JND testing is particularly appro-
priate for perceptual metrics which incorporate
only threshold visual factors, such as all of the
metrics described in Section 4.4. An example of the
JND approach is described by Watson et al. [93].
The image is displayed to an observer for a set
period of time (such as one second) and the ob-
server decides whether the image has been
compressed. After a block of trials, in which the
observer has been repetitively presented with both
the original and a set of compressed images over
a range of bit rates, the JND point is identified as
the compression point at which the observer cor-
rectly identifies the compressed image 50% of the
time (the exact percentage correct for identifying
threshold is somewhat arbitrary). The advantage of
JND experiments is that they should not be biased
significantly by differences in the types of artefacts.
Thus, the JND compression point can be used to
evaluate a variety of compression techniques. As an
example, Eckert [26] compares the compression
ratio at the JND threshold for block DCT, LOT
and wavelet compression techniques and observers
reported no difficulties in performing the experi-
ments.

Several aspects of JND experiments may affect
the results. The display time, search strategies, and
learning effects can play a major role in determin-
ing the JND point. In our experiments, we have
found that placing a one second time limit on trials

leads the observer to use the following strategy:
During initial trials, the observer searches for the
most visible artefacts. Prior familiarity with typical
compression artefacts speeds this search. Once the
location of the most visible artefact(s) have been
located, the observer ceases to search, and concen-
trates on one or two locations for the rest of the
trials. In this way, the observer essentially learns
the characteristics of these regions as accurately as
possible. As the number of trials increases, the JND
point, which now depends only on these regions,
very gradually decreases, reaching an asymptote
after approximately two hundred trials, though we
have not assessed exact number of trials needed
before the asymptote is reached. All four observers
the authors have used in JND experiments almost
immediately developed this strategy during testing
and all experienced a gradual decrease in the JND
point with increased familiarity with the image. As
an example of these factors playing a role in JND
tests, Fuhrmann et al [31] showed significant re-
ductions in the JND point when observers were
given hints about where to search for artefacts in
the images. The dependence of initial estimates of
the JND point on search strategies is in general
agreement with the observations of Sperling and
Dosher [78] and the reduction in the JND point
with learning is consistent with the results of Swift
and Smith [80] and Watson [92].

The importance of prior information regarding
image content has also been observed by Good et
al. [33], who report significantly different visibility
thresholds for two observer groups during JND
experiments using compressed mammograms. Ba-
sically, experts in image compression could identify
compression artefacts in mammograms much more
easily than radiologists who were familiar with the
image content but not familiar with compression
artefacts.

As an example of the application of psychophysi-
cal validation of quality metrics, Fuhrmann et al.
[31] evaluated a set of mathematically defined
quality metrics using a JND experiment to judge
the ability of the metrics to predict the visually
lossless point and a paired comparison experiment
to rank order the images when artefacts were
suprathreshold. This combined approach is con-
ceptually pleasing because an ideal quality metric
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should not only provide good prediction of the
JND point, but also be able to scale with supra-
threshold artefacts in a manner which is consistent
with paired comparison experiments.

Finally, we return to a point made at the begin-
ning of this review, namely, that image quality
varies across the image, yet all of psychophysical
experimental techniques force the observer to col-
lapse the local variations of quality into a single
judgment. One way of handling this issue is to
describe to the observer how the judgements
should be made. For example, the observer could
be instructed to judge image quality based on the
worst artefact, an average of overall quality, only in
smooth regions, only in edge regions, etc. When
artefacts are suprathreshold, such instructions will
change the observer’s ratings. Consequently, the
instructions given to the observer should reflect the
technique used in the quality metric to sum errors
across space and assign a quality rating to the
image. Another way of handling this issue is to
maintain a visible difference map and have the user
specify image quality for different regions in the
image. This has the advantage of providing a better
match to the output of most perceptual metrics
which is a 2-D quality map. Fuhrmann et al. [31]
essentially used the latter approach and divided
images into small sub images for the paired com-
parison experiments.

5.3. Technical issues associated with subjective
experiments

There are a number of technical issues associated
with image display and experimental design which
should be controlled when performing experiments
to validate perceptual metrics. Experiments per-
formed on CRT monitors should have a calibrated
gamma function and compensate for the spatial
resolution limitations of the monitor [25,61]. The
spatial resolution limitations can be handled by
interpolating the images by a factor of two or more.
Viewing distance, image size, image contrast, ambi-
ent illumination, and the average luminance of each
image can influence perceptions of image quality
and should be carefully controlled in subjective
experiments [70].

6. A simple demonstration

In this section, we provide a simple demonstra-
tion to illustrate the difficulty experienced by image
quality metrics in handling contrast masking. To
do this, we have attempted to minimise the effect of
other factors, such as luminance adaptation, fre-
quency sensitivity and error summation. We have
created two artificial images, one an “edge” image
and the other a “texture” image. Both images have
a 1/f power spectrum, the same background
luminance level, and similar energy content in local
regions, i.e., the average variance in an 8]8 pixel
region around the edges in the edge image is the
same as average variance in 8]8 pixel regions of
the texture image. In addition, the image content is
homogeneous as the edge image consists of only
edges and the texture image consists of only tex-
ture. As a consequence, quantisation artefacts are
well distributed throughout each image with no
large, spatially localised, error peaks. The homo-
geneity of the errors minimises the dependence of
the results on the summation parameter in the
Minkowski metric.

The edge and the texture image were both trans-
formed using Antonini/Daubechies 9/7 biorthog-
onal wavelets [7] and quantised with a uniform
quantisation matrix. The synthesis filters were nor-
malised to have unit energy and so the passband
gain is approximately two, i.e., coefficient ampli-
tudes scale by a factor of two with increasing levels
of the wavelet pyramid. Therefore, uniform quan-
tisation of the coefficients means that high spatial
frequencies are quantised more harshly than lower
frequencies. We varied the quantisation from two
to ten and conducted JND experiments to identify
the visually lossless compression point for both
images. An estimate of the JND threshold for each
observer was obtained from a block of sixty-four
2-alternative forced choice (2AFC) trials, where
each block of trials was controlled by the QUEST
adaptive staircase algorithm [86]. For each 2AFC
trial the observer was presented with the original
and a compressed image, and each was displayed
for one second and in randomised order. The ob-
server was then asked to select the compressed
image and auditory feedback was given when the
correct image was selected. The images were pixel
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Fig. 7. A small segment of original and quantised edge and texture images. The quantisation factor is 15 in both cases, so the artifacts
are significantly suprathreshold. The correct viewing distance is 10 times the width of the entire image.

doubled to avoid the resolution limitations of the
CRT monitor and viewing distance was set so that
there were 44 pixels/degree of visual angle. The JND
point was selected as the 82% correct point from
a block of trials and averaged across three observers.

We found that the JND quantisation factor,
averaged over the three observers, was two for the
edge image and six for the texture image. This
means that compression artefacts that were equally
visible in both the texture and edge images, i.e., at
the JND point, were three times larger in amplitude
in the texture image than in the edge image. This
significant difference indicates that, near the visibil-
ity threshold, three times as much quantisation
noise is masked in the texture image than in the
edge image.

In an additional experiment, ten observers were
presented with the original and compressed ver-
sions of the images, as illustrated in Fig. 7. The
compressed images had quantisation factors of ten
or twenty. For each quantisation factor the ob-
servers were asked to identify which compressed
image was least similar to its original image. At
a quantisation factor of ten, seven out of the ten
observers stated that the texture image was least
similar to the original (though most stated that the
decision was difficult). At a quantisation factor of
twenty all ten observers stated that the texture
image was clearly more distorted.

Fig. 8 illustrates a number of image quality met-
rics applied to the texture and edge image as the
uniform quantisation matrix is increased from two
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Fig. 8. Various quality metrics which have been used in the literature (higher numbers predict high levels of distortion). The top left
curve is the mean squared error of grey levels. The top right curve is filtered mean squared error after applying Daly’s luminance
masking and CSF filtering. The bottom left curve [5] performs luminance masking, CSF filtering, and contrast masking on a 0.11 degree
region. The bottom right curve is essentially Daly’s visible difference predictor. The curves on each graph have been scaled by the value
for the edge image at Q"2.

to ten. The curves on each graph are normalised by
the value of the metric on the edge image at a quan-
tisation factor of two. The image quality metrics
shown are:
f Mean square error (MSE).
f Weighted mean square error (WMSE), which

incorporates luminance adaptation and fre-
quency sensitivity.

f The Ahumada metric [5] which incorporates
luminance adaptation, frequency sensitivity, and
a contrast gain control mechanism that operates
on a 0.11 degree window (approximately five
times the width of the CSF filter) to produce

a visible difference map. This metric has been
shown to work almost as well as multiple chan-
nel models for the detection of signals buried in
noise [68]. The visible difference map produced
was then reduced to a single number using
a Minkowski metric (b"4) summed over the
entire image.

f The SVDP metric is an implementation of the
Daly [17] visible difference predictor using steer-
able filters [30]. The visible difference map was
reduced to a single number, again using a Min-
kowski metric (b"4) summed over the entire
image.
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A threshold perceptual metric should be able to
predict the correct quality ranking near the visibil-
ity threshold, i.e., for the JND experiment, whereas
a suprathreshold quality metric should be able to
correctly predict image rankings at suprathreshold
quantisation levels, i.e., image similarity at quan-
tisation factors of ten and twenty. This means that
the metric scores in Fig. 8 should predict a larger
number (lower quality) for the edge image near the
visibility threshold and a larger number for the
texture image at quantisation factors of ten and
twenty. Fig. 8 shows that the mean squared error
(MSE) and the weighted mean squared error
(WMSE) metric predict equivalent distortion near
the visual threshold and larger amounts of distor-
tion in the texture image for all quantisation levels.
Consequently, both provide an incorrect prediction
of quality near the visual threshold. Of the four
metrics considered, only the two models which
contained a contrast masking component, the
Ahumada metric [5] and Daly’s [17] visual model,
correctly predicted rankings at threshold and
suprathreshold levels.

Naturally, strong conclusions cannot be drawn
from a simple two image demonstration, but it does
illustrate that metrics such as MSE and weighted
MSE have difficulty predicting visual quality near
threshold when contrast masking plays a role. In
addition, the demonstration illustrates some of the
psychophysical techniques used to evaluate quality
metrics near and above the visual threshold.

7. Conclusions

In this paper we have reviewed a number of
image quality metrics, discussed how they incor-
porate visual factors in their design, and described
common experimental techniques used to validate
the metrics. We can summarise our observations as
follows:
f Both simple and complex perceptual quality

metrics incorporate luminance adaptation and
frequency sensitivity. They are robust character-
istics of visual processing, are reasonably well
understood, and are easily incorporated into
a quality metric.

f The lack of contrast masking in a quality metric
is a significant reason for the failure of many
quality metrics across a range of image content.
There is still no consensus of opinion regarding
models for contrast masking, particularly when
compression artefacts are suprathreshold. Con-
sequently, one can expect significant variability
in the predictions of quality metrics until con-
trast masking models are developed which dem-
onstrate robust performance across a variety of
image content and compression artefacts.

f Summation of errors across frequency and
across space is a well accepted component of
a quality metric. Models for error summation
near the visual threshold are well accepted, but
summation at suprathreshold levels has not been
well investigated. As a result, variability in the
predictions of a quality metric may arise if the
observer sums suprathreshold errors differently
than is assumed by the quality metric.

f Search strategies and learning play a major role
in the perception of threshold artefacts during
JND experiments, and observer preferences and
expectations play a role when comparing images
when artefacts are suprathreshold. Therefore, the
experimental technique used to validate a quality
metric must be carefully selected. In particular,
one must ensure that the type of experiments
used to validate the metric match the quality
range for which the metric was designed (thre-
shold or suprathreshold artefacts).
We used a simple demonstration to illustrate the

importance of including contrast masking into
a perceptual quality metric. We showed how
a number of simple metrics, such as mean squared
error and weighted mean squared error, could not
account for the differences in image content (edges
and texture) and that metrics which contained con-
trast gain components provided the best prediction
of the relative quality of the two images at both
threshold and suprathreshold levels.
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