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Abstract

When comparing the performance of video coding approaches, evaluating different commercial

video encoders, or measuring the perceived video quality in a wireless video delivery, one of the

most important performance metrics is the Rate/Distortion, where distortion is usually measured

in terms of PSNR values. However, PSNR does not always capture the distortion perceived by

a human being. As a consequence of this fact, a lot of efforts took place to define an objective

video quality metric that is able to assess quality as the viewer does. We perform a study of some

available objective quality assessment metrics in order to evaluate their behavior in two different

scenarios. First we deal with video sequences compressed by different encoders at different bitrates

in order to properly measure the video quality degradation from encoding system. And also,

we evaluate the behavior of the quality metrics when measuring video distortions produced by

packet losses in mobile ad-hoc network scenarios with variable degrees of network congestion and

node mobility. Our purpose is to determine if the analyzed metrics can replace the PSNR while

comparing, designing and evaluating video codec proposals, and in those video delivery scenarios

with error prone wireless networks.
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I. INTRODUCTION

In the past years, the development of novel video coding technologies has spurred the

interest in developing digital video communications, where evaluation mechanisms to assess

the video quality play a major role in the overall design of video communication systems.

The most reliable way of assessing the quality of a video is subjective evaluation, be-

cause human beings are the ultimate receivers in most applications. The Mean Opinion

Score (MOS), which is a subjective quality metric obtained from a number of human ob-

servers, has been regarded for many years as the most reliable form of quality measurement.

However, the MOS method is too cumbersome, slow and expensive for most applications.

Objective Quality Assessment Metrics (QAM) are valuable because they provide video de-

signers and standard organizations with means for making meaningful quality evaluations

without convening viewer panels.

In the last years, new objective image and video quality metrics have been proposed.

They emulate human perception of video quality since they produce results which are very

similar to those obtained from subjective methods. Most of these proposals were tested and

compared in the different phases carried out by the Video Quality Experts Group (VQEG),

which was formed to develop, validate and standardize new objective measurement and

comparison methods for video quality. The models that the VQEG forum validates result in

International Telecommunication Union (ITU) recommendations and standards for objective

quality measurement for both television and multimedia applications [1]. Some of the QAM

proposals are designed to be as generalist as possible, i.e. to be able to assess quality for a

wide set of different distortion types, while other QAM focus their design in the detection

of one, two or a reduced set of specific distortions.

It would be desirable to find a QAM for image and video, that exhibits a good behavior

for any set of video and/or image distortions, i.e. detects accurately (as close as possible to

the perceived quality by human observers) any distortion regardless of its type and grade.

Also, it would be desirable that the time required to obtain a quality measurement is short

enough in order to have a practical use, or even to be able to use it in real time.

But quality is by definition a highly subjective feature that is influenced not only by

the intrinsic characteristics of the signal, but also by psychological an environmental fac-

tors. Therefore, the task of choosing “the best QAM” is influenced by too many factors
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and sources of inaccuracy. These sources of inaccuracy are, for example, the reliability of

unbiased subjective reference data, the selection of video or image contents, the degree of

the impairments and where they appear (in space and time), the procedure used to map

between subjective and objective quality values and even the use and interpretation of the

correlation indicators. These factors must be taken into account when making comparisons

between metrics[2].

The selection of a QAM may also depend on the target application where it will be used.

Examples of applications are, for example, a real-time monitor that adaptively adjust the

image quality in a video acquisition or transmission system, a benchmarking image process-

ing system, algorithms and encoder proposals, embedded into image processing systems to

decide about the pre-processing and post-processing stages.

We work with a set of the most relevant quality assessment metrics whose source code

or test software has been made available by their authors. So, we can use them in our own

evaluation tests.

As mentioned before, we will analyze the behavior of the candidate metrics in two test

environments.

The first one, is the compression environment, where the quality of compressed sequences

at different bitrates with different encoders is compared by means of QAM. The most

common way of doing the comparisons between image/video coding approaches, propos-

als, improvements over these approaches, or completely new codec designs, is in terms of

Rate/Distortion (R/D) analysis. When using R/D, usually the distortion is measured in

terms of PSNR (Peak Signal-to-Noise Ratio) values, where rates are often measured in bpp

(bits per pixel) for images or bps (bits per second) for video. So, in this test environment

we work with the selected QAM as candidates to replace the PSNR as the distortion metric

in the R/D comparisons. We will also consider the QAM complexity in order to determine

their applicability.

The second one is the packet loss environment, where we will analyze the behavior of the

candidate metrics in the presence of packet losses under different Mobile Ad Hoc Networks

(MANET) scenarios. In particular, we are going to compare the behavior of QAM when

measuring the quality degradation of an H.264/AVC video delivery in a MANET network.

We use a Hidden Markov Model (HMM) to accurately reproduce packet loss patterns in

these networks, including variable network congestion levels and different degrees of node
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mobility. For each particular network scenario we perform a bitstream erasure process based

on the loss patterns suggested by the HMM model. The resulting bitstream is delivered to

the H.264/AVC decoder in order to get the resulting HRC that will be used to calculate the

QAM value.

The organization of the paper is as follows: In the next section, II, we will describe

the main frameworks defined around objective QAM. In section III we will expose some

key aspects of how to compare heterogeneous metrics and the method used to compare the

metrics under evaluation. In section IV we show the behavior of several available quality

metrics in the compression environment. In section V, the models and the methods used for

the packet loss environment are explained and a behavioral analysis of the metrics is made

for different network scenarios. Finally, in section VI, we present the main conclusions of

this work.

II. OBJECTIVE QUALITY ASSESSMENT METRICS

In the past years a big effort has been done in the field of QAM. A large number or

objective metrics can be found in the literature. Some of them have been designed for a

specific kind of distortions, while others are more generalist and try to assess quality regard-

less of the distortion type. Besides, each metric design is different. Objective evaluation

of picture quality in line with human perception is still difficult [3–9] due to the complex,

multidisciplinary nature of the problem, including aspects related to physiology, psychol-

ogy, vision research and computer science. Nevertheless, with proper modeling of major

underlying physiological and psychological phenomena and by obtaining results from psy-

chophysical tests and experiments, it is possible to develop better visual quality metrics to

replace non-perceptual criteria as PSNR or MSE being still widely used nowadays.

In the literature we can find different classifications and frameworks that group several

QAM depending on the way they are designed. In this section we will briefly describe the

main ideas behind the different frameworks, along with their main QAM.

There is a consensus in a primer classification of objective quality metrics [10, 11] attend-

ing to the availability of original non-distorted info (video reference) to measure the quality

degradation of available distorted versions:

• Full Reference (FR) metrics perform the distortion measure with full access to the
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FIG. 1: Example of three figures with different impairments and same PSNR values: a) Original,

b) Contrast Stretched 26.55 dB, c) JPEG Compressed 26.60 dB, d) Blurred 26.55 dB

original image/video version, which is taken as a perfect reference.

• No Reference (NR) metrics have no access to the reference image/video. So, they have

to perform the distortion estimation based on the distorted version only. In general

they have lower complexity, but are less accurate than FR metrics and are designed

for a limited set of distortions and video formats.

• Reduced Reference (RR) metrics have access to partial information about the original

video. A RR metric defines what information have to be extracted form original video,

so it can be compared with the same one extracted from the distorted version:

The most widely used FR objective video quality metrics are the Mean Square Error

(MSE) and the Peak Signal-to-Noise Ratio (PSNR). They are simple and quick to calculate,

providing a good way to evaluate the video quality [12]. However, it is well known that these

metrics do not always capture the distortion perceived by the Human Visual System (HVS).

In Fig. 1 an original image has been distorted in different ways. The PSNR metric gives

almost the same value for each distortion, indicating that the quality of the distorted images

is the same, but as it can be seen, the perceived quality is different for each image. Moreover,

it is not unusual that the perceived quality of image in Fig. 1(b) is higher than the one given

to the original one, Fig. 1(a). That is, a distorted image has better perceptual quality than

the original one. If PSNR is used for measuring the quality of the resulting images/videos

produced by the different coding proposals, how can we certify that one coding proposal has

a better perceptual quality than another?
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In this section we will briefly describe also the main ideas behind the different frameworks

and the most relevant and cited QAM of each one. QAM can be classified by many factors

as, the metric architecture (number and type of blocks, stages or algorithms used in the

metric design), the primary domain (space or frequency) where they work, the inclusion or

not of HVS characteristics or HVS models in their design, and so on.

A. HVS Model Based Framework

A basic idea of any metric based on a HVS model is that subjective differences between

two images can not be extracted directly from the given images (original and distorted

one), but from their perceived versions, i.e. from the version that our brain perceives. As

it is known, the HVS produces several visual scene information reductions, carried out in

different steps. The way in which this information reduction process is modeled, is the key

to obtain a good subjective fidelity metric.

This framework includes the metrics that are clearly based on a HVS model, i.e. their

design follow the stages of any of the available HVS models. We include here metrics from

the Error Sensitivity framework (ESF) [7], and also some other RR and NR metrics that

are based on HVS models.

This framework mainly include FR metrics based on HVS models that measure errors

between the reference and the distorted content using a HVS model.

In general, the emulation of HVS is a bottom-up approach that follows the first retina

processing stages to continue with different models of the visual cortex behavior. Also,

some metrics deal with cognitive issues about the human visual processing modeling that

are included as additional stages.

The main difference between the FR metrics of this framework is related with the way

they perform the subband decomposition inspired in the complex HVS models [13–15], low

cost decompositions in DCT [16, 17] or Wavelet [18] domains, and with other HVS related

issues like in [19] where foveal vision is also taken into account and in [20] where focus of

attention is also considered. It is worth noting that most of proposed FR quality assessment

models share the error sensitivity based philosophy which is motivated from psychophysical

vision science research [11].

In Figure 2 shows a block diagram with the typical procesing stages of a FR metric.
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FIG. 2: Common block diagram of the Error Sensitivity Framework

In the pre-processing stage, different operations are done in order to adequate some

characteristic of the reference and the distorted input versions. These operations commonly

include pixel alignment, image cropping, color space transformations, device calibrations,

PSF filtering, light adaptation, and other operations. Not all the metrics perform all these

operations, each metric processes both signals in a different way.

After the pre-processing stage, usually HVS models first decompose the input signal into

spatio-temporal subbands at both, the reference and distorted signals.

The Contrast Sensitivity Function (CSF) can be implemented in the channel decompo-

sition step by the use of linear filters that approximate the frequency responses to the CSF

like in [21]. But most of the metrics choose to implement the CSF as weighting factors that

are applied to the channels after the channel decomposition, providing for each channel a

different perceptual sensitivity.

As mentioned before, frequency decomposition is one of the biggest differences between

models, and hence between metrics. Complex HVS frequency channel decomposition models

are used in QAM designs, but some of these models are simplified attending to computational

constraints. In this sense other QAM use the DCT [16] or Wavelet [18] transforms showing

good MOS correlation results. Depending also on the metric type and the distortions it

handles, metrics use different different channel decomposition models.

Cortical receptive fields are represented by 2D Gabor functions, but the Gabor decompo-

sition is hard to compute and is not suitable for some operations as invertibility, reconstruc-

tion by addition, etc. In [22] Watson modeled a frequency and orientation decomposition

with similar profiles than the 2D Gabor functions but computationally more efficient. Other

authors like Lubin [23], Daly [24], Teo and Heeger [13] and Simoncelli et al. [25] provided

different models trying to approximate as close as possible to the HVS channel decomposi-

tion.

There are also some models that use temporal frequency decomposition in order to ac-
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count for the characteristics of the temporal mechanisms in the HVS [21, 26]. The design of

temporal filter banks is typically implemented using Infinite Impulse Response filters (IIR)

with a delay of only a few frames, other authors use Finite Response Filters that although

having a bigger delay are simpler to implement.

The next step is error normalization and masking. Masking occurs when a stimulus

that is visible by itself cannot be detected due to the presence of another stimulus. In

contrast, facilitation occurs when a non visible stimulus becomes visible due to the presence

of another. Most of the HVS models implement error normalization and masking as a gain-

control mechanism, using the contrast visibility thresholds to weight the error signal at each

channel. Some metrics [14], due to complexity and performance reasons, use only intra-

channel masking, while others [13] include inter-channel masking, as there are evidences

that channels are not totally independent in the HVS. Other authors [27] include also in

this stage the luminance masking also called light adaptation. In [28, 29] some comparisons

of different masking models and some considerations about how to include them into an

image encoder are made. In [30] authors propose a contrast gain-control model of the HVS

that incorporates also a contrast sensitivity function for multiple oriented bandpass channels.

The last processing step (Fig. 2) is the error pooling, which is in charge of combining

the error signals in different channels into a single distortion/quality interpretation giving

different importance to errors depending on the channels where they appear. For most QAM

a Lp norm or Minkowski norm is used to produce a image spatial error maps. From the

spatial error map, a frame-level distortion score is computed. And finally, averaging frame

scores we obtain the corresponding sequence-level distortion score. So, an image QAM can

be use directly to rank video sequences by averaging the raw quality values of the frames in

the sequence. For the time domain some metrics use temporal HVS models or information

to accurately reproduce human scores while others simply provide their sequence quality

value as a frame-quality average.

Other QAM that may be included in the Model Based Framework may be found in

[13, 15–21, 26, 27, 31–36].
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B. HVS Properties Framework

In this framework we consider the metrics that although are not based on a specific HVS

model, are still inspired in features of the HVS. We also include those metrics that are

designed to detect specific impairments produced by any of the processing stages of image

and video coding, like quantization, encoding, transmission, etc.

The Institute for Telecommunication Sciences (ITS) presented in [37] an objective video

quality assessment system that was based on human perception. They extract several fea-

tures from the original and degraded video sequences that were statistically analyzed in

comparison with the corresponding human rating extracted form subjective tests. This

analysis provide parameters to adjust objective measures for these features and after being

combined in a simple linear model, they provide the final predicted scores. Some of the

extracted features require the presence of the original sequence while others are extracted

in a no reference mode. The proposed metric exploits spatial and temporal information.

The processing include Soebel filtering, Laplace filtering, fast Fourier transforms, first-order

differencing, color distortion measures and moment calculation.

In [38], authors proposed a RR metric for in-service quality monitoring system. Their

metric is build on a set of spatio-temporal distortion metrics that can be use for monitoring

in-service of any digital video system. Authors expose that a digital video quality metric,

in order to be widely applicable, must accurately emulate subjective responses, must work

over the full range of quality (from very low bit rate to very high), must be computationally

efficient and should work for end-to-end in-service quality monitoring. The metrics are based

in extracted features from the video sequence as in [37], and in order to satisfy the last

condition (to be able to work in in-service monitoring systems), these features, extracted

from spatio-temporal regions, are sent, compressed following the ITU-R Recomendation

BT.601, through an ancillary data channel so that it can be continuously transmitted. In

the paper the authors describe these spatio-temporal distortion metrics in detail, so they

can be implemented by researchers.

Later, through The National Telecommunications and Information Administration

(NTIA), the same authors, proposed the General Model of the Video Quality Measurements

Techniques (known as VQM metric[39, 40]) for estimating video quality and its associated

calibration techniques. This metric was submitted to be independently evaluated on MPEG-
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2 and H.263 video systems by the Video Quality Experts Group (VQEG) in their Phase II

Full Reference Television (FR-TV) test. In [41] authors reduce the requirements of some of

the features extracted in the NTIA General Model in order to achieve a monitoring system

that uses less than 10 kbits/s of reference information.

We also can find metrics based on watermarking techniques that analyze the qua-

lity degradation of the embedded image [42]. There are metrics that are designed for

measurement-specific distortions types and those produced by specific encoders [43, 44].

Another representative metrics in this framework are the ones proposed in [43–49].

C. Statistics of Natural Images Framework

Some drawbacks of the Model Based HVS framework are reviewed in [7, 50]. Some of

these drawbacks are, for example, that the HVS models work appropriately for simple spatial

patterns, like pure sine waves, however when working with natural images, where several

patterns coincide in the same image area, then their performance degrades significantly.

Another drawback is related to the Minkowsky error pooling, as it is not a good choice for

image quality measurement. As authors show, different error patterns can lead to the same

final Minkowsky error.

Therefore, several authors argue that the approach to the problem of perceptual quality

measurement must be a top-down approach, analyzing the HVS to emulate it at a higher

abstraction level. The authors supporting this approach, propose to use the statistics of the

natural images.

Some of them propose the use of image statistics to define the structural information

of an image. When this structural information is degraded, then the perceptual quality

is also degraded. In that sense, a measurement of the structural distortion should be a

good approximation to the perceived image distortion. These metrics are able to distinguish

distortions that change the image structure from distortion that do not change it, like

changes in luminance and contrast.

In [7, 51] authors define a Universal Quality Index that is able to determine the structural

information of the scene. This index models any distortion as a combination of three different

factors: a) the loss of correlation between the original signal and the distorted one, b) the

mean distortion that measures how close the mean of the original and distorted version are,
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and c) the variance distortion that measures how similar the variances of the signals are.

The dynamic range of the Quality Index i [-1,1] being 1 the best value, when the signals are

identical. They apply this index in a 8x8 window for an image obtaining a quality map of

the image. The overall index is the average of the quality map.

Authors in [50] further improve their previous quality index and in [52] propose a gener-

alization of their work where any distortion may be decomposed into a linear combination

of different distortion components. In [53] the model is extended to the complex wavelet

domain in order to design a robust metric to scaling, rotation and translation effects.

Authors in [54] proposed a video quality metric following a frame by frame basis. It

takes quality measures for different blocks of each frame taking into account their spatial

variability, the movement and other effects (like blocking) by means of a specifically adapted

NR metric [45].

Other authors use also statistics of the scene in a different way. They state that the

statistical patterns of natural scenes have modulated the biological system, adapting the

different HVS processing layers to these statistics. First a general model of the natural

images statistics is proposed. The modeled statistics are those captured with high quality

devices working in the visual spectrum (natural scenes). So, text images, computer generated

graphics, animations, draws, random noise or image and videos captured with non visual

stimuli devices like Radar, Sonar, X-Ray, etc. are out of the scope of this approach. Then,

for a specific image, the perceptual quality is measured taking into account how far its own

statistics are from the modeled ones.

In [55] a statistical model of a wavelet coefficient decomposition is proposed, and in [56]

the authors propose an NR metric derived from previous work.

Some metrics defined under this approach take the objective qualtiy assessment as an

information loss problem, using techniques related to information theory [57, 58].

D. Metrics under study

Now we introduce the metrics we will use in our study: The criteria to choose these metrics

and no other ones, was the availability of their source code to reproduce their behavior.

• The DMOSp-PSNR metric. We translate the traditional PSNR to the DMOS space

applying a scale-conversion process. We call the resulting metric DMOSp-PSNR.
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• The Mean Structural SIMilarity index [50] (MSSIM) from the Structural Distor-

tion/Similarity Framework. In the reference paper, this FR metric was tested against

JPEG and JPEG2000 distortion types. We test its performance with the new distor-

tion types available in the second release of Live Database, “Live2 Database” since it

is considered a generalist metric.

• The Visual Information Fidelity (VIF) metric [59] from the Statistics of Natural Images

Framework. A FR metric that quantifies the information available in the reference

image, and determine how much of this reference information can be extracted from

the distorted image.

• The No-Reference JPEG2000 Quality Assessment (NRJPEG2000) [54] from the Statis-

tics of Natural Images Framework. A NR metric that uses Natural Scene Statistical

models in the wavelet domain and uses the Kullback-Leibler distance between the

marginal probability distributions of wavelet coefficients of the reference and distorted

images as a measure of image distortion.

• Reduced-Reference Image Quality Assessment (RRIQA) [57] from the Statistics of

Natural Images Framework. The only RR metric under study. It is based on a Natural

Image Statistical model in the wavelet transform domain.

• The No-Reference JPEG Quality Score (NRJPEGQS)[43] from the HVS Properties

Framework. A NR metric designed specifically for JPEG compressed images

• The Video Quality Metric[40] (VQM General Model) from the HVS Properties Frame-

work. The VQM uses RR parameters sent through an ancillary channel that requires

at least a 14% of the uncompressed sequence bandwidth. Although being conceptually

a RR metric, it was submitted to the VQEG FR-TV test because the ancillary channel

can be use to receive more detailed and complete references from the original frames,

even the original frames themselves.

III. COMPARING HETEROGENEOUS METRICS

As previously mentioned, each QAM gets the quality of the image/video using a own

and specific scale that depends on its design. Therefore this raw quality scores can not be
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compared directly, even though the range of the values (scale) is the same. In order to

compare fairly the behavior of various metrics for a set of images or sequences, the objective

quality index obtained from each metric has to be converted into a common scale.

When reviewing the performance comparisons that authors made in their new QAM

proposals, few details are provided about the comparison procedure itself. So it is difficult

to replicate these results. Authors in [2], reviewed the sources of inaccuracy of each step of

the QAM comparing process, shown at Fig. 3. The sources of inaccuracy may be related to

many factors as the reliability of the subjective reference data, the types and grade of the

distortions in the images or videos, the selection of the content that made up the training and

testing sets and even the use and interpretation of the correlation indicators. This sources

of inaccuracy can lead to quantitative differences when the same QAM is tested by different

authors, even when the tests are correctly done. Although different tests can provide slightly

varying results for a set of metrics, their results should be in line as explained in [2].

FIG. 3: Block Diagram of the QAM evaluation process

These issue encouraged and guided us to perform our own comparison test with the

selected QAM in order to adapt the test to the target applications we are interested on.

The results of our test, as expected, were slightly different from other comparison tests but

remain in line with their results [2].

We use the method and mapping function proposed by the VQEG [6, 60] with some

refinements proposed in other relevant comparison tests [61]. The chosen target scale is the

DMOS scale (Differences Mean Opinion Score) which is the one used by the VQEG and

other authors [61] when comparing metric proposals.

In order to compare several QAM, first a subjective test must be done, for example a

Double Stimulus Continuous Quality Scale (DSCQS) method as suggested and explained
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in [6], in order to get the subjective quality assessment of a set of images or sequences.

The scale used by the viewers goes from 0 to 100. Raw scores obtained in subjective tests

are converted into difference scores and processed further [58] to get a linear scale in the

0-100 range. The Mean Opinion Score (MOS) can be calculated for the source and distorted

versions of each image or sequence in this set. The DMOS is therefore the difference between

the MOS value obtained for the original image/sequence and the MOS value obtained for

the distorted one. So, for a particular image or sequence its DMOS value gives the mean

subjective value of the difference between the original and the distorted versions. A value

of 0 means no subjective difference found between the images by all the viewers. Due to the

nature of the subjective test this is very unlikely.

In this work we have not done such a subjective test. Instead of this, we have used

directly the DMOS values published in the Live Database Release 2 [62] and in the VQEG

Phase I Database [63].

Basically, the raw score of each metric must be converted into a value in this Predicted

DMOS (DMOSp) scale. This is done in the Curve Fitting step, see Fig. 3. The final result

of this scale conversion process, allow that the quality score given by a metric for a specific

image/sequence, is directly comparable with the one given by the other metrics for the same

image/sequence.

We use the non-linear mapping function between the objective and the subjective scores,

as suggested in the VQEG Phase-I and Phase-II testing and validation tests [60][6] as well

as in other extensive metrics comparison tests [61]. This function is shown in Equation 1.

It is a parametric function which is able to translate a QAM raw score to the DMOSp

space. As suggested in [2, 64] the performance evaluation of the metrics (Correlation Analysis

step in Fig. 3) is computed after a non-linear curve fitting process.

A linear mapping function can not be used because quality scores are rarely scaled uni-

formly in the DMOS scale, because different subjects may interpret vocabulary and intervals

of the rating scale differently, depending on the language, viewing instructions and individual

psychological characteristics. Therefore a linear mapping function would give too pessimistic

view of the metric performance. Several mapping functions could be selected for this pur-

pose, cubic, logistic, exponential and power functions, being monotonicity the main property

that the function must comply with, at least in the relevant range of values.
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FIG. 4: Dispersion plot used for the VIF metric including the curve fit for Eq. 1

Quality(x) = β1logistic(β2, (x− β3)) + β4x+ β5 (1)

logistic(τ, x) =
1

2
−

1

1 + exp(τx)
(2)

The Equation 1 has five parameters, β1 to β5 that are fixed by the curve fitting process

that achieve the best correlation between the QA metric values and the subjective DMOS

values. We have not found in the literature any mapping function with its parameters for

any image/video database. So, we have calculated these parameters based on sets of images

and sequences that conforms our “training sets”.

As an example, Fig. 4 show the dispersion plot used in the fitting process for one of the

metrics, in this case the VIF metric. Each point of the scatter-plot corresponds to an image

of the training set used, Live2 Database [62]. For each image in the training set, we get the

average DMOS value obtained in the subjective test and we run each metric in order to get

its raw quality scores. Each metric gives its score in its own scale.

The X-axis of Fig. 4 corresponds to the raw values given by the VIF implementation

used, where 0 corresponds to the highest quality reported by the metric and decreasing

values report lower quality. In the Y-axis we have the corresponding DMOS values. The

curve fitting process gives us the parameters for Equation 1 which is represented by the solid

curve in Fig. 4.

The quality for images in subjective test is variable, covering a large range of distortion

types and intensities for each distortion. Image distortions go from very hard distorted
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to practically undistorted ones. The viewers gave their scores for each image in the set,

obtaining the average DMOS value. As shown in Fig. 4, the dynamic range of the average

DMOS values does not reach the limits of the DMOS scale (0 and 100) for any distortion

type, therefore the fitted curve predicts DMOSp values inside the same dynamic range. This

is the reason why for a raw score of 0 (the best possible quality for the metric in this case)

the predicted DMOSp value is not 0, i.e. there was no image scored with an average DMOS

value of 0, instead of that, the best DMOSp value obtained is around the value of 20. So,

in the case of the VIF metric its dynamic DMOSp range varies from 20 to 80.

Having fixed the beta parameters for each metric (see Table I) Equation 1 can be used

to estimate or predict the DMOSp value for any objective metric score.

In table II the performance of our fittings are shown. These performance parameters

show the degree of correlation between the DMOSp values and the subjective DMOS values

provided by the viewers. Performance validation parameters are the Pearson Correlation

Coefficient (PCC), the Root Mean Squared Error (RMSE) and the Spearman Rank Order

Correlation Coefficient (SROCC).

Another key point to consider while comparing QAM [2] is the selection of the image or

video sequence set used as “training set”. The “training set” is used to perform the curve

fitting process. This set should be chosen with special caution and must be excluded from

validation tests. So, the fitting process must be done, for each metric, with the images or

sequences having the impairments for which the metric is designed to handle with. See [2]

for details of how an incorrect selection of the image “training set” can influence in the final

interpretation of the statistics used in the correlation analysis.

Once the metric has been evaluated in the Correlation Analysis Step, it will work with

another set of images or sequences that we call the “testing set”. For the “testing set” the

DMOS values are unknown, therefore we obtain them via Equation 1.

In our study all the metrics have been “trained” only with the luminance information.

The MSSIM, VIF, RRIQA and DMOSp-PSNR metrics were “trained” with the whole Live2

Database because they are intended to be generalist metrics.

The NRJPEGQS was “trained” only with the JPEG distorted images of Live2 database

as this metric is designed only to handle with this type of distortions. And for the same

reason the NRJPEG2000 was “trained” only with the JP2K distorted images of the Live2

database and the VQM-GM was “trained” with a subset of 8 video sequences and its 9
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corresponding HRCs of the VQEG Phase I database in a bitrate range of 1 to 4Mb/s.

It is important to mention that each of these “training sets” have different dynamic ranges

in the DMOS scale depending on the degree of the distortions applied to the images in each

set. We define as “homogeneous metrics” those which were trained with the same sets, and

therefore we use the term “heterogeneous metrics” to refer metrics that were trained with

different sets.

Our “testing set” comprises different standard video sequences that are commonly used

in video coding evaluation research, as shown in Table III. For FR-metrics both, reference

and distorted images/sequences are used as input. For NR-metrics only the distorted im-

age/sequence is available. For RR-metrics the reference image/sequence is the input of the

features extraction step, and both the extracted features and the distorted image/sequence

are the input for the final metric evaluation step. Image metrics were applied to each frame

of the sequences and the mean raw value for all the frames was translated to the DMOSp

scale. Hence, we finally obtain comparable DMOSp values for all images/sequences.

TABLE I: Equation parameters of metrics under study

β1 β2 β3 β4 β5

MSSIM -39.5158 14.9435 0.8684 -10.8913 46.4555

VIF -3607.3040 -0.5197 -1.6034 -476.0144 -693.3585

NRJPEGQS 37.6531 -0.9171 6.6930 -0.2354 40.7253

NRJPEG2000 37.3923 0.8190 0.6011 -0.8882 74.5031

RRIQA -18.9995 1.5041 3.0368 6.4301 5.0446

PSNR-DMOSp 23.2897 -0.4282 28.7096 -0.6657 61.5160

VQM-GM -163.6308 6.3746 -7.6192 114.4685 76.6525

IV. ANALYZING METRICS BEHAVIOR IN A COMPRESSION ENVIRON-

MENT

In this section we will study the behavior of the QAM under study when assessing the

quality of compressed images and sequences with different encoders. As exposed before, in

the development of a new encoder proposal or when performing modifications to existing
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TABLE II: Goodness of DMOSp-DMOS fitting

PCC RMSE SROCC

MSSIM 0.8625 7.9682 0.851

VIF 0.9529 0.0516 0.9528

NRJPEGQS 0.936 3.0837 0.902

NRJPEG2000 0.9099 7.056 0.9021

RRIQA 0.9175 4.4986 0.9194

PSNR-DMOSp 0.85257 9.0969 0.8197

VQM-GM 0.8957 7.6746 0.9021

TABLE III: Sequences included in the “test set”

Sequence Frame F.Num. F.Rate

Foreman
QCIF: 176 x 144

300

30 fps.

Container

Foreman
CIF: 352 x 288

Container

Mobile 640 x 512 40

ones, the performance of the new resulting encoder must be compared with the previous

one, or with other proposals in terms of perceived quality. This comparison process could

be done quite often and for several compression rates by means of the R/D behavior of each

encoder. The distortion metric commonly used in the R/D comparisons is PSNR.

So, in this test environment, we will work with the selected metrics as candidates to

replace the PSNR as the quality metric in a R/D comparison of different video codecs.

In this case, we will use a set of video encoders and video sequences in order to create

distorted sequences Hypothetical Reference Circuit (HRC), at different bitrates and analyze

the results of the different QAM under study. Also, we will consider the metric complexity in

order to determine their scope of application. For the tests we have used an Intel Pentium

4 CPU Dual Core 3.00 GHz with 1 Gbyte RAM. The programming environment used is
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FIG. 5: PSNR vs DMOSp-PSNR for the evaluated codecs (mobile sequence)

Matlab 6.5 Rel.13. The codecs under test are H.264/AVC [65], Motion-JPEG2000 [66] and

Motion-LTW [67]. The fitting between objective metric values and subjective DMOS scores

was done using the Matlab curve fitting toolbox looking for the best fit in each case.

A R/D plot of the different video codecs under test, using the traditional PSNR as a

distortion measure, is shown in the upper panel of Fig. 5. It is usual to evaluate performance

of video codecs in a PSNR range varying from 25-27 dB to 38-40 dB, because it is difficult

determine which one is better with PSNR values above 40 dB. This saturation effect, at

high qualities, is not captured by the traditional PSNR that increases as the bitrate does,

see upper panel of Fig. 5.

We convert the traditional PSNR to a metric that we call DMOSp-PSNR by applying

the scale-conversion process explained in section III. We can consider the DMOSp-PSNR

metric to be the “subjective” counterpart of the traditional PSNR. It is the same metric,

though expressed in a different scale. The main difference between PSNR and it counterpart

DMOSp-PSNR is that we can at fix the saturation effect, as we can see in the lower panel at

Fig. 5. As it can be seen, subjective saturation effect is noticeable above a specific quality

value. At bitrates in the range from 11.5 Mbps to 20.5 Mbps the DMOSp values practically

do not change. This behavior is the same for all the evaluated codecs, and video formats,

agreeing with the fact that there is no noticeable subjective difference when watching the
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sequences at the two highest evaluated bitrates (11.7 and 20.7 Mbps). The DMOSp scale

denotes distortion, thereby quality increases as DMOSp value decreases.

But as mentioned before the only modification that has been done to the PSNR metric

was the mapping process with the DMOS data, i.e. the raw values of the PSNR have

not changed, therefore DMOSp-PSNR metric does not fix the known drawbacks shown in

Fig. 1. For bitrates values below the saturation point (11.5” Mbps in the case of lower panel

of Fig. 5), the behavior of the two R/D curves should be the same. In fact, the DMOSp-

PSNR metric, below the saturation point, arranges the codecs by quality in the same order

than the PSNR does, agreeing also with the results of subjective tests. This behavior is the

same for all evaluated sequences and bitrates.

Since PSNR, and therefore DMOSp-PSNR, are known to be inaccurate perceptual metrics

for image or video quality assessment, we now analyze the remaining metrics under study

for all codecs and bitrates. These metrics have a better perceptual behavior and they offer

different scores for the images in Fig. 1.

The expected behavior of a QAM scoring an image or sequence at different bitrates is:

• It should give a decreasing quality value as the bitrate decreases, when bitrate values

are below saturation threshold.

• The quality value should be almost the same, when bitrate values are above saturation

threshold.

So, we run all the metrics for each HRC and analyzed the resulting data between consecu-

tive bitrates, obtaining the quality scores in the DMOSp space. A simple subjective DSCQS

test was performed with 23 viewers in order to detect if there was really perceived differences

above threshold in these sequences at high bitrates (above saturation 11.5 Mbps). In the

tests the three HRCs (for each sequence and encoder) with higher bitrates were presented

to the viewers: the first HRC (the first located below saturation point, 6.4 Mbps) and the

last two HRCs (two rightmost points from curves in Fig. 5, 11.58 and 20.65 Mbps) that

are locate in the saturation region. The test concluded that no perceptual differences were

detected above saturation threshold whereas all the viewers detected some perceptual differ-

ences bellow threshold. The predicted DMOSp differences for these HRCs above threshold

vary from 0.82 to 4.91 DMOSp points, so we can initially conclude that above saturation

these small differences in DMOSp values are perceptually indistinguishable.
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FIG. 6: QAM comparison using the same sequences with different codecs

In Figure 6 we can see examples of the R/D plots used for comparing the metrics where

all the evaluated QAM are present and were applied to the same sequence. In the upper

plot the HRCs were encoded with the H.264/AVC codec. The NRJPEG2000 metric is

omitted because it is not designed to handle DCT transform distortions. In the same way,

in the bottom plot of Fig. 6, where HRCs were encoded with M-JPEG2000, the NRJPEGQS

metric is omitted because it is not designed to handle the distortions related to the Wavelet

transform. We can see that the perceptual saturation is captured by all the QAM at high

bitrates (high quality) regardless of the encoder. The same holds for all the sequences and

encoders.

As mentioned in section III monotonicity is expected in the mapping function. So, the

expected behavior of the metrics should also be monotonic, i.e. metrics should give lower

quality values as the bitrates decreases. But if we look at the lower plot of Fig. 6, and focusing

on the two lowest bitrates, the quality score given by both, the RRIQA and NRJPEG2000

metrics, increases as the bitrate value decreases. This is contrary to the expected behavior

of a QAM. Fig. 7 shows the first frame of the Foreman QCIF frame size sequence at these

bitrates. Clearly, the right image (135 Kbps) receives a better subjective score than the left
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FIG. 7: First frame of Foreman QCIF encoded at 70 Kbps (left) and 135 Kbps (right)

one (70 Kbps), though the mentioned metrics state just the opposite in this particular case.

Our results for the compression environment show that NRJPEG2000 offers wrong quality

scores between the two highest compression ratios with the M-JPEG2000 codec, for all the

sequences and frame sizes tested. RRIQA also failed with this codec at high compression

ratios, but only for small video formats. All the other metrics exhibit a monotonic behavior

for all bitrates regardless of the encoder and sequence being tested.

Figure 6 will also help us to explain what it was exposed in section III, heterogeneous

metrics should not be compared directly because the dynamic range of the subjective quality

scores in each training set is different. Looking at upper plot in Fig. 6 and focusing on the

lowest bitrate, the DMOSp rating differences between metrics arrive surprisingly up to 44.21

DMOSp units.

In fact there are three different behaviors corresponding to the use of three different

training sets: VQM-GM was trained with VQEG sequences, NRJPEGQS was trained only

with the JPEG distorted images, and the rest of the metrics trained with the whole set

of distorted images in the Live2 database. This is the main reason of these anomalous

behaviors in Fig. 6.

So, when including in the same R/D plot curves from different metrics it should be

checked that the metrics are homogeneous in order to avoid misleading conclusions.

Determining how good a metric works depends on how good the metric predicts the

subjective scores given by human viewers. This goodness of fit is measured in parameters

like those of table II in section III. Our performance validation data tells that the VIF

metric is the one which best fits the subjective DMOS values among the metrics in the same

“training set”.

Fig. 8 represents the common R/D plots used when comparing the performance of

the encoders being tested. In this case the plot shows how the VIF metric evaluate the
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performance of the encoders. If the mapping function of the metrics were obtained with the

same “training set”, then the ranking order of the encoders should agree with the subjective

ranking order for each bitrate being evaluated.

We performed a simple subjective test with 23 viewers in order to evaluate if we can

trust the codec ranking, i.e. for a specific bitrate the metric order the quality given by the

encoders in the same perceptual order that the one given by human observers. For each rate

and sequence the reconstructed sequence of each encoder were presented simultaneously to

the subjects. The ordering of the three sequences varies for each HRC, so that the subjects

had no knowledge about the encoder order. The subjects ranked the sequences by perceptual

quality, if no differences were detected between pairs of sequences they also annotated this

fact. After analyzing the users scores and removing outliers, the test confirm that the

ranking order of the metrics was the same than the subjective ranking.

In the cases where viewers scored no perceptual difference between sequences the metrics

gave always values lower than 2.9 DMOSp units of difference between encoders. In this

test, for slightly higher differences, for example 3.11 DMOSp units at 2.1 Mb/s between

H264/AVC and M-JPEG2000 in figure 8, most of the viewers could see some perceptual

differences at this point between the sequences, because they ranked H264/AVC to have

better perceptual quality than M-JPEG2000 and M-LTW.

In order to determine how much difference expressed in the DMPOSp scale is perceptually

detectable, deeper studies and subjective tests must be done. From our studies we detect

that the perceptual meaning of the difference depends on the point in the DMOSp scale

where we are working. For example, for high quality (as stated before in previous tests),

DMOSp value differences up to 4.91 DMOSp points were imperceptible, however at lower

quality levels, smaller differences (3.11), as exposed, can be perceived.

Finally, Table IV shows, for different frame sizes, the mean frame evaluation time and the

evaluation time for the whole sequence needed by each metric to assess its raw quality value.

Times for the two steps of RRIQA, features extraction (f.e.) and quality evaluation (eval.)

have been separately measured. For a CIF sequence (calibration and colour conversion time

is not included) the VQM-GM is faster than the other metrics, except NRJPEGQS and

DMOSp-PSNR. DMOSp-PSNR is by far the less computationally expensive metric at all

frame sizes. On the other hand, RRIQA and VIF are the slowest metrics (they run a linear

multi-scale, multi-orientation image decomposition) but in our tests the VIF is the most
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FIG. 8: R/D performance evaluation of the three video codecs using Mobile ITU video sequence

by means of VIF metric

TABLE IV: QAM Average scoring times (seconds) at frame and sequence level.

QCIF CIF 640 x 512

Frame Seq Frame Seq Frame Seq

MSSIM 0.028 8.4 0.147 44.1 0.764 30.5

VIF 0.347 104.1 1.522 456.5 6.198 247.9

NRJPEGQS 0.01 3 0.049 14.6 0.201 8.1

NRJPEG2000 0.163 48.9 0.486 145.9 1.595 63.8

RRIQA(f.e.) 4.779 1433.7 6.95 2084.9 10.111 404.5

RRIQA(eval.) 0.201 60.2 0.635 190.6 2.535 101.4

DMOSp-PSNR 0.001 0.3 0.006 1.7 0.02 0.8

accurate metric among the general purpose metrics.

V. ANALYZING METRICS BEHAVIOUR IN A PACKET LOSS ENVIRONMENT

Our objective in this section is to analyze the behavior of the candidate metrics in the

presence of packet looses under different MANET scenarios. In order to model the packet

looses in these error prone scenarios, we use a three state Hidden Markov Model (HMM)
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and the methodology presented in [68]. HMMs are well known for their effectiveness in

modeling bursty behavior, relatively easy configuration, quick execution times and general

applicability. So, we consider that they fit our purpose of accelerating the evaluation process

of QAM for video delivery applications on MANET scenarios, while offering similar results

as the ones obtained by means of simulation or real-life testbeds. Basically, by the use of

the HMM we define a packet loss model for MANET that accurately reproduces the packet

losses occurring during a video delivery session.

The modeled MANET scenario is composed of 50 nodes moving in an 870x870 square

meters area. Node mobility is based on the random way-point model, and speed is fixed

at a constant value between 1 to 4 m/s. The routing protocol used is DSR. Every node

is equipped with an IEEE 802.11g/e enabled interface, transmitting at the maximum rate

of 54 Mbit/s up to a range of 250 meters. Notice that a QoS differentiated service is

provided by IEEE 802.11e [69]. Concerning traffic, we have six sources of background traffic

transmitting FTP/TCP traffic in the Best Effort MAC Access Category. The foreground

traffic is composed by real traces of an H.264 video encoded (using the Foreman CIF video

test sequence) at a target rate of 1 Mbit/s. The video source is mapped to the Video MAC

Access Category.

We apply the HMM described above to extract packet arrival/loss patterns for the simu-

lation traces, and later replicate these patterns for testing. We describe two environments:

(a) congestion related environment, and (b) mobility related environment.

The congestion environment is composed of 6 scenarios with increasing level of congestion,

from 1 to 6 video sources. The mobility environment is composed of 3 scenarios with only

one video source, but with increasing degrees of node mobility (from 1 to 4 m/s).

For each of these scenarios we get different packet loss patterns provided by the HMM

that represents each scenario.

After an analysis of the packet looses, different patterns are defined:

• Isolated small bursts represent less than 7 consecutive lost packets. As each frame is

split in 7 packets at source, isolated bursts will affect to 1 or 2 frames, but none of

them will be completely lost. This error pattern is mainly due to network congestion

scenarios, where some packets are discarded due to transitory high occupancy in the

wireless channel or buffers at relaying nodes.
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• Large packet loss bursts. Large Bursts cause the loss of one or more consecutive frames.

Large packe error bursts are typically a consequence of high mobility scenarios, where

the route to the destination node is lost and a new route discovery process shuld be

started. This will keep the network link in down state during several seconds, losing

a large number of consecutive packets.

We have used the H.264/AVC codec adjusting the error resilience parameters to the values

proposed in [70], so that the decoder is able to reconstruct sequences even when large packet

loss bursts occurs. H.264/AVC in configured to produce one I frame every 29 P frames, with

no B frames and to split each frame in 7 slices, so we to put each slice into a separate packet

and encapsulate its output in RTP packets. As suggested in [70], we also force 1/3 of the

macroblocks of each frame to be randomly encoded in intra mode.

We have used the Foreman CIF seq. (300 frames at 30 fps) to build an extended video

sequence by repeating the original one up to the desired video length. After running the

encoder for each extended video sequence, we get RTP packet streams. We will apply them

a packet erasure process, removing those packets declared lost by the HMM model. This

process simulates packet losses in the MANET scenarios, so a distorted bitstream will be

delivered to the decoder. The decoder behavior depends on the packet loss burst type as

follows.

When an isolated small bursts appear, the decoder is able to apply error concealment

mechanisms to repair the affected frames. The video quality decreases, and just after the

burst, the reconstructed video quality recovers the quality by means of the random intra-

coded macroblock updating. When the next I frame arrives, it completely stops error prop-

agation.

When the decoder faces large bursts, it stops decoding and waits until new packets arrive.

This produces a sequence in the decoder that is shorter than the original one. Therefore,

both sequences are not directly comparable with the QAM. Therefore we implement a more

realistic behavior of the decoder by freezing the last completely decoded frame until the

burst ends. So, the observer would see a frozen frame and when new packets arrive, the

decoder will proceed to the reconstruction of the new frames.

Once we have comparable video sequences (original and decoded video sequences with

the same length), we are able to run the QAM. Each metric produces an objective quality

value for each frame in its own scale. Then, we have perform the scale conversion to the
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FIG. 9: PSNR frame values during a long packet loss burst (from frame 2327 to 2525) at different

bitrates.

DMOSp scale (see section III).

Fig. 9 show the objective quality value in the traditional PSNR scale at three different

compression levels (Low compression, Medium compression and High compression) during

a large packet loss burst. We observe the evolution of quality during the burst period.

What the observer sees during this large burst is a frozen frame, with more or less quality

depending on the compression level. The PSNR metric reports that quality drops drastically

with the first frame affected by the burst, and decreasing even more as the difference between

the frozen frame and the current frame increases. Nearly at the middle of the burst, an

additional drop of quality can be observed. It corresponds to a scene change, that is, with

the beginning of a new cycle of the foreman video sequence. At this point the drastic scene

change makes the differences between sequences even higher, and the PSNR metric scores

with even worse values, reaching values as low as 10-12 dBs. Perceived quality changes at

these levels is quite difficult. So, a better perceptually designed QAM should not score such

a quality drop in this situation because quality saturates. When the burst ends, quality

rapidly increases because of the arrival of packets belonging to the same frame number than

the current one in the original sequence (frame 2525 in Fig. 9).

If during such a burst a QAM takes into account only the quality of the frozen frame,

disregarding the differences with the original one (which changes over time), the effect of

the burst would remain unnoticed for that metric, i.e. quality remain constant.

Fig. 10 shows the evolution of the candidate QAM during a large burst (similar to Fig. 9

but in this case in the DMOSp space). There is a panel for each compression level: the

upper panel corresponds to high compression, the central panel to middle compression and
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FIG. 10: Metric comparison in the DMOSp space during a very large burst

the bottom panel to low compression. We observe some interesting behaviors that we proceed

to analyze.

From a perceptual point of view, quality must drop to a minimum when one or more

frames are lost completely and should remain that way until the data flow is recovered.

It does not matter if a scene change took place inside the large burst. VIF and MSSIM

behaves this way. At the point of the burst where the scene change takes place, both the

VIF and MSSIM metrics have almost reached their ’bad quality’ threshold regardless of the
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(a) (b) (c) (d)

FIG. 11: Frame reconstruction after a large burst: (a)original frame, (b)last frozen frame, (c)(d)first

and second reconstructed frames after the burst.
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FIG. 12: End of the large burst for the low compression panel. FR and NR metrics show the

opposite behavior.

compression level and therefore there is no substantial change in the reported quality. The

drop of quality to the minimum at the beginning of the burst evidence the lost of whole

frames.

NR metrics do not detect the presence of a frozen frame (by dropping the quality score)

as expected because the quality given by these metrics remain at the level scored for the

frozen frame during the burst duration. So, NR metrics could not detect the beginning of a

large burst, since lost frames will be replaced with the last correctly decoded frame (frozen

frame). However, NR metrics detect the end of such bursts. Fig. 11 will help us to explain

this behavior, showing how reconstruction is done after a large burst.

Figure 11 shows the impairments produced when the large burst ends. Fig. 11(a) is the

current frame, the one being transmitted. Fig. 11(b) is the frozen frame that was repeated

during the burst duration. When the burst ends, the decoder progressively reconstruct the

sequence using the intra macroblocks form the incoming video packets. So the decoder

updates the frozen frame with the incoming intra macroblocks. This is shown in figures
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11(c) and 11(d) where the face of the foreman appears gradually.

The gradual reconstruction of the frame with the incoming macroblocks is interpreted

in a different way by NR metrics and FR metrics. When the macroblocks begin to arrive,

what happens at frame 2522 see figure 12 (zoom for low compression panel at the end of the

burst), the NR metrics react scoring down quality, while the FR metrics begin to increase

their quality score, just the opposite behavior. For a NR metric, without a reference frame,

figure 11(c) has clearly worse quality than Fig. 11(b). But for a FR metric the corresponding

macroblocks between Fig. 11(c) and Fig. 11(a) help to increase the scored quality.

So, NR metrics react only when the burst of lost packets affects frames partially, i.e.

isolated bursts, and at the end of a large burst. The NRJPEGQS metric reacts harder

(higher quality differences) than the NRJPEG2000 because it was designed to detect the

blockiness introduced by the discrete cosine transform. When the frame is fully reconstructed

then the score obtained with NR and FR metrics approaches again the to the values achieved

before the burst, what depends on the compression rate.

The RRIQA metric shows high variability in its scores between consecutive frames inside

bursts. These variations become more evident as the degree of compression decreases. The

nature of the data sent through the ancillary channel, 18 scalar parameters obtained form

the histogram of the wavelet subbands of the reference image, is very sensitive to a loss

of synchronism between the reference frame and the frozen one. On the decoder the same

extracted parameters are statistically compared with the received through the ancillary

channel. When this comparison is performed with two sets of parameters obtained from

different frames unexpected results appear.

Concerning the FR metrics, MSSIM, VIF and PSNR-DMOSp show a similar behavior or

trend. MSSIM and PSNR-DMOSp show closer quality scores between them that the ones

obtained with the VIF metric that gives lower quality values than the other two metrics.

This behavior is the same regardless the compression level inside the large burst. Leaving

aside the PSNR-DMOSp, which is not really a QAM, the other two FR metrics (VIF and

MSSIM) have the same behavior when facing large bursts.

Fig. 13 shows an isolated burst. In this case blur and edge shifting impairments are

introduced altering only one frame. This fact is perceived only by the FR metrics and the

NRJPEG2000, which is designed to detect the type of impairments that were introduced.

The error concealment mechanism needs up to 6 frames to achieve the same quality scores
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FIG. 13: Metric comparison for an isolated burst

(a) (b) (c) (d)

FIG. 14: Packet lost affecting only one frame. (a) Original frame, (b,c,d) next three decoded

frames

obtained before the burst. Fig. 14 shows the original frame (a) and three subsequent frames

(b,c,d) where the effect of the lost packets is concealed.

As defined previously, an isolated burst can affect one or two consecutive frames. In the

last case, the behavior of the QAM when facing the isolated burst resembles the behavior

of the metrics with a large burst. The difference is that the concealment mechanisms and

the correct reception of part of the frames, hinder a largest drop in the quality.

Figure 15 shows multiple consecutive bursts (large and isolated) that behave as exposed

previously. From left to right we see a large burst followed by an isolated one, this pattern

repeats again one more time, and at the right most part of the figure, between frames 352 and

372, two large bursts occurs consecutively having a gap between them where new incoming

packets arrive for a short period of time (frames 361 and 362).
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FIG. 15: Frame interval where different type of bursts occurs consecutively.
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FIG. 16: Detail from two consecutive long burst with incoming packets between them.

In 16 we zoom into this area (frames 352 to 372) to analyze why the behavior of the

DMOSp-PSNR metric differs from the other FR metric during the gap between bursts. In

the gap the encoder is not able to reconstruct a whole frame because the gap is too small,

i.e. between the two large burst only a small amount of packets arrive, and this is not

enough to reconstruct a whole frame. So the involved frames (361 and 362) are partially

reconstructed (figures 17(b) and 17 (c)). Both frames exhibit perfect correspondence in the

lower half with the original one Fig. 17(a). Therefore, the scored quality must increase at
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(a) (b) (c)

FIG. 17: Decoded frames between two consecutive bursts, (a) original frame; Reconstructed frames

(b) 361 and (c) 362

least to some extent, compared to the quality of the previous frozen frame, as occurs at

the end of a large burst. This fact is only reflected by the VIF and MSSIM metrics. The

PSNR-DMOSp metric is not able to detect this because it is computed using information

from the whole frame. For the VIF and the MSSIM, which are perceptually driven, the

lower half of the frame increases their raw scores, in the same way as the human scores do.

After frame 362 quality decreases again since the following frame is frozen too. So, VIF

and MSSIM detect two consecutive loss burst while PSNR-DMOSp and the other metrics

considers only a single larger one.

VI. CONCLUSIONS

The main goal of this work was focused on looking for a Quality Assessment Metric

that could be used instead of the PSNR when evaluating compressed video sequences with

different encoder proposals at different bitrates, and to analyze the behavior of such metrics

when compressed video is transmitted over error prone networks such as MANETs.

We explained the procedures that we followed to compare QAM metrics and alerted

about some issues that occurs if the comparison is done between heterogeneous metrics.

The metrics must be compared in a common scale because the raw scores of the metrics

are not directly comparable. The scale conversion process involves subjective tests and

the use of a mapping functions between the subjective MOS values and the metrics raw

values. The parameters for the mapping function we used are given. The metrics were first

trained with a set of images from two open source image and video databases with available
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MOS values. Then the metrics were tested with another set of images and videos also

from available databases. In order to perform a fair comparison, the training and testing

sets used with each metric must use only impairments for which the metric is designed to

handle with. We defined as heterogeneous metrics those that were trained with different

set of images or sequences. The R/D comparisons of heterogeneous metrics must be done

carefully, focusing not only on the absolute quality scores, but also on their relative scoring

between consecutive bitrates as the differences between DMOSp values are perceptually

detected or not depending on the quality range. When metrics are trained with the same

training set, differences in DMOSp values have the same perceptual meaning for all the

metrics, but this can be not true between heterogeneous metrics. Normalizing the DMOSp

scale when comparing heterogeneous metrics helps to detect this differences.

We did the comparison between the metrics under two environments, a compression

environment and a packet loss environment. We perform several subjective tests in order

to confirm that the analysis and the behavior of the metrics is consistent with human

perception. Our tests included the comparisons of three encoders by replacing the PSNR as

distortion metric in their R/D curves with each of the candidate metrics.

From our results of the compression environment, we conclude that we can trust on

the quality given by the metric which obtains a better fit in terms of DMOS during the

calibration process and how it ranks the performance of the tested encoders for the bitrate

range under consideration. The NRJPEG2000 and the RRIQA metrics break monotonicity

for very high compression levels when M-JPEG2000 is the evaluated encoder. For the rest

of the bitrates, all the other metrics show a monotonic behavior for all the bitrate range and

for all encoders.

The choice of a QAM to replace the traditional PSNR, when working in a compression

framework with no packet losses, depends on the availability of the reference sequence. In

applications where the reference sequence is not available, RRIQA is our choice because

it has practically the same behavior as FR metrics. If the reference sequence is available,

the choice depends on the weight given to the trade-off between computational cost and

accuracy. If time is the most important parameter we will choose DMOSp-PSNR followed

by VQM and MSSIM. If accuracy is more important, then the choice will be VIF and MSSIM

metrics.

In the packet loss environment, we have analyzed the behavior of metrics when measuring
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reconstructed video quality sequences encoded and delivered through error prone wireless

networks, like MANETs. In order to obtain an accurate representation of delivery errors in

MANETs, we have proposed the use of a HMM model in several MANET scenarios.

The results of our analysis are the following ones: (a) NR metrics are not able to properly

detect and measure the sharp quality drop due to the loss of several consecutive frames. (b)

The RR metric has a non-deterministic behavior in the presence of packet losses, having

difficulties to identify and measure this effect when the video is encoded with moderate to

high compression rates. (c) Concerning the other metrics, MSSIM, DMOSp-PSNR and VIF

show a similar behavior in all cases. In summary we consider that, although they exhibit

slight differences in the Packet Loss framework, we propose the use of the MSSIM metric as a

trade-off between a high quality measurement process (resembling human visual perception)

and computational cost.
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