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Abstract—Networks of workstations (NOWs) are becoming increasingly popular as a cost-effective alternative to parallel computers.

These networks allow the customer to connect processors using irregular topologies, providing the wiring flexibility, scalability, and

incremental expansion capability required in this environment. Some of these networks use source routing and wormhole switching. In

particular, we are interested in Myrinet networks because it is a well-known commercial product and its behavior can be controlled by

the software running in network interfaces (Myrinet Control Program, MCP). Usually, the Myrinet network uses up*/down* routing for

computing the paths for every source-destination pair. In this paper, we propose the In-Transit Buffer (ITB) mechanism to improve

network performance. We apply the ITB mechanism to NOWs with up*/down* source routing, like Myrinet, analyzing its behavior on

both networks with regular and irregular topologies. The proposed scheme can be implemented on Myrinet networks by only modifying

the MCP, without changing the network hardware. We evaluate by simulation several networks with different traffic patterns using

timing parameters taken from the Myrinet network. Results show that the current routing schemes used in Myrinet networks can be

strongly improved by applying the ITB mechanism. In general, our proposed scheme is able to double the network throughput on

medium and large NOWs. Finally, we present a first implementation of the ITB mechanism on a Myrinet network.

Index Terms—Networks of workstations, wormhole switching, minimal routing, source routing, performance evaluation.
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1 INTRODUCTION

DUE to the increasing computing power of microproces-
sors and the high cost of parallel computers, networks

of workstations (NOWs) are currently considered as a cost-
effective alternative for small scale parallel computing.
Although NOWs do not provide the computing power
available in large multicomputers and multiprocessors, they
meet the needs of a great variety of parallel computing
problems at a much lower cost.

Currently, the evolution of NOWs is closely related to
that of local area networks (LANs). LANs are migrating
from shared medium to dedicated medium networks.
Although Ethernet is very popular, other commercial LANs
have arisen in the high-speed networking arena. Among the
current gigabit LAN technologies, Myrinet [1] has one of the
highest performance/cost ratio [3].

In Myrinet, packets are delivered using wormhole
switching and source routing (as opposed to distributed
routing) [7]. With source routing, the path to destination is
built at the source host and it is written into the packet
header before it is transmitted. Switches route packets
through the path found at the packet header. Although the
path followed by a packet is fixed (i.e., it can not be
dynamically modified at each switch) switches are simpler
and, thus, faster than those used with distributed routing.

Myrinet design is simple and very flexible. In particular,
it allows the user to change the network behavior through
the Myrinet Control Program (MCP). This software is
loaded in the memory of the network interface card (NIC)
at boot time. It initializes the NIC, performs the network

configuration automatically, does the memory manage-

ment, defines and applies the routing algorithm, formats
packets, transfers packets from local processors to the

network and vice versa, etc.
One of the tasks managed by the MCP is the selection of

the route to reach the destination of each packet. As the

Myrinet routing scheme uses source routing, the NIC has to

build network routes to each destination during the

initialization phase. NICs have mechanisms to discover

the current network configuration, being able to build

routes between itself and the rest of network hosts. Myrinet

uses up*/down* routing [17] to build these paths. Up*/

down* routing is based on an assignment of direction labels
(“up” or “down”) to links. To eliminate deadlocks, a route

must traverse zero or more “up” links followed by zero or

more “down” links. While up*/down* routing is simple,

many of the provided paths are not minimal on certain

networks. Even more, the probability of finding minimal

paths in accordance with the up*/down* restriction

decreases as network size increases. Also, another draw-

back of up*/down* routing is that it forces most of the

traffic to cross the vicinity of the root switch, leading to
saturation at relatively low traffic.

2 MOTIVATION

In [20], [19], we proposed the use of adaptive routing in

irregular topologies with distributed routing, showing that

up*/down* routing can be strongly improved by providing
more routing flexibility and allowing minimal paths. Thus,

it would be very interesting to develop similar techniques to

improve the performance of networks with source routing.

Moreover, the proposed techniques should be easily

applied to source-based commercial networks. In the case

of Myrinet, this should be done without modifying network
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hardware, by changing only the MCP software and without
incurring in an excessive overhead.

Some adaptivity can be easily provided by computing
more than one path between every source-destination pair
of hosts, if available, and later performing a selection.
However, this solution increases the size of the routing table
and makes routing operation more complex. Hence, we will
focus only on supplying minimal paths. In this paper, we
propose a method that always guarantees minimal routing
between every pair of hosts. In particular, our approach
divides forbidden up*/down* minimal routes into valid
subroutes and forces a special kind of virtual cut-through
through the NICs at some intermediate hosts. At these
hosts, packets are completely ejected and later reinjected
again into the network, thus breaking dependences between
the input and output channels of the affected switch. As a
consequence of providing minimal routing, the ITB me-
chanism also achieves a better network traffic balance,
removing another important drawback of up*/down*
routing as mentioned above. However, notice that those
packets that are ejected and reinjected may suffer a latency
increase that has to be taken into account in order to make a
fair comparison.

Myrinet networks can be built following any kind of
network topology. Indeed, users can decide the network
connectivity attaching hosts and switches to their own.
Depending on the location of network hosts and the final
application of the system, the topology can be regular or
irregular. For example, if we plan to install a Myrinet network
that replaces an existing low-performance Ethernet, the
physical locations of hosts would force us to an irregular
topology [14]. However, if our goal is to build a cluster of
workstations to run computation intensive programs, the
network would fit in a single room, the switches would be in a
cabinet, and the topology should be regular in order to get the
best system performance [15], [9]. Also, the up*/down*
routing is usually less restrictive in regular topologies,
because it supplies minimal paths for almost all destinations.
Hence, the influence of topology has to be considered when
evaluating our proposal, so we analyze its behavior on both
irregular and regular topologies.

The rest of the paper is organized as follows. In Section 3,
the current Myrinet source routing scheme is introduced. In
Section 4, the ITB mechanism is described. In Section 5, the
performance of the proposed mechanism is evaluated by
simulation. In Section 6, a first implementation of the
ITB mechanism on a Myrinet network is presented. Finally,
in Section 7 some conclusions are drawn.

3 MYRINET SOURCE ROUTING

Myrinet uses source routing to transmit packets between
hosts. In this technique, the source host computes the path
that the packet has to follow to reach its destination and
stores it into the packet header (see Fig. 1). Each packet

header consists of an ordered list of output link identifiers
that are used by each intermediate switch to properly route
the packet (the header also stores the packet type). The first
link identifier corresponds to the one that the first switch
will use, the second link identifier will be used by the
second switch, and so on. Each link identifier is removed
after being used. In order to build and maintain routes
between the source host and each potential destination host,
each network host must have a representation of the current
network topology. Routes are built before sending any
packet during the initialization phase. In addition, each
network adapter checks for changes in the network
topology (shutdown of hosts, link/switch failures, start-up
of new hosts, etc.), in order to maintain the routing tables
updated.

Although several routing algorithms can be used [4],
[16], Myrinet uses up*/down*routing [17] to build network
routes. Up*/down* routing is based on an assignment of
direction to the operational links. To do so, a breadth-first
spanning tree is computed and the “up” end of each link is
defined as: 1) the end whose switch is closer to the root in
the spanning tree and 2) the end whose switch has the
lower ID, if both ends are at switches at the same tree level
(see Fig. 2). The result of this assignment is that each cycle
in the network has at least one link in the “up” direction
and one link in the “down” direction. To eliminate
deadlocks while still allowing all links to be used, this
routing scheme uses the following up*/down* rule: a legal
route must traverse zero or more links in the “up” direction
followed by zero or more links in the “down” direction.
Thus, cyclic dependences between channels are avoided
because a packet cannot traverse a link along the “up”
direction after having traversed one in the “down”
direction.

Up*/down* routing is not always able to provide a
minimal path between some pair of nodes, as shown in the
following example. In Fig. 2, a packet transmitted from a
host connected to switch 4 to a host connected to switch 1
cannot go through any minimal path. The shortest path
(through switch 6) is not allowed since the packet should
traverse a link in the “up” direction after one in the “down”
direction. All the allowed paths (through switches 0, 2, and
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Fig. 2. A randomly generated task graph and height methods.



through switches 0, 5) are nonminimal and only one of
them will be included in the routing table. The number of
forbidden minimal paths increases as the network becomes
larger.

Moreover, up*/down* routing un-balances network
traffic. As network becomes larger, more restrictions
(down ! up transitions) appear in the network and,
therefore, more traffic is forced to cross the vicinity of the
root switch.

4 IN-TRANSIT BUFFERS: A MECHANISM TO

IMPLEMENT MINIMAL SOURCE ROUTING

The up*/down* routing algorithm is deadlock-free. It avoids
cyclic dependences between network links by not allowing
packets to reserve “up” links after having reserved “down”
links. Due to this restriction many minimal routes are
forbidden. The basic idea to eliminate this restriction consists
of dividing such forbidden paths into several valid up*/
down* subpaths. On each subpath, an intermediate host is
selected as the destination and, at this host, packets are
completely ejected from the network and later reinjected in
order to take the next subpath. In other words, the
dependences between “down” and “up” links are removed
by using some buffers at the intermediate host (in-transit
buffer or ITB). In Fig. 3, we can see that, with the
ITB mechanism, a minimal route can be used to route packets
from the host connected to switch 4 to the host connected to
switch 1. To break channel dependences, packets are sent to a
host connected to the intermediate switch 6. This host will
reinject packets as soon as possible towards its real destina-
tion.

Hence, when the up*/down* routing algorithm for a
given packet does not provide any minimal path, the
proposed routing strategy is able to find a minimal path. In
this path, one or more in-transit hosts are chosen, verifying
that each subroute is a valid up*/down* path. The packet
will be addressed to the first in-transit host. The in-transit
host will reinject the packet into the network as soon as
possible, forwarding it to the destination host or to the next
in-transit host.

Depending on network topology, there may exist
different minimal paths for each source-destination pair. If

so, some of them might be valid up*/down* paths and
others might not. We will use only one minimal path for
each source-destination pair, randomly selected among all
the feasible paths. In the case a nonvalid up*/down* path is
chosen for a particular source-destination pair, ITBs will be
placed at down ! up transitions along the path. Thus, the
places where ITBs will be allocated in the network depends
on the final set of minimal paths. Obviously, we assume
that every switch has at least one host attached to it.

To make this mechanism deadlock-free, it must be
guaranteed that an in-transit packet that is being reinjected
can be completely ejected from the network if the reinjected
part of the packet becomes blocked, thus removing
potential channel dependences (down ! up transitions)
that may result in a deadlock configuration. So, when an in-
transit packet arrives at a given host, care must be taken to
ensure that there is enough buffer space to store it at the
interface card before starting its reinjection. If the buffer
space at the network interface card has been exhausted, the
MCP should store the packet in the host memory,
considerably increasing the overhead in this case. Although
this strategy requires an infinite number of buffers in
theory, a very small number of buffers are required in
practice. In fact, in all the simulations ran (see Section 5) the
reserved memory space (512KB) was enough to handle all
the in-transit packets without using the host memory.
Taking into account that current Myrinet interface cards are
shipped with 8MB and less than 128KB are set aside for the
MCP, there is more than enough memory space in the NIC
to allocate the ITBs. In Section 5, we will analyze the amount
of memory needed at NICs to handle all the in-transit
packets. Another feasible solution to NIC memory overflow
could be discarding packets, relying on the GM acknowl-
edgments to retransmit those missing packets.

In order to route packets requiring ITBs, the Myrinet
packet header format must be changed. In Fig. 4, we can see
the new header format that supports ITBs. The entire path
to destination is built at the source host. In the case an ITB is
needed along the path, a mark (ITB mark) is inserted in the
packet header in order to notify the in-transit host that the
packet must be reinjected into the network after removing
that mark. After the mark, the path from the in-transit host
to the final destination (or to another in-transit host)
follows.

Obviously, the ITB mechanism may add some latency to
those packets that use it to reach their destinations. Also, the
mechanism requires some additional resources in both
network (links) and network interface cards (memory pools
and DMA engines).

Fig. 5 shows the implementation of the in-transit buffer

mechanism. In the case of Myrinet networks, some memory

is needed at the network interface card to store in-transit

packets and the MCP program needs to be modified to

detect in-transit packets and process them accordingly. In
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order to minimize the introduced overhead, as soon as the

in-transit packet header is processed and the required

output channel is free, a DMA transfer can be programmed

to reinject the in-transit packet. So, the delay to forward this

packet will be the time required for processing the header

and starting the DMA (when the output channel is free). As

the MCP allows this kind of DMA programming, it is

possible to implement the ITB mechanism in Myrinet

without modifying the network hardware. On the other

hand, there is no problem if the DMA transfer begins before

the packet has been completely received, because it will

arrive at the same rate that it was transmitted,1 assuming

that all the links in the network have the same bandwidth.2

Note that Myrinet does not implement virtual channels.

Therefore, once a packet header reaches the network

interface card, flits will continue arriving at a constant rate.

The only additional requirement is that the packet is

completely stored in the network adapter memory at the

source host before starting transmission to avoid inter-

ference with its I/O bus.
The use of the mechanism on a particular in-transit host

could affect the performance of its local traffic. The in-

transit host output channel will be shared among local and

in-transit packets. An excessive number of in-transit packets

could block the injection of local packets. In order to

minimize this effect, a dynamic priority scheme has been

taken into account. With this mechanism, local traffic

priority is increased as the number of queued local packets

increases. In particular, when this number is large, both

kinds of packets have the same priority. By using this

strategy, in all the simulations ran, starvation was avoided

in all the nodes.

5 PERFORMANCE EVALUATION

In this section, we evaluate the ITB mechanism and

compare it with the original up*/down* routing used in

Myrinet. First, we describe the different topologies and

traffic patterns used in the study. Then, we describe the

assumed network parameters (links, switches, and network

interfaces) which are based on current Myrinet networks.

Finally, we present the simulation results.

5.1 Network Model

The network is composed of a set of switches and hosts, all
of them interconnected by links. To perform a detailed
study, we evaluate several regular and irregular topologies.
First, we have selected three well-known regular topologies:3

. 2D Torus. The evaluated 2D Torus network is made
up of 64 16-port switches. Each switch is connected
to each of its four neighbors through a single link.
There are eight hosts connected to each switch, so
there are 512 hosts in the whole system. There are
four ports left open in each switch. This topology is
shown in Fig. 6.

. 2D Torus with express channels. This topology is
similar to the 2D Torus except that all the switches
are also connected to their second-order neighbors
(neighbors located two hops away in each dimen-
sion) using express channels [5]. Each switch has
16 ports. There are 8 hosts connected to each switch,
so there are 512 hosts in the whole system. All ports
are used in all switches. The 2D Torus with express
channels network is shown in Fig. 7.

. CPLANT. This topology is used in the Computa-
tional Plant (CPLANT) at the Sandia National
Laboratories [15]. It is made up of 50 16-port
switches connecting 400 nodes (each switch has
eight hosts attached to it). Forty-eight switches are
grouped into six groups of eight switches. Each
switch uses four ports to connect to other switches in
the same group and four ports to connect to its
equivalent switches in the remaining groups. Each
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Fig. 5. Average speedup for different population sizes.

Fig. 6. Crossover type and the average speedup.

1. Due to limited memory bandwidth in the network interfaces, a source
host may inject bubbles into the network, thus lowering the effective
reception rate at the in-transit host. This problem has been addressed and
can be easily avoided when implementing the MCP code. Also, future
implementations of Myrinet interfaces will remove this problem.

2. Myrinet supports mixing links with different bandwidth. 3. Some of them have already been implemented using Myrinet switches.



group forms an hypercube topology in which an
additional link is used at each switch to connect to
the farthest node in the group. The six groups form
an incomplete hypercube, which also contains
connections between farthest nodes. The remaining
two switches form an additional group. Therefore,
the resulting topology in not completely regular. The
CPLANT topology is shown in Fig. 8.

In order to evaluate the ITB mechanism with irregular

topologies, we have randomly generated several topologies

taking into account only three restrictions. First, we assume

that there are exactly four hosts connected to each switch.

Second, all the switches in the network have the same size.

We assume that each switch has eight ports. So, there are
four ports available to connect to other switches. Finally,
two neighboring switches are connected by a single link.
These assumptions are quite realistic and have already been
considered in other evaluation studies [20], [19]. In Fig. 9,
we show one of the irregular topologies that we have used
in the evaluation.

To analyze the influence of the network size on system
performance, we used different network sizes. In particular,
irregular networks with 8, 16, 32, and 64 switches have been
analyzed, so there are 32, 64, 128, and 256 hosts in the
system, respectively. Finally, to make results independent
of a particular topology, we evaluate up to 40 random
irregular topologies, 10 for each network size.

5.2 Traffic Patterns

In order to evaluate the ITB mechanism with different
traffic patterns, we used different message destination
distributions to generate network traffic. The distributions
are the following:

. Uniform distribution. The destination of a message
is randomly chosen with the same probability for all
the hosts. This pattern has been widely used in other
evaluation studies [2], [6].

. Bit-reversal distribution. The destination of a mes-
sage is computed by reversing the bits of the source
host identification number. This pattern has been
selected taking into account the permutations that
are usually performed in parallel numerical algo-
rithms [10], [11]. Notice that this distribution can
only be used when the number of nodes is a power
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of 2. This distribution is applied to all the networks
presented above but to the CPLANT network.

. Hotspot distribution. A percentage of traffic is sent
to one host (the hotspot). The selected hotspot
location is chosen randomly. The rest of the traffic
is generated randomly using a uniform distribution.

. Local distribution. Message destinations are, at most,
l switches away from the source host, and are
randomly computed. We will study the effects of
local distribution with l ¼ 3, l ¼ 4, and l ¼ 5,
depending on the topology used.

For each simulation run, we assume that the message
generation rate is constant and the same for all the hosts.
We evaluate the full range of traffic, from low load to
saturation. And finally, we have considered different
message lengths. In particular, 32, 512, and 1,024-byte
messages have been considered.

5.3 Myrinet Links, Switches, and Interfaces

We assume short LAN cables [13] to interconnect switches
and workstations. These cables are 10 meters long, offer a
bandwidth of 160 MB/s, and have a delay of 4.92 ns/m
(1.5 ns/ft). Flits are one byte wide. Physical links are also
one flit wide. Transmission of data across channels is
pipelined [18]. Hence, a new flit can be injected into the
physical channel every 6.25 ns and there can be a maximum
of 8 flits on the link at a given time.

A hardware “stop and go” flow control protocol [1] is
used to prevent packet loss. In this protocol, the receiving
switch transmits a stop(go) control flit when its input buffer
fills over (empties below) 56 bytes (40 bytes) of its capacity.
The slack buffer size is fixed at 80 bytes.

Each Myrinet switch has a simple routing control unit
that removes the first flit of the header and uses it to select
the output link. That link is reserved when it becomes free.
Assuming that the requested output link is free, the first flit
latency is 150 ns through the switch. After that, the switch is
able to transfer flits at the link rate, that is, one flit every
6.25 ns. Each output port can process only one packet
header at a time. An output port is assigned to waiting
packets in a demand-slotted round-robin fashion. When a
packet gets the routing control unit, but it cannot be routed
because the requested output link is busy, it must wait in
the input buffer until its next turn. A crossbar inside the
switch allows multiple packets to traverse it simultaneously
without interference.

Each host is connected to the Myrinet network through a
network interface card (NIC). This card contains the LANai
processor, some buffer memory (ranging from 2MB in the
earlier versions to 8MB in the latest ones) [12], and three
DMA devices. Each NIC contains a routing table with only
one entry for every possible packet destination. The LANai
processor fills the routing table and uses it to send packets
to other hosts. The way tables are filled determines the
routing scheme that will be used. We are interested in
comparing the performance achieved by the original
Myrinet routes using the up*/down* routing algorithm
with the ones supplied by the ITB mechanism.

The original Myrinet routes have been obtained by using
the simple_routes program from the Myricom GM [8]
protocol distribution. This program computes the entire set of
up*/down* paths and then selects the final set of up*/down*

paths (one path for every source-destination pair) trying to
balance traffic among all the links. This is done by using
weighted links. So, it may happen that the simple_routes
program selects a nonminimal up*/down* path, instead of an
available minimal up*/down* path. In fact, we have
compared the performance of the simple_routes routing
scheme versus the original up*/down* one that uses always a
minimal up*/down* path, if available. We concluded that the
routes given by the simple_routes program always
achieve higher network throughput than the original up*/
down* routes. Also, by using the routes generated by the
simple_routes program, we simulate the behavior of
Myrinet with its original routing algorithm.

The latest versions of the simple_routes program
also offer the choice of computing minimal paths by
using the -shortest-path option. However, with this
option deadlock-freedom is not guaranteed. Also, there is
another option (-remove-deadlocks) that searches for
cycles and tries to heuristically remove them by comput-
ing alternative paths. However, when both options were
used, the routes computation time grew exponentially
and the program was unable to find deadlock-free routes
for medium size (32-switch) networks.

In the case of minimal routing with ITBs, the incoming
packet must be recognized as in-transit and the transmis-
sion DMA must be reprogrammed. We have used a delay of
275 ns (44 bytes received) to detect an in-transit packet, and
200 ns (32 additional bytes received) to program the DMA
to reinject the packet.4 Also, 512KB of memory has been
reserved for ITB packets at each Myrinet interface card.

5.4 Simulation Results for Irregular Networks

In this section, we show the results obtained from the

simulation of Myrinet networks using both the original

Myrinet up*/down* routing scheme and the new routing

strategy on irregular networks. We refer to the original

routing as UD, and to the new routing mechanism as ITB.

We group results by traffic patterns. For each destination

distribution, we show the increase in network throughput

when using ITBs with respect to the original routing

algorithm. In particular, we show the minimum, maximum,

and average increase for the randomly generated irregular

topologies we have used for different network sizes. Also,

for the uniform distribution of message destinations we will

show results using different message sizes and we will also

plot the average message latency (measured in nanose-

conds) versus the average accepted traffic (measured in

flits/ns/switch) for some selected topologies.

5.4.1 Uniform Distribution of Message Destinations

In Table 1, we can see the increase in network throughput

when using the ITB mechanism for different network and

message sizes for the uniform distribution of message

destinations. For small networks (eight switches), the use of

ITBs does not always increase throughput. The reason is

that in small networks many up*/down* routes are
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minimal. Hence, the ITB mechanism does not help very

much. Moreover, it introduces some overhead that de-

creases performance.

As network size increases, the up*/down* routing algo-

rithm does not scale well [20]. However, this is not the case of

ITB. For 16-switch networks, ITB always increases network

throughput, allowing from 25 percent to 33 percent more

traffic on average. In larger networks (32 switches), benefits

are even more noticeable with an average improvement

ranging from a factor increase of 1.76 when using 512-byte

messages to more than doubling network throughput when

using 32-byte messages. Moreover, ITB always increases

throughput for 32-switch networks (the minimum factor of

throughput increase obtained is 1.44 for 512-byte messages).

For large network sizes (64 switches), ITB clearly out-

performs UD routing. The minimum factor of throughput

increase is 2.25 in a particular network with 1,024-byte

messages, whereas the maximum factor of improvement is

3.89 for 32-byte messages. The average results show that

ITB drastically increases performance over UD.

As mentioned before, a drawback of the ITB mechanism is

the additional latency suffered by messages that use ITB,

especially when network traffic is low. Table 2 shows the

percentage of message latency increase for low traffic when

using the ITB mechanism with respect to the original up*/

down* routing. The table shows minimum, maximum, and

average increases for different network and message sizes.

For small networks (eight switches), the average increase in

message latency is small. On average, it ranges from

0.22 percent for 1024-byte messages to 2.24 percent for 32-

byte messages. In these small networks, most up*/down*

routes are minimal and a low number of ITBs are used on

average. So, average message latency does not increase too

much.

Latency is increased significantly only for short messages

(32 bytes) in medium and large networks (16 switches or

more). The average latency increase is about 12 percent.

However, for 512 and 1,024-byte messages the maximum

latency increase is only 2.73 percent. As ITBs add a constant

latency increase, the larger the message, the lower the

relative introduced overhead.

Indeed, for large networks (32 and 64 switches) and long
messages (1,024 bytes), ITB even reduces message latency
on average. This is due to the fact that the reduction in
message latency due to allow crossing minimal paths is
more important than the latency overhead due to the use of
ITBs.

In Figs. 10a, 10b, and 10c we show the behavior of the
UD and ITB routing algorithms for different network sizes
(16, 32, and 64 switches, respectively) on selected topolo-
gies. They are the ones in which the improvement achieved
by ITB is closer to the average improvement for the
corresponding network sizes. Message size is 512 bytes.
As it can be seen, in this case, the ITB mechanism does not
increase latency at low loads with respect to UD. Moreover,
as ITB saturates at a much higher load, the improvement
over UD rapidly increases with network size, as indicated
in Table 1.

5.4.2 Other Message Destination Distributions

Table 3 shows the increase in network throughput provided
by ITB for the bit-reversal, local, and hotspot traffic
patterns. In the case of the bit-reversal, the obtained results
are qualitatively similar to the ones obtained for the
uniform distribution. For small networks (eight switches),
ITB performs similarly to UD. For large networks, the larger
the network the higher the benefits obtained.

When using a local traffic pattern, with l ¼ 3 and l ¼ 5, the
increase in network throughput depends on the locality factor
(l). As it can be seen, when locality is high (l ¼ 3 switches), ITB
does not improve over UD because the latter offers minimal
paths almost for all source-destination pairs. As a conse-
quence, ITB adds few minimal paths to UD routing. In fact,
the average number of ITBs used per message is very low
(0.0008 for 64-switch networks). Therefore, even for large
networks, ITB does not help to increase throughput.

However, as locality decreases (l ¼ 5 switches),5 the
behavior of ITB improves significantly. In particular, for 16-
switch networks, throughput is increased for all the topolo-
gies. Also, for 32 and 64-switch networks, ITB always
increases throughput. In this case, messages use, on average,
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5. Notice that results are not shown for eight-switch networks because all
destinations are, at most, four switches away from sources.

TABLE 1
Factor of Throughput Increase When Using the ITB Mechanism

TABLE 2
Percentage of Message Latency Increase for Low

Traffic When Using the ITB Mechanism



0.381 in-transit buffers (for the same 64-switch network

mentioned above).
Finally, when using the hotspot traffic pattern, most

messages are sent to one host. The selected host is chosen

randomly. The same host number is used for all the

topologies. In order to use a representative hotspot distribu-

tion, we have used different percentages depending on

network size. In particular, we have used 30 percent, 20
percent, 15 percent, and 5 percent for 8, 16, 32, and 64-switch
networks, respectively. The rest of the traffic is randomly
generated using a uniform distribution. Although the
improvements achieved by ITB are slightly lower than the
ones obtained when using the uniform distribution (see Table
1), they are still noticeable. As with the other traffic patterns
analyzed, ITB does not help for 8-switch networks. But as
network size increases, the benefits of using ITB also increase.

5.4.3 Memory Requirements of the ITB Mechanism

As stated earlier, to ensure deadlock-freedom, it must be
guaranteed that the amount of memory for in-transit buffers
is not exhausted at any host. This is guaranteed with the
memory available at the NIC and, if required, with the host
main memory. Another solution is to discard packets when
the NIC buffer overflows.

In order to quantify the memory requirements of the
ITB mechanism, we have obtained the number of in-transit
packets that are simultaneously stored at each NIC for
different traffic rates. In particular, we have analyzed an
irregular 32-switch network using a uniform traffic pattern
with 32-byte messages. Simulation was run for a period of
time enough to deliver two million of packets. Results are
shown in Fig. 11. Fig. 11a plots the average message latency
versus traffic. Figs. 11b and 11c show the average and
maximum number of 32-byte ITB packets that are simulta-
neously at each NIC of the network for different injection
rates, respectively. In particular, in Fig. 11b traffic rate is
equal to 0.034 flits/ns/switch (network is reaching satura-
tion) and in Fig. 11c traffic rate is 0.039 flits/ns/switch
(network is beyond saturation).

Even when the network is approaching saturation
(Fig. 11b), we can observe that the amount of memory
needed at the NICs is negligible. No more than 15 packets
(480 bytes without considering headers) are hold at the
same time at a particular NIC. When network is saturated
(Fig. 11c), we can observe that more space is required to
store in-transit packets. However, the maximum number of
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Fig. 10. Algorithm type and speedup.

TABLE 3
Factor of Throughput Increase When Using the ITB Mechanism

for the Bit-Reversal, Local, and Hotspot Traffic Patterns



ITB packets at a particular NIC for a two-million packets

simulation is lower than 3,000 (96KB without considering

headers). The same behavior has been experienced for other

network topologies and packet sizes.

Taking into account that current NICs offer up to 8MB of

available memory and that network load will not be usually

beyond saturation, we can conclude that the probability of

NIC memory overflow is very low. So, in the case of NIC

memory overflow, the best solution will be to discard the

packet.
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Fig. 11. Computation time for different algorithms.

Fig. 12. Computation time for different mutation values.



5.5 Simulation Results for Regular Topologies

In this section, we show the results obtained from the
simulation of Myrinet networks using both the original
up*/down* routing scheme and the new routing strategy
on regular networks. As with irregular topologies, we
group results by traffic patterns. For the sake of brevity, we
will only show plots of average message latency versus
traffic for the uniform distribution of message destinations.

As stated in the introduction section, when using regular
topologies, Myrinet up*/down* routing is less restrictive
than in irregular ones because the up*/down* scheme
supplies minimal paths for almost all destinations. How-
ever, network un-balancing will be still noticeable in such
regular networks. So, we will also show the link utilization
under different traffic conditions to better analyze the effect
of ITBs on traffic balancing.

5.5.1 Uniform Distribution of Message Destinations

Fig. 12 shows the performance of the ITB mechanism and
the original Myrinet up*/down* routing algorithm for the
uniform distribution of message destinations. In the 2D
Torus network (Fig. 12a) ITB doubles the throughput
achieved by the original Myrinet routing algorithm. In
particular, ITB reaches 0.03 flits/ns/switch while UD
saturates at 0.015 flits/ns/switch.

Although up*/down* routing does not always provide
minimal paths, 80 percent of the paths computed by the

original Myrinet routing algorithm are minimal in this
topology. However, the ITB mechanism uses always
minimal paths. So, the ITB mechanism adds 20 percent of
minimal paths to up*/down* routing. As a consequence,
the average distance to destination (measured as the
number of traversed links) for up*/down*routing is 4.57
whereas with the ITB mechanism is 4.06. However, this
does not fully justify the performance improvement
achieved when using in-transit buffers.

As we stated before, another drawback of up*/down*
routing is that it forces most of the traffic to cross the root
switch. The ITB mechanism distributes network traffic
better by allowing the use of alternative paths. Fig. 13
shows the link utilization for UD and ITB when traffic is
0.015 flits/ns/switch (UD saturation point). When using
UD routing (Fig. 13a), links near the root switch (the top
leftmost switch) are congested (utilization in those links
reaches 50 percent), whereas the utilization of the rest of
links in the network is low (65 percent of links have a
utilization lower than 10 percent). On the other hand, the
ITB routing algorithm (Fig. 13b) balances traffic among all
the links in the network. The utilization of all the links is
less than 12 percent. For higher traffic, when ITB is reaching
its saturation point, it still distributes traffic evenly among
all the links. Fig. 14 shows the link utilization for
ITB routing at injection rate equal to 0.03 flits/ns/switch
(ITB saturation point). Traffic is quite balanced among all
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Fig. 13. Computation time for each crossover probability.

Fig. 14. Time taken for different numbers of tasks.



the links (link utilization ranges from 14 percent to
29 percent). So, when using ITB, minimal paths are always
used and, most important, traffic is evenly balanced among
all the links in the network. This is the reason of doubling
the network throughput achieved by up*/down* routing.

On the other hand, it can be observed that the network
saturates when link utilization is still low. The long routing
time (150 ns) and the small capacity of slack buffers
(80 bytes) lead to a high correlated message blocking.

Fig. 12b shows results for the 2D Torus with express
channels. The benefits of using ITBs are slightly smaller
than in the 2D Torus because when using express channels
there are twice as many links and there are more alternative
paths towards the root switch. UD multiplies the
throughput achieved in the 2D Torus network by 4.6,
reaching 0.07 flits/ns/switch, whereas ITB multiplies net-
work throughput by 4, reaching 0.12 flits/ns/switch. The
increase in network throughput (with respect to the 2D
Torus network) is due to the added express channels.

The use of express channels also increases the number of
minimal paths provided by UD. In this case, the percentage
of minimal paths is 94 percent. So, providing more minimal
paths with ITBs is less important than in the 2D Torus
network. On the other hand, traffic balance also plays a key
role in this network. Fig. 15 shows link utilization for UD
and ITB routing at the saturation point for UD (0.07 flits/
ns/switch). We can see that when using UD (Fig. 15a) links
near the root switch have a utilization near 50 percent,
whereas the rest of links in the network have a low
utilization (as in the 2D Torus). However, when using
ITB routing (Fig. 15b) link utilization is more balanced, as in
the 2D Torus. All links have a utilization lower than 30
percent. If we take a closer look at Fig. 15b, we can observe

that there are links more frequently used than others. In

particular, the added express channels have a utilization of

25 percent, whereas the rest of links have a utilization of 10

percent. Express channels are more frequently used because

they provide shorter paths to destinations, while the other

links are only used to deliver packets to their final switch

(when the packet is one hop away from destination).
Hence, the topology itself promotes an unbalanced use of

its channels and, as a consequence, traffic is not evenly

distributed among all the links. So, the throughput increase

when using ITB is slightly smaller than the one achieved in

the 2D Torus. Even though, ITB achieves a throughput

increase of 1.71 with respect to UD routing.
Regarding the CPLANT network (Fig. 12c), ITB almost

doubles the network throughput achieved by UD. In

particular, UD saturates at 0.05 flits/ns/switch whereas

ITB saturates at 0.082 flits/ns/switch. CPLANT has a

complex topology formed by groups of switches. In this

case, this improvement is again mainly due to its ability to

better balance network traffic. When UD is used as the

routing algorithm, most of the traffic must cross the root

switch (that is located in a certain group of switches), un-

balancing traffic among all the groups. On the other hand,

when using the ITB mechanism, traveling across the root

switch is not needed, therefore distributing better the traffic

among the groups.

5.5.2 Other Message Destination Distributions

Let us start with the bit-reversal traffic pattern. The

obtained performance results (not shown) are similar to

the uniform distribution one. In particular, for the 2D Torus,

UD throughput is almost doubled when using ITBs. For the
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2D Torus with express channels, the benefits of using ITBs
are slightly smaller (as for the uniform distribution).

With respect to hotspot traffic pattern, ten different
hotspot locations have been considered for each topology.
Also, different hotspot traffic loads have been used
(3 percent, 5 percent, and 10 percent hotspot traffic).
Table 4 shows the throughput achieved by each routing
algorithm in the 2D Torus, 2D Torus with express channels
and CPLANT networks.

Fig. 16 shows the link utilization for UD and ITB routing
schemes with a 10 percent hotspot traffic at the UD
saturation point (0.0123 flits/ns/switch) for a 2D Torus. In
UD (Fig. 16a), links near the root switch are much more
heavily used than links near the hotspot switch (marked as
H). On the other hand, when using the ITB routing
(Fig. 16b), only links near the hotspot switch start to
saturate. So, for the UD routing, the root switch behaves as a
big hotspot and saturates the network, whereas ITB routing
saturates later due to the hotspot.

Taking into account the results obtained for the uniform
distribution in an 2D Torus with express channels, the
throughput achieved by UD routing with a uniform distribu-
tion is reduced by 26 percent and 49 percent for 3 percent and
5 percent hotspot traffic, respectively. When using ITBs, the
reduction of throughput achieved with respect to the uniform
distribution is 50 percent and 67 percent, respectively. So, ITB
is more heavily affected by hotspots. This confirms our
explanation for the 2D Torus network. The root switch is the
true hotspot when using UD. Fig. 17 shows the link utilization
for UD and ITB at their saturation points (0.0483 flits/ns/
switch and 0.0542 flits/ns/switch, respectively) using 3 per-
cent hotspot traffic.

Finally, when a local distribution is used with l ¼ 3, the
benefits of using ITBs are considerably reduced. In the three

topologies analyzed, ITB obtains better results than UD,
although the differences are smaller than the ones obtained
with other message destination distributions. Factor of
throughput increases are 1.19, 1.21, and 1.13 for the 2D Torus,
2D Torus with express channels, and the CPLANT network,
respectively. UD achieves better results because, due to the
local traffic pattern, traffic is evenly distributed among all the
links in the network. Moreover, up*/down* routing is always
able to use a minimal path when the destination is one hop
away (two switches away) or is connected to the same switch.
So, there are no benefits of using ITBs in these circumstances.
Anyway, the ITB mechanism does not perform worse
than UD.

If the locality of messages is reduced (destinations now are,
at most, l ¼ 4 switches away from sources), the improvement
achieved by the ITB mechanism is middle way between the
results obtained for the uniform (Fig. 12) and the uniform
with high locality (l ¼ 3). In particular, UD throughput is
increased by ITB with factors of 1.33, 1.5, and 2.18 for the 2D
Torus, 2D Torus with express channels and CPLANT
networks, respectively.

6 A FIRST IMPLEMENTATION OF ITBS ON MYRINET

NETWORKS

In order to demonstrate the feasibility of using the ITB
mechanism in real networks, in this section, we present a
first implementation of the ITB mechanism on Myrinet
GM software [8].

First, a new packet type (ITB packet) has to be created to
distinguish between normal Myrinet packets and in-transit
packets. New packet types are assigned by Myricom upon
request. In particular, in our implementation, the following
types of packets are allowed: a normal GM packet, a
mapping packet, a packet with an IP packet in its payload,
and an ITB packet.

In order to support in-transit packets, the MCP has been

modified. The modifications have been made taking care of

introducing the minimum overhead. Therefore, we need a

fast detection mechanism of an incoming in-transit packet

in order to reprogram a DMA transfer and reinject it as soon

as possible (even if the packet is still being received), thus

providing virtual cut-through switching for ITB packets.
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The MCP is composed of four state machines: SDMA,

RDMA, Send and Recv (see Fig. 18). SDMA and RDMA

control memory transactions between the host and the

sending/receiving buffers located in the NIC memory. Send

and Recv are responsible for controlling transactions to and

from the network. On the other hand, the MCP is also

responsible of setting up and detecting the completion of

transactions on each interface. It can do this by means of

start and finish events that modify the state of the system.

The overall state of the system is managed through a

number of status bits, being some of them maintained by

the LANai hardware while the remaining ones being

controlled by software. An event handler is in charge of

monitoring the state of the MCP, giving control to the state

machine that handles the highest priority pending event.

The MCP Recv state machine has to detect in-transit

packets and check whether the Send state machine is free.

Figs. 18 and 19 show the changes required in the MCP code.

Once an incoming ITB packet is detected, if the output

channel is free, the send DMA has to be programmed to

reinject the packet. Notice that in this case the Recv state

machine is responsible for the in-transit packet reinjection

in order to minimize the overhead (avoiding one dispatch-

ing cycle delay). This is shown in Fig. 18 as dashed lines. On

the other hand, if the output channel is busy, the packet will

be sent as soon as it becomes free, as indicated in Fig. 18 in

dotted lines. Finally, note that when the Send state machine

is reinjecting an ITB packet and this packet is blocked in the

network, the Myrinet Stop&Go flow control will stop the

transmission and, as a consequence, will temporarily stop

the DMA send operation. In this situation, the rest of the

ITB packet will remain in its buffer until the transmission is

resumed again. If the ITB packet was not completely

received in the above situation, the receiving process will

not be stopped until the last byte of the ITB packet is

received and stored in its corresponding buffer.
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In order to detect as soon as possible an in-transit
packet, a new high priority event has been included
(Early_Recv_Packet event). It is triggered by the LANai
hardware when the first four bytes of a packet are
received. Fig. 19 illustrates these modifications.

6.1 Preliminary Performance Results

The implementation described above has been made on the
GM-1.2pre16 software distribution for Linux [8]. The
testbed is comprised of three 450 MHz Pentium III-based
computers running SuSE Linux 6.1 with kernel 2.0.36.
Computers are attached to a Myrinet network with two
M2FM-SW8 switches (eight-Port Myrinet Switch with
four LAN ports and 4 SAN ports [12]) according to Fig. 20.
Host 1 and in-transit host use M2L-PCI64A-2 NICs
(universal, 64/32-bit, 66/33MHz, Myrinet-LAN/PCI inter-

face, PCI short card-2 MB [12]) and host 2 uses a M2M-
PCI64A-2 (universal, 64/32-bit, 66/33MHz, Myrinet-SAN/
PCI interface, PCI short card-2 MB [12]).

Once the modified GM/MCP has been verified to deliver
packets correctly, several tests have been made using the
gm_allsize test distributed by Myricom in GM-1.2pre16.
Firstly, the overhead introduced by the new code in the
normal MCP operation has been measured. This test
evaluates the impact of adding ITB support to the network.
Notice that both normal and ITB packets will suffer this
overhead, but only once per packet, as it only affects to the
receiving part of the MCP. The test has been done by
comparing the point-to-point half-round-trip latency of the
original MCP with the modified one when sending packets
between hosts 1 and 2, using up*/down* routes. Latencies
have been obtained by averaging 100 iterations for each
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Fig. 19. The Cycle Crossover Algorithm.

Fig. 20. The Mutation Algorithms.



packet size. Fig. 21 shows the average latencies measured
versus packet length for both MCPs.

As can be seen, overhead is very low. Difference in
measured latencies (not appreciated in the figure) does not
exceed 300 ns and, on average, is equal to 125 ns. Notice
that, as message latency increases (more switches to cross
and/or longer packets) the relative impact of this overhead
decreases. In our testbed, with packets traversing
2.5 switches, the relative overhead (not shown) ranges from
1 percent for very short packets to 0.4 percent for long
packets.

In order to measure the overhead experienced by
messages that use ITBs, a second test has been made. This
test evaluates the delay associated with the detection of an
incoming in-transit packet, its ejection and the reinjection
into the network. It has been calculated by subtracting the
point-to-point half-round-trip latency of messages being
sent between hosts 1 and 2 using the up*/down* path
(shown in Fig. 20 as dashed lines) from the equivalent
latency of messages that use an ITB at the in-transit host
(shown in Fig. 20 as dotted lines). Care has been taken to
assure that both the in-transit and up*/down* paths cross
the same number of switches (five switches). Notice that the
up*/down* path requires a loop in switch 2 for this
purpose. On the other hand, given that the test program
measures the half-round-trip latency and only one ITB is
used, the overhead due to this ITB has been obtained
multiplying the result of the above difference by two. In the
same way it has been done for the first test, 100 iterations
have been averaged for each message size.

To guarantee that this comparison shows only the
overhead due to the ITB, both paths have been generated
taking into account that messages have to traverse the same
number of switches and also they have to cross the same
kind of ports (LAN or SAN). It has to be stated that the
latency through a switch depends on the type of traversed
ports.

Fig. 22a shows the point-to-point half-round-trip latency
for messages sent between host 1 and 2 without in-transit
buffers (UD) and with one ITB (ITB) versus message length.
The resulting absolute overhead (Fig. 22b) is also plotted. As it
can be seen, the cost of detecting an ITB packet and handling
its reinjection is around 1.3 �s. This value is higher than the

one used in the evaluation results section (around 0.5 �s, see

Section 5.3). Notice that the value of 0.5 �s was taken from a

raw MCP. Hence, a final optimized ITB implementation

should be able to reduce the cost of detecting and reinjecting

an ITB packet.

7 CONCLUSIONS

In this paper, we have proposed the In-Transit Buffer (ITB)

mechanism to improve network performance in networks

with source routing and wormhole switching. With this

mechanism, messages always are forwarded using minimal

paths and also network traffic is better balanced.
This mechanism is valid for any network with source

routing and it has been evaluated by simulation for the

Myrinet network. It can be easily implemented in Myrinet

thanks to the flexibility offered by the MCP. We have

compared the original Myrinet up*/down* routing algo-

rithm with the new one that uses ITBs. We have used

different random irregular topologies (up to 40 topologies),

three well-known regular topologies, and different traffic

patterns (uniform, bit-reversal, local, and hotspot) with

different message sizes (32, 512, and 1,024-byte messages)

and different network sizes (8, 16, 32, and 64 switches).
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Fig. 21. Message latency overhead of the new GM/MCP code.

Fig. 22. Message latency overhead of the ITB mechanism: (a) Compared

with up*/down* and (b) absolute latency overhead.



The proposed mechanism achieves its best results with

irregular topologies. For small networks (eight switches) and

local traffic patterns, the ITB mechanism does not signifi-

cantly improve network performance, because few minimal

paths are added. But, as network size and average distance

increase, the benefits obtained by the ITB mechanism also

increase. In particular, we have obtained that throughput

increases, on average, by a factor ranging from 1.3 to 3.33 with

respect to the original Myrinet routing algorithm for 32 and

64-switch irregular networks. In some particular networks,

throughput is increased by a factor of 4.7.
For regular networks, the network performance is

always improved when using the ITB mechanism but the

benefits are slightly lower than in irregular networks. In the

best case (uniform and bit-reversal distributions of message

destinations) network throughput can be doubled. We have

found that this improvement is mainly due to the ability of

the ITB mechanism to balance network traffic.
On the other hand, although the proposed technique

may increase message latency, the evaluation results show

that the overhead is only noticeable when network traffic is

not intense and is composed of short messages.
Finally, in order to fully analyze the feasibility of adding

the ITB mechanism on a real Myrinet network, we have

developed a first implementation on MCP/GM software.
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Pedro López received the BEng degree in
electrical engineering and the MS and PhD
degrees in computer engineering from the
Technical University of Valencia (Universidad
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. For more information on this or any computing topic, please visit
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