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Abstract

Wavelet-based coders outperforms the DCT-based ones in terms of rate-

distortion and subjective quality performance metrics. A lot of wavelet coders

were proposed until now. Many of them were candidates for the JPEG 2000

still-image standard. However, the work is not �nished and the research in this

area still goes on.

In this paper, we present an implementation of a wavelet coder based on

the Shapiro's EZW algorithm. Also, we show the importance of choosing an

adequate �lter bank in the wavelet decomposition stage. Several evaluation

results show that our implementation achieves the performance of the original

EZW algorithm presented by Shapiro [3].
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1 Introduction

The early wavelet-based image coders [5, 1] were designed in order to exploit the

ability of compacting energy on the typical wavelet decomposition by entropy coding

its coeÆcients.

However, the properties of wavelet coeÆcients can be exploited more eÆciently.

In that sense, Shapiro developed a wavelet-based coder [3] that considerably improves

the previous wavelet proposals. The coder, called Embedded Zero-tree Wavelet coder

(EZW), is mainly based on two observations (a) the similarity between the same kind

of sub-bands in a wavelet decomposition, and (b) a quantization based on a special

kind of successive-approximations scheme that can be adjusted in order to get a

speci�c bit rate. The coder includes an entropy encoder (typically an arithmetic

coder) as its �nal stage.

Said and Pearlman [2] proposed a variation of EZW, called SPIHT (Set Partitio-

ning In Hierarchical Trees). It is able to achieve better results than EZW without
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taking into account the �nal arithmetic encoding stage. The improvements are

mainly due to the way it groups the wavelet coeÆcients and how it stores the

signi�cant information.

A di�erent approach to the previous algorithms is the one proposed by Tsai,

Villasenor and Chen [4], known as the stack-run algorithm. This algorithm has

a similar structure than JPEG coders. That is, after wavelet decomposition, the

resulting coeÆcients are quantized using a classic quantization scheme. Then,

quantized coeÆcients are entropy coded using a run-length encoder (RLE) and

�nally an arithmetic encoder is used.

In [6], a joint space-frequency quantization scheme was proposed. It uses a spatial

quantization, like zero-tree, combined with a standard scalar quantizer. The idea is

based in the fact that natural images are perfectly modeled by a linear combination

of energy in both domains the frequency and space.

In section 2 details about the implementation of both the 2D DWT transform

and EZW algorithm are given. In section 3 some performance evaluation results are

shown. Finally, in section 4 some conclusions and future work are drawn.

2 The Embedded Zero-tree Wavelet Algorithm (EZW)

Most popular standards for image and video compression (MPEG, JPEG, H.261) are

based on the Discrete Cosine Transform (DCT), a mathematical tool that transforms

the signal domain from space to frequency.

Codecs based on the DCT present several drawbacks. Images are divided into

regular small blocks that are processed separately, so when high compression rates

are required, blocking artifacts appear in the reconstructed image, degrading the

subjective quality considerably. On the other hand, the DCT uses a �xed orthonormal

basis, the coeÆcients from the DCT, which could not be always the best choice.

The Discrete Wavelet Transform (DWT) is another mathematical tool that o�ers

very good results when it is applied to image and video coding algorithms, improving

signi�cantly the performance of DCT-based codecs. We have implemented the

wavelet decomposition using �lter banks. Then, we perform symmetric extension

when using symmetric �lters, otherwise periodic extension is used.

In the �rst stage of the decomposition we apply the high and low-pass �lters

separately to both columns and rows. Thus, it divides the image into four sub-

bands: one representing the low frequencies (LL) and which corresponds with the

scaled version of the original image, and the others containing the horizontal (HL),

vertical (LH) and diagonal (HH) high frequency bands. We have implemented a

dyadic decomposition. This kind of wavelet decomposition obtains the next coarser



scale of wavelet coeÆcients making a recursive decomposition of the LL sub-band

until the desired level of decomposition is achieved.

Since all coeÆcients are perfectly allocable in a sub-band and at a speci�c

position, this type of decomposition is said to present both spatial and frequency

location. Moreover, the image is processed entirely and no block artifacts appear.

Another advantage of the DWT with respect to the DCT, is the chance to choose the

preferred �lter (wavelet family), in this way you can select the orthonormal basis.

As we said in prior section, the Embbebed Zero-tree Wavelet (EZW) algorithm

is considered the �rst really eÆcient wavelet coder. Its performance is based on the

similarity between sub-bands and a successive-approximations scheme.

CoeÆcients in di�erent sub-bands of the same type represent the same spatial

location, in the sense that one coeÆcient in a scale corresponds with four in the

prior level. This connection can be settled recursively with these four coeÆcients

and its corresponding ones from the lower levels, so coeÆcient trees can be de�ned.

In natural images most energy tends to concentrate at coarser scales (higher

levels of decomposition), then it can be expected that the nearer to the root node a

coeÆcient is, the larger magnitudes it has. So if a node of a coeÆcient tree is lower

than a threshold, it is likely that its descendent coeÆcients will be lower too. We

can take pro�t from this fact, coding the sub-band coeÆcients by means of trees and

successive-approximation, so that when a node and all its descendent coeÆcients are

lower than a threshold, just a symbol is used to code that branch.

The successive-approximation can be implemented as a bit-plane encoder. The

EZW algorithm is performed in several steps, with two �xed stages per step: the

dominant pass and the subordinate pass. In Shapiro's paper [3] the description of the

original EZW algorithm can be found. However, the algorithm speci�cation is given

with a mathematical outlook. In this paper we present how to implement it, showing

some implementation details and their impact on the overall codec performance.

Consider we need n bits to code the highest coeÆcient of the image (in absolute

value). The �rst step will be focused on all the coeÆcients that need exactly n bits

to be coded (range from 2n�1 to 2n�1). In the dominant pass, the coeÆcients which

falls (in absolute value) in this range are labeled as a signi�cant positive/negative

(sp/sn), according to its sign. These coeÆcients will no longer be processed in

further dominant passes, but in subordinate passes. On the other hand, the rest of

coeÆcients (those in the range [0; 2(n�1)[) are labeled as zero-tree root (zr), if all

its descendants also belong to this range, or as isolated zero (iz), if any descendant

can be labeled as sp/sn. Notice that none descendant of a zero-tree root need to be

labeled in this step, so we can code entire zero-trees with just one symbol. In the

subordinate pass, the bit n of those coeÆcients labeled as sp/sn in any prior step



is coded. In the next step, the n value is decreased in one so we focus now on the

following least signi�cative bit. Compression process �nishes when a desired bit rate

is reached. That is why this coder is so called embedded.

In the dominant pass four types of symbols need to be coded (sp, sn, zr, iz),

whereas in the subordinate pass only two are needed (bit zero and bit one). Finally,

an adaptive arithmetic encoder is used to get higher entropy compression.

3 Performance evaluation of our implementation.

Shapiro's EZW is a relatively complex algorithm, with several stages and parameters

that can be optimized. In this section, we present di�erent implementations alternati-

ves that we found in the algorithm, some of them mentioned by Shapiro and others

not, and evaluate its contribution to the performance of the EZW. Basically we have

chosen an adequate �lter bank and performed improvements on the EZW. Notice

that when results are presented (in tables or curves), all options but those pointed

out are assumed to be set to its default value, that are provided when an option is

introduced in this paper (default image will be the standard Lena).

3.1 Choosing an adequate �lter bank.

Choosing a good �lter set is crucial to achieve a good compactness of the image in the

LL band, thus we reduce the amount of nonzero coeÆcients and its magnitude, and

therefore the image entropy. Shapiro uses an Adelson 9-tap QMF bank �lter. With

this �lter, he obtains the results shown in Table 1 (row orig). Our implementation

with the same image and �lter (row Adel) shows similar results, so these results

validate our implementation. But biorthogonal �lters (B9/7) or Villasenor 10/18

(Vil), which compact the energy better, o�er improved results. Daubechies 4 (D4),

with only four taps, is the option that worst work. Similar results are obtained with

the standard image Baboon, a monkey full of hair and high frequency details, but in

this case Villasenor 10/18 achieves remarkably better performance, showing a great

capability to eÆciently decompose full-detailed images.

3.2 Evaluating the main EZW algorithm.

Some options can be established in the main algorithm. Curve "no reduce & no

swap", in Figure 1.a, shows the di�erent gradient existing between dominant and

subordinate passes. This could mean that bits from subordinate passes are more

valuable than those from dominant passes. Hence, performing a swap between the

order of those stages could be a good idea. Curve "no reduce & swap" shows the



PSNR Lena PSNR Baboon

Bit Rate Orig Adel Vil B9/7 D4 Adel Vil B9/7

2 n/a 44.03 44.05 44.18 31.86 32.46 32.02 31.63

1 39.55 39.53 39.64 39.63 27.46 27.83 27.39 27.43

0.5 36.28 36.28 36.59 36.49 23.84 24.50 23.88 23.88

0.25 33.17 33.18 33.50 33.43 22.37 22.54 22.70 22.31

Table 1: Filter comparison with Lena and Baboon source images.

results when performing, in every pass, �rstly the subordinate pass and then the

dominant pass. In this way, when we run out of bits, no bit from the dominant pass

is processed prior than one from the subordinate pass with the same threshold.
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Figure 1: EZW improvements: (a) Changing the passes order (b) CoeÆcient

scanning order.

Another improvement is based on reducing the uncertainty interval at the decoder.

The decoder must predict the bits which the coder could not send, because it �nished

its bit budget. It can assume that the rest of bits are 0 or maybe that all they

are 1. But the best option seems to suppose that, for every coeÆcient, the more

signi�cative predicted bit is and the rest 0, so we would have a lower uncertainty

interval. Curves "reduce" from Figure 1.a shows that by performing a swap, no

signi�cative improvements are achieved.

Other options on the EZW codec are shown in Figure 1.b. One of them is the

scanning order of the coeÆcients in the dominant pass. We can see that a Morton

order, that performs the scan in small groups, improves the performance of the

algorithm, due to the best adaptivity achieved in the arithmetic encoder. Another

improvement could be not to code the �rst bit of a coeÆcient, because the decoder



can deduce it from the signi�cative symbols in the dominant pass. The last option is

to sort the coeÆcients in the subordinate pass, according to its magnitude, so bigger

coeÆcients are coded before than smaller ones. Figure 1.b shows that, evaluating

these options, only the scan order seems to be important (Morton order outperforms

regular order).

4 Conclusions and future work

An implementation of a wavelet-based still-image coder was presented. We have

proved its correctness and we have compare its performance with the one stated by

the EZW authors.

We have shown that the performance of our EZW implementation is similar to

the one achieved by Shapiro's EZW and if more eÆcient �lter banks are used, the

EZW performance increases.

As future work, we are planning to improve the EZW (or similar) performance

by including a preprocessing wavelet coeÆcients stage, and reduce the temporal

complexity of the EZW in order to implement a real-time Motion Wavelet video

coder.
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