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Abstract 
 

During the last decade a lot of research and 
development efforts have been made to design 
competitive video codecs for several kinds of multimedia 
applications.  Some video encoders like MPEG-4 and 
H.264 exhibit a very high computational cost, 
particularly in the case of high quality video sequences. 
Then, it is very difficult to find software solutions that 
efficiently code high-quality video in real-time or faster. 
We propose and evaluate several parallel 
implementations of the MPEG-4 standard encoder on 
clusters of workstations. We have performed extensive 
experiments showing that coding speed can be improved 
to more than double real-time requirements, being 
coding efficiency the same than the one in the sequential 
version.  
 
1. Introduction 
 

Nowadays there are several standards for video 
compression like ITU H.26x and MPEG [1][2][3]. Among 
them, MPEG-4 seems to have the most promising future. 
MPEG-4 video encoders are very effective reducing the 
size of the video stream, but the processing demand is 
very high for high quality video sequences. Although 
there are hardware MPEG-4 video encoders available, they 
have severe restrictions (resolution, coding options, etc). 
A more flexible choice is to use parallel implementations 
running on clusters [4].  

To take advantage of the potential processing power of 
clusters  of workstations, we use parallel programming 
techniques based on message passing. We have used 
MPI [5] because there are free implementations available 
and it is a widely accepted standard. 

There are several approaches to obtain parallel 
versions of sequential video encoders. One of them is 
based on exploiting functional parallelism [6] by using the 
MPEG-4 object coding feature. This  solution is limited by 

the inter-dependencies between video objects and by the 
number of available objects. 

Another approach often used is the space-temporal 
parallelism [7] that consists on frame segmentation of 
every video frame into slices which are independently 
coded [8]. This method has good scalability, but it limited 
by slice synchronization overhead. 

A more interesting solution is to decompose the video 
sequence into GOPs (Groups Of Pictures) [10], then every 
GOP is independently processed by a dedicated 
processor. This basic scheme can be refined to achieve 
near linear speed-up [9]. In this work we work around this 
approach with an MPEG-4 encoder to reach or overpass 
real time encoding of high-quality video. 

We focus our attention on the data distribution and 
GOP allocation mechanisms to get a balanced load and to 
reduce the impact of communication overhead. Also the 
resulting video quality is considered, in order to preserve 
the quality of the reconstructed video in our parallel 
versions. 

This paper is organized as follows: In section 2 we 
show the data distribution process and the GOP allocation 
schemes. Section 3 describes the mechanism employed to 
hide the communication overhead. In section 4 we show 
performance evaluation results of the parallel MPEG-4 
encoders implemented. Finally, in section 5 we summarize 
some conclusions and future work. 

 
2. Parallel data distribution.  

 
The basic idea for data distribution is to arrange the 

uncompressed video sequence in GOPs. Then, we have to 
decide (a) how processors get the GOPs, and (b) which 
GOPs correspond to each processor.  

In order to determine the access to GOPs, we have 
considered two alternatives: (a) processor “0” accesses to 
disk and sends GOPs to the corresponding processors by 
means of MPI messages, and (b) every processor gets his 
GOPs accessing to disk by means of  NFS (Network File 
System) service. 



We have evaluated both approaches on a basic 
algorithm showing that they offer similar performance 
results . Then, we decided to use the NFS access instead 
of MPI because the code becomes simpler. 

In relation to load balance we found that the first 
parallel implementations did not face this aspect, showing 
noticeable unbalanced processor utilizations. Then we 
analyze two different GOP scheduling schemes: (a) access 
on demand with decentralized sequential distribution, and 
(b) access on demand supervised by processor 0 

In the first approach (version A), every processor 
knows in advance which GOPS it has to encode. The wait 
time in the basic version is now avoided because 
processors can access the next pre -assigned GOP 
immediately after processing the previous one. With this 
strategy every processor encodes the same number of 
GOPs. This may introduce some imbalance because the 
GOP encoding time has a considerable variability 
particularly due to the variable motion degree and picture 
detail level. 

In the second approach (version B), processor 0 
dynamically assigns GOPs to other processors. This 
dynamic assignment improves load balance because after 
finis hing one GOP another one is ordered. Then, 
processors that encode low-complexity GOPs will encode 
more GOPs than processors that encode high-complexity 
ones. 
 
3. Hiding communication overhead 
 

Until now, one processor waits until a complete GOP is 
received before it begins to encode. This does not 
represent a performance penalty if the communication time 
required to transfer a GOP is much less than the time 
required to process it, and coding delay is not a critical 
performance metric 

In order to solve this potential performance leak, we 
modify the parallel algorithm to start encoding as soon as 
possible, in order to overlap GOP encoding and GOP 
reading processes. So, communication delays are hidden 
and do not contribute to the parallel execution time. The 
encoder allows this operation because it requires, in 
general, only one frame ahead to process the actual one. 

To introduce this enhancement to our parallel algorithm 
we will employ a multithreading approach. Communication 
is managed by one thread that reads frames from disk 
while the actual frame is coded by another thread.  

This approach is really effective if cluster nodes have 
more than one processor and support symmetric 
multiprocessing. Another option is to use MPI non-
blocking communication primitives, but the effectiveness 
of this approach depends on the MPI implementation.  
 

4. Experimental results 
 

All the experiments have been performed on a cluster of 
PCs available at our University. The cluster configuration 
is  the following:  

– 36 available nodes. 
– Each node has 2 Pentium III processors @ 1 Ghz 

with 512 MB RAM. 
– 18 GB SCSI hard discs, all available via NFS. 
– Suse Linux 7.3 operating system with Kernel 

2.4.17 
– Al nodes are interconnected through two non-

blocking Fast Ethernet switches. 
 
The codec we have used is Microsoft Fdam 2.3-001213. 

It is implemented in C++ and the parallel versions have 
been developed using GNU gcc compiler. The source 
video sequence we have used in all the tests is 
“mother_and_daugther” (QCIF format, 4:2:0 subsampling, 
at 10 fps). It is 300 frames long. The GOP size is 15 frames 
(IBBPBBPBBPBBPBB). In order to simulate longer video 
sequences, the original one has been cycled. All the tests 
have been performed with the cluster in exclusive mode, 
i.e. there was no other user load. 

We measured the processor utilizations of the two 
schemes proposed above. As shown in Figure 1, the load 
balance with 64 GOPs was good up to 16 processors. 
However, when using 24 and 32 processors, both 
algorithms start to lose efficiency. This is due to the 
reduction in the number of GOPs per processor as the 
number of processors increases. Then the probability of 
load imbalance is higher. As it can be seen in Figure 1, the 
dynamic GOP scheduling (B) behaves much better than a 
pre-assigned GOP scheme (A).  
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Figure 1: Speed-up for demand access schemes with 64 
GOPs video length (sequential time is 426 seconds) 

 



Now we consider hiding communication delays. This 
was solved with the multithreading approach (version 
Bm). The tests were performed using the same number of 
GOPS per processor instead of using the same stream 
length. As it can be seen in Figure 2, the improvement of 
the multithread approach is not very noticeable. This is 
because the communication time is very much lower than 
the computation time in this machine; remember we are 
using a Fast Ethernet interconnection network.  
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Figure 2: Effectiveness of overlapping communications 
and computation, with 2 Gops per processor 
 

Also, we have run simulations with higher number of 
GOPs per processor, showing that the multithreaded 
version scales well, being equivalent to the original 
version (version B in figure 2) in terms of speedup.  
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Figure 3. Comparing coding quality of sequential and 
parallel algorithms. 

 
Finally, we have to consider the quality of the 

reconstructed video stream. A standard quality measure is 
the SNR (Signal-to-Noise Ratio). When comparing the 
SNR of reconstructed streams of both encoders the 
sequential (Seq), and the parallel version B (Par), we found 
differences in less than 1%, in favor to our parallel encoder 

(see Figure 3). This was due to the different GOP sequence 
used in both versions. Sequential version does not follow 
the same frame sequence in every GOP 
IBBPBBPBBPBBPBB-PBBPBB…, so there is only one 
Intra Frame (Frame I) in the whole sequence. However,  
our parallel version was fixed to use GOPs with the 
following frame sequence: IBBPBBPBBPBBPBB-IBBP… 
so each GOP can be independently processed by each 
node, with no data dependencies . We change the GOP 
sequence of the sequential algorithm (Seq-Upd) to the one 
used in our parallel version and again some differences 
appear. In this case, the sequential version gets better 
results in SNR (see Figure 3). This lead us to carefully 
verify the correctness of the coding process in order to 
find the cause of these differences. 

After doing some tracing we noticed that our parallel 
version was no able to exactly follow the specified GOP 
sequence, due to the absence of first I frame of next GOP. 
So, the real frame sequence of our parallel version was 
IBBPBBPBBPBBPBP, being the last frame of every GOP 
coded as P frame, instead of B frame.  

To get the same coding results (quality and bitrate) 
than the sequential coder, we have modified the parallel 
version in order to code one extra frame per GOP: The first 
frame of the next GOP. This extra frame will be coded as an 
INTRA frame (I), to allow the correctly encoding of the 
two last B frames of current GOP. After introducing the 
changes in the code, the results of sequential and parallel 
version were exactly the same in terms of SNR.  

For this improvement we have to pay an extra 
computational overhead that results, in average, less than 
1% of the GOP computation time. 
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Figure 4. Coding speed of MPEG-4 parallel version for 

video sequences of 64 and 128 GOPs. 
 
Finally Figure 4 shows the coding speed of our latest 

version (Bm). We have run the parallel encoder with two 



versions of mother&daughter video sequence of different 
length (64 and 128 GOPs). The results show that our last 
parallel version is able to code faster than real-time from 5 
processors and on (notice that the original video 
sequence was recorded at 10 frames per second). Also, 
with 33 processors we can reach encoding speeds up to 70 
fps, which it is seven times faster than real-time (the 
original video frame rate). So, we can conclude saying that 
our parallel algorithm scales well on the target system in 
terms of encoding speed. 

 
5. Conclusions and future work 

We have tested several parallel encoders implemented 
from an open source MPEG-4 sequential encoder with the 
final goal of getting real-time and good quality video 
compression. There is a long way to reach this target and 
we have began by studying some important issues like 
how to access to the input data, how to get a data 
distribution without synchronization waits and with good 
load balance, how to avoid the impact of communication 
delays on execution time . At the same time the correctness 
of the implementation was proven in terms of video quality 
and compression bitrates . We have concluded that a 
simple parallel algorithm based on decomposing the input 
video in blocks that are processed independently gives 
good results.  

However, our algorithms do not consider the encoding 
delay, what will be of special interest for encoding live 
video. That question will be part of future work along with 
a detailed study of the unbalanced nature of video 
sources that will identify and properly share the high 
complexity GOPs in high resolution video sequences. 
Also, we plan to combine several parallelism levels (SIMD, 
multithreading and message passing) in order to 
significatively reduce the parallel encoder execution time. 
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