
Performance evaluation of parallel MPEG-4 video coding algorithms on clusters
of workstations

A. Rodriguez, A. González and M.P. Malumbres
Technical University of Valencia

Camino de Vera 17, 46071 Valencia, SPAIN
abrodleo@doctor.upv.es, {agt,mperez}@disca.upv.es

Abstract

During the last decade a lot of research and
development efforts have been made to design
competitive video codecs for several kinds of multimedia
applications. Some video encoders like MPEG-4 and
H.264 exhibit a very high computational cost,
particularly in the case of high quality video sequences.
Then, it is very difficult to find software solutions that
efficiently code high-quality video in real-time or faster.
We propose and evaluate several parallel
implementations of the MPEG-4 standard encoder on
clusters of workstations. We have performed extensive
experiments showing that coding speed can be improved
to more than double real-time requirements, being
coding efficiency the same than the one in the sequential
version.

1. Introduction

Nowadays there are several standards for video
compression like ITU H.26x and MPEG [1][2][3]. Among
them, MPEG-4 seems to have the most promising future.
MPEG-4 video encoders are very effective reducing the
size of the video stream, but the processing demand is
very high for high quality video sequences. Although
there are hardware MPEG-4 video encoders available, they
have severe restrictions (resolution, coding options, etc).
A more flexible choice is to use parallel implementations
running on clusters [4].

To take advantage of the potential processing power of
clusters of workstations, we use parallel programming
techniques based on message passing. We have used
MPI [5] because there are free implementations available
and it is a widely accepted standard.

There are several approaches to obtain parallel
versions of sequential video encoders. One of them is
based on exploiting functional parallelism [6] by using the
MPEG-4 object coding feature. This solution is limited by

the inter-dependencies between video objects and by the
number of available objects.

Another approach often used is the space-temporal
parallelism [7] that consists on frame segmentation of
every video frame into slices which are independently
coded [8]. This method has good scalability, but it limited
by slice synchronization overhead.

A more interesting solution is to decompose the video
sequence into GOPs (Groups Of Pictures) [10], then every
GOP is independently processed by a dedicated
processor. This basic scheme can be refined to achieve
near linear speed-up [9]. In this work we work around this
approach with an MPEG-4 encoder to reach or overpass
real time encoding of high-quality video.

We focus our attention on the data distribution and
GOP allocation mechanisms to get a balanced load and to
reduce the impact of communication overhead. Also the
resulting video quality is considered, in order to preserve
the quality of the reconstructed video in our parallel
versions.

This paper is organized as follows: In section 2 we
show the data distribution process and the GOP allocation
schemes. Section 3 describes the mechanism employed to
hide the communication overhead. In section 4 we show
performance evaluation results of the parallel MPEG-4
encoders implemented. Finally, in section 5 we summarize
some conclusions and future work.

2. Parallel data distribution.

The basic idea for data distribution is to arrange the

uncompressed video sequence in GOPs. Then, we have to
decide (a) how processors get the GOPs, and (b) which
GOPs correspond to each processor.

In order to determine the access to GOPs, we have
considered two alternatives: (a) processor “0” accesses to
disk and sends GOPs to the corresponding processors by
means of MPI messages, and (b) every processor gets his
GOPs accessing to disk by means of NFS (Network File
System) service.

We have evaluated both approaches on a basic
algorithm showing that they offer similar performance
results . Then, we decided to use the NFS access instead
of MPI because the code becomes simpler.

In relation to load balance we found that the first
parallel implementations did not face this aspect, showing
noticeable unbalanced processor utilizations. Then we
analyze two different GOP scheduling schemes: (a) access
on demand with decentralized sequential distribution, and
(b) access on demand supervised by processor 0

In the first approach (version A), every processor
knows in advance which GOPS it has to encode. The wait
time in the basic version is now avoided because
processors can access the next pre -assigned GOP
immediately after processing the previous one. With this
strategy every processor encodes the same number of
GOPs. This may introduce some imbalance because the
GOP encoding time has a considerable variability
particularly due to the variable motion degree and picture
detail level.

In the second approach (version B), processor 0
dynamically assigns GOPs to other processors. This
dynamic assignment improves load balance because after
finis hing one GOP another one is ordered. Then,
processors that encode low-complexity GOPs will encode
more GOPs than processors that encode high-complexity
ones.

3. Hiding communication overhead

Until now, one processor waits until a complete GOP is
received before it begins to encode. This does not
represent a performance penalty if the communication time
required to transfer a GOP is much less than the time
required to process it, and coding delay is not a critical
performance metric

In order to solve this potential performance leak, we
modify the parallel algorithm to start encoding as soon as
possible, in order to overlap GOP encoding and GOP
reading processes. So, communication delays are hidden
and do not contribute to the parallel execution time. The
encoder allows this operation because it requires, in
general, only one frame ahead to process the actual one.

To introduce this enhancement to our parallel algorithm
we will employ a multithreading approach. Communication
is managed by one thread that reads frames from disk
while the actual frame is coded by another thread.

This approach is really effective if cluster nodes have
more than one processor and support symmetric
multiprocessing. Another option is to use MPI non-
blocking communication primitives, but the effectiveness
of this approach depends on the MPI implementation.

4. Experimental results

All the experiments have been performed on a cluster of
PCs available at our University. The cluster configuration
is the following:

– 36 available nodes.
– Each node has 2 Pentium III processors @ 1 Ghz

with 512 MB RAM.
– 18 GB SCSI hard discs, all available via NFS.
– Suse Linux 7.3 operating system with Kernel

2.4.17
– Al nodes are interconnected through two non-

blocking Fast Ethernet switches.

The codec we have used is Microsoft Fdam 2.3-001213.

It is implemented in C++ and the parallel versions have
been developed using GNU gcc compiler. The source
video sequence we have used in all the tests is
“mother_and_daugther” (QCIF format, 4:2:0 subsampling,
at 10 fps). It is 300 frames long. The GOP size is 15 frames
(IBBPBBPBBPBBPBB). In order to simulate longer video
sequences, the original one has been cycled. All the tests
have been performed with the cluster in exclusive mode,
i.e. there was no other user load.

We measured the processor utilizations of the two
schemes proposed above. As shown in Figure 1, the load
balance with 64 GOPs was good up to 16 processors.
However, when using 24 and 32 processors, both
algorithms start to lose efficiency. This is due to the
reduction in the number of GOPs per processor as the
number of processors increases. Then the probability of
load imbalance is higher. As it can be seen in Figure 1, the
dynamic GOP scheduling (B) behaves much better than a
pre-assigned GOP scheme (A).

0

4

8

12

16

20

24

28

32

2 Proc 4 Proc 8 Proc 16 Proc 24 Proc 32 Proc

S
p

ee
d

u
p

A B Ideal

Figure 1: Speed-up for demand access schemes with 64
GOPs video length (sequential time is 426 seconds)

Now we consider hiding communication delays. This
was solved with the multithreading approach (version
Bm). The tests were performed using the same number of
GOPS per processor instead of using the same stream
length. As it can be seen in Figure 2, the improvement of
the multithread approach is not very noticeable. This is
because the communication time is very much lower than
the computation time in this machine; remember we are
using a Fast Ethernet interconnection network.

0

4

8

12

16

20

24

28

32

2 Proc 4 Proc 8 Proc 16 Proc 24 Proc 32 Proc

S
p

ee
d

u
p

B Bm

Figure 2: Effectiveness of overlapping communications
and computation, with 2 Gops per processor

Also, we have run simulations with higher number of
GOPs per processor, showing that the multithreaded
version scales well, being equivalent to the original
version (version B in figure 2) in terms of speedup.

31,80

31,90

32,00

32,10

32,20

32,30

32,40

32,50

32,60

Gop0 Gop1 Gop2 Gop3 Gop4 Gop5 Gop6 Gop7 Gop8 Gop9

S
N

R

Seq Par Seq-Upd

Figure 3. Comparing coding quality of sequential and
parallel algorithms.

Finally, we have to consider the quality of the

reconstructed video stream. A standard quality measure is
the SNR (Signal-to-Noise Ratio). When comparing the
SNR of reconstructed streams of both encoders the
sequential (Seq), and the parallel version B (Par), we found
differences in less than 1%, in favor to our parallel encoder

(see Figure 3). This was due to the different GOP sequence
used in both versions. Sequential version does not follow
the same frame sequence in every GOP
IBBPBBPBBPBBPBB-PBBPBB…, so there is only one
Intra Frame (Frame I) in the whole sequence. However,
our parallel version was fixed to use GOPs with the
following frame sequence: IBBPBBPBBPBBPBB-IBBP…
so each GOP can be independently processed by each
node, with no data dependencies . We change the GOP
sequence of the sequential algorithm (Seq-Upd) to the one
used in our parallel version and again some differences
appear. In this case, the sequential version gets better
results in SNR (see Figure 3). This lead us to carefully
verify the correctness of the coding process in order to
find the cause of these differences.

After doing some tracing we noticed that our parallel
version was no able to exactly follow the specified GOP
sequence, due to the absence of first I frame of next GOP.
So, the real frame sequence of our parallel version was
IBBPBBPBBPBBPBP, being the last frame of every GOP
coded as P frame, instead of B frame.

To get the same coding results (quality and bitrate)
than the sequential coder, we have modified the parallel
version in order to code one extra frame per GOP: The first
frame of the next GOP. This extra frame will be coded as an
INTRA frame (I), to allow the correctly encoding of the
two last B frames of current GOP. After introducing the
changes in the code, the results of sequential and parallel
version were exactly the same in terms of SNR.

For this improvement we have to pay an extra
computational overhead that results, in average, less than
1% of the GOP computation time.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

3 5 9 17 25 33

Proc

fp
s

64GopsM&D 128GopsM&D

Figure 4. Coding speed of MPEG-4 parallel version for

video sequences of 64 and 128 GOPs.

Finally Figure 4 shows the coding speed of our latest

version (Bm). We have run the parallel encoder with two

versions of mother&daughter video sequence of different
length (64 and 128 GOPs). The results show that our last
parallel version is able to code faster than real-time from 5
processors and on (notice that the original video
sequence was recorded at 10 frames per second). Also,
with 33 processors we can reach encoding speeds up to 70
fps, which it is seven times faster than real-time (the
original video frame rate). So, we can conclude saying that
our parallel algorithm scales well on the target system in
terms of encoding speed.

5. Conclusions and future work

We have tested several parallel encoders implemented
from an open source MPEG-4 sequential encoder with the
final goal of getting real-time and good quality video
compression. There is a long way to reach this target and
we have began by studying some important issues like
how to access to the input data, how to get a data
distribution without synchronization waits and with good
load balance, how to avoid the impact of communication
delays on execution time . At the same time the correctness
of the implementation was proven in terms of video quality
and compression bitrates . We have concluded that a
simple parallel algorithm based on decomposing the input
video in blocks that are processed independently gives
good results.

However, our algorithms do not consider the encoding
delay, what will be of special interest for encoding live
video. That question will be part of future work along with
a detailed study of the unbalanced nature of video
sources that will identify and properly share the high
complexity GOPs in high resolution video sequences.
Also, we plan to combine several parallelism levels (SIMD,
multithreading and message passing) in order to
significatively reduce the parallel encoder execution time.

6. References
[1] Rob Koenen, “International Organisation For
Standardisation ISO/Iec JTC1/Sc29/Wg11 coding of Moving
Pictures And Audio”; http://www.cselt.it/mpeg/standards/mpeg-
4/mpeg-4.htm, Marzo del 2001.
[2] J. Oliver, M.P. Malumbres. “Compresión de Imagen y
Video: Fundamentos Teóricos y aspectos prácticos”. Ed. UPV.
2001
[3] W. Effelsberg, R. Steinmetz. “Video Compression
Techniques”. Ed. Dpunkt-Verl. 1998.
[4] T. Olivares Montes, “Codificación de Video MEPG-2 sobre
una red de estaciones de trabajo”. Dpto. de Informática,
Universidad de Castilla-La Mancha.
[5] P. Pacheco, “Parallel programming with MPI”. Morgan
Kauffman, 1997.

[6] A. Hamosfakidis,Y. Paker, "Concurrency Analysis for Real
Time MPEG4 Video Encoding" ,ICMCS, Vol. 2, p:862-866,1999.
[7] A.Hamosfakidis, Y.Paker, J. Cosmas “A study of
Concurrency in MPEG-4 Video Encoder ”, ICMCS’ 98, Austin,
Texas, USA. June 1998
[8] S. M. Akramullah, I. Ahmad and M. L. Liou, “Performance
of a Software-Based MPEG -2 Video Encoder on Parallel and
Distributed Systems”, IEEE Transactions on Circuits and
Systems for Video Technology, Vol.7, No.4, August 1997, pp.
687-695.
[9] D.Farin, N.Mache, Peter H.N. “SAMPEG, a Scene Adaptive
Parallel MPEG-2 Software Encoder”, SPIE Visual
Communications and Image Processing, pp. 272-283, 2001.
[10] T. Olivares, F. J. Quiles, P. Cuenca, L. Orozco-Barbosa, I.
Ahmad, “Study of data distribution techniques for the
implementation of an MPEG-2 video encoder”, Parallell and
Distributed Computing Systems'99. pp.537-542. MIT,
Massachusetts (USA). November 3-6, 1999.
[11] Microsoft MPEG-4 Visual Reference Software. July 3rd
2000 Version 2 FDAM1-2.3-001213. Version 2.

