Abstract

Recently, a new video coding standard called HEVC has beesiafmd to deal
with the nowadays media market challenges, being able tceetb the half, on av-
erage, the bit stream size produced by the former video gastemdard H.264/AVC
at the same video quality. However, the computing requirdsi® encode video im-
proving compression efficiency have significantly beenaased. In this paper, we
focus on applying parallel processing techniques to HEVEbdar in order to signif-
icantly reduce the computational power requirements withttisturbing the coding
efficiency. So, we propose several parallelization appgreado the HEVC encoder,
tested on multicore platforms but also well suited to distied memory architectures.
Our proposals use OpenMP programming paradigm working ataese grain level
parallelization which we call GOP-based level. GOP-baggur@aches encode si-
multaneously several groups of consecutive frames. Depgrwh how these GOPs
are conformed and distributed it is critical to obtain goadghlel performance, taking
also into account the level of coding efficiency degradatidme results show that near
ideal efficiencies are obtained using up.tocores. The parallel algorithms developed
support all standard modes proposed by the reference seftwa

Keywords: Parallel algorithms, video coding, HEVC, multicore, peniance, GOP-
based algorithms.
1 Introduction

Recently, the new High Efficiency Video Coding (HEVC) [1] stardlhas been de-
veloped by the Joint Collaborative Team on Video Coding (JCT-WRirh was estab-
lished by the ISO/IEC Moving Picture Experts Group (MPEG] &rJ-T Video Cod-

ing Experts Group (VCEG). This new standard will replace timeent H.264/AVC [2]
standard in order to deal with nowadays and future multimetarket trends. 4K def-
inition video content is a nowadays fact and 8K definitioreadvill not take too long
to become a reality. Evenmore, the new standard supportsduiglity color depth
at 8 and 10 bits. The new HEVC standard achieves the same giddity than the
H.264/AVC high profile at approximately half the bit-rate.

Regarding complexity, HEVC decoder has a similar behavidhéoH.264/AVC
one [3]. However, HEVC encoder is several times more comgilex H.264/AVC
encoder and it will be a hot research topic in years to come.

Several works about complexity analysis and parallelirestrategies for the emerg-
ing HEVC standard can be found in the literature [4] [5] [6]o8 of the paralleliza-
tion proposals are focused in the decoding side, lookinghf®most appropriate par-
allel optimizations at the decoder that provide real-tilmeatling of High-Definition
(HD) and Ultra-High-Definition (UHD) video contents.

At the moment, there are only a few works focused on the HEVEDeer. In [7]
authors propose a fine-grain parallel optimization in theéiomoestimation module of
the HEVC encoder allowing to perform the motion vector pcédn in all Prediction
Units (PUs) available at the Coding Unit (CU) at the same tim¢8) authors propose
a parallelization inside the Intra prediction module thahgists on removing data
dependencies among subblocks of a CU, obtaining interespiegd-up results with a
negligible loss in coding performance.

In this paper we will analyze the available parallel stregegn the HEVC standard
and their viability over the reference software, called HEVC test model (HM).
We will focus on applying parallel processing techniques&#®VC encoder in or-
der to significantly reduce the computational power reaqoéets without disturbing
the coding efficiency. Our proposals use OpenMP programipargdigm working
at a coarse grain parallelization level which we call GOBdoalevel. GOP-based
approaches encode simultaneously several Group Of PsctG®P). Depending on
how these GOPs are conformed and distributed it is critallitain good parallel
performance, taking also into account the level of codirigiehcy degradation.

After implementing the algorithms in HEVC reference softevéor all supported
modes (All Intra (Al), Random Access (RA), Low-Delay B (LB), ahdw-Delay
P (LP)), some experiments were performed showing interg@sesults. In general,
all proposed versions attain high parallel efficiency ressidhowing that GOP-based
parallelization approaches should be taken into accourgdace the HEVC video
encoding complexity and achieving near ideal efficiencigh gpeed-ups up td0x
when using up ta0 cores, proving the high scalabitity of our parallelizatpyoposals.

The remainder of this paper is organized as follows: In $ack an overview of
the available profiles in HEVC and common condition test ass@nted. Section 3
provides an overview of the high-level parallelism stregegroposed in the HEVC
standard. Section 4 presents the GOP-based parallelaltes proposed, while in
Section 5 a comparison between the proposed parallel atiees is presented. Fi-
nally, in Section 6 some conclusions and future work areusised.

2 HEVC profiles

In [9] the JCT-VC defines the common test conditions and soé&weference config-
urations to be used for HEVC experiments. In that paper itimfound a series of
settings in order to evaluate HEVC video codec and to comiberelifferent contri-
butions made to it.

A total of 24 video sequences are specified, arranged in 6adag\lso the Quan-
tization Parameter (QP) and the set of configuration filesgHerencoding process
are detailed. Using these common conditions, makes easpartorm comparisons
between innovative proposals.

Classes from A to E include natural video sequences at ditiense sizes. Class F
comprises sequences than contain synthetic video in p#reof or in its whole. Two
of the sequences in class A have a bit depth of 10 bits and #hef¢he sequences
have a bit depth of 8 bits. The frame rate of the sequencegsdngn 20 to 60 fps.

Configuration files are provided within reference softwarekpge [10]. There are
8 different test conditions which are a combination of 2 leipths: Main (8 bits) and
Main10 (10 bits) with 4 coding modes: All Intra (Al), Random de&ss (RA), Low-
Delay B (LB), and Low-Delay P (LP).

In All Intra mode every frame is coded as an I-frame i.e. itasl@d without any
motion estimation/compensation. So each frame is indegrgricom the other frames
in the sequence. This mode gets lower compression ratepéreahto the other 3
modes) because P-frames and B-frames can usually obtaer bethpression rates
than I-frames at the same quality level. On the other hamd¢dlding process for All
Intra mode is faster than for the other 3 modes because nogimasted in motion
estimation. Every frame is coded in rendering order. Agians that require a fast
encoding process and are not concerned about limited bdtidai storage capacity,
fit perfectly in this coding mode.

Random Access mode combines I-frames and B-frames. A B-fraradrsme
that uses motion estimation/compensation in order to &elgeod compression rates.
Each block of a B-frame can use up to 2 reference frames, s iodiiing process 2
lists of reference pictures are maintained. The GOP (GrdRicures) size used is 8.
Reference frames can be located earlier or later than theefregrare currently cod-
ing. So, in this mode, coding (and decoding) order is not &mesas rendering order.
So as to allow navigating along the coded sequence (poitdirggcertain moment)
or to allow functions like fast forward, an I-frame is insttperiodically. Depending
on the frame rate of each sequence the intra refresh perragsvalVe have a value
of 16 for 20 fps, 24 for 24 fps, 32 for 30 fps, 48 for 50 fps, andfé460 fps. The
intra period is a multiple of 8 (the size of the GOP) which msan I-frame approx-
imately every second. Applications that do not have timestamts (when coding a
video sequence) and need features like the aforementiasetbfward, are the target
applications of this coding mode.

Low-Delay modes (LP and LB) code each frame in rendering oréest an I-
frame is inserted in the coded bit stream and then only Pdgafar B-frames) are

used for the rest of the sequence, being the GOP size equal Adl the reference
pictures are located earlier than the current frame. Thesariodes achieve better
compression performance than Al mode and do not suffer filuendelay that RA
mode introduces. Applications like video-conference Whiave bandwidth and time
constraints can benefit from low delay modes.

3 HEVC high-level parallelism strategies

High-level parallel strategies may be classified in a hedr@al scheme depending on
the desired parallel grain size. This classification shaalefully be applied taking
into account the available parallel hardware resourcesderao perform the most
adequate and efficient implementation. So, we define fromseo#o finer grain par-
allelism levels: GOP, tile, slice, and wavefront. When desig a HEVC parallel
version we first analyze the available hardware where thalphencoder will run, in
order to determine which parallelism levels are the most@ppate.

The coarsest parallelization level, GOP-based, is baskdsaking the whole video
sequence in GOPs in such a way that the processing of each &€impletely in-
dependent from the other GOPs. In general, this approaciola@m good parallel
efficiency on both shared memory and distributed memoryglas. However, de-
pending on the way we define the GOPs structure and removeattreGOP depen-
dencies, the coding performance may be affected.

Tiles are used to split a picture horizontally and verticalto multiple sub pictures.
By using tiles, prediction dependencies are broken justeabtiundaries. Consecu-
tive tiles are represented in raster scan order. The scam ofdCoding Tree Blocks
(CTBs) remains a raster scan. When splitting a picture horaigntiles may be used
to reduce line buffer sizes in an encoder, as it operates giong narrower than a
full picture. Tiles also permit the composition of a pictdrem multiple rectangular
sources that are encoded independently.

Slices follow the same concept as in H.264/AVC allowing aye to be parti-
tioned into groups of consecutive Coding Tree Units (CTUsastar scan order, each
for transmission in a separate network adaptation laydrtbat may be parsed and
decoded independently, except for optional inter slicerfiig. There is a break in
prediction dependences at slices boundaries, which causss in coding efficiency.
The use of slices is more concerned with error resilience aximum transmission
unit size matching than a parallel coding technique, alitatihas undoubtedly been
exploited for this purpose in the past.

Wavefronts split a picture into CTU rows, where each CTU row rbaypro-
cessed by a different thread. Dependences between rowsaaméaimed except for
the CABAC [11] context state, which is reinitialized at theglmning of each CTU
row. To improve the compression efficiency, rather thangrering a normal CABAC
reinitialization, the context state is inherited from teesnd CTU of the previous row.

Current HM reference software does not directly support mitbie high-level par-

allelism approaches mainly due to its implementation deslg the next section we
will present several GOP-based parallelization approathat may be implemented
in cluster-based or multicore-based hardware architestur

4 GOP-based parallel algorithms

The HEVC reference software proposes four working modesedan I-frames, B-
frames and P-frames, on the other hand these standard medals@ based on the
coding structure, i.e. the intra period, the GOP size anddfeence pictures struc-
ture. In our work the versioi0.0 of the HEVC reference software has been used. The
experiments reported were performed using the Main prafée it depth of 8 bits).

The parallel algorithms designed are based on the GOP steudtVe have devel-
oped several strategies, described below, but in all of theenGOP is assigned to one
process, the synchronization processes are located bfigs®P encoding, and the
reference pictures structure is not shared. The main gddlese mild restrictions
are, on the one hand, to fill the bitstream as the informasaawvailable, and on the
other hand, to be able to extend the work to distributed mgmtatforms without
drastically increasing the amount of information that dddae transmitted.

Note that, the Al mode differs from the rest of modes on both@GOP size (equal
to 1 for the Al mode and greater tharfor the rest of modes) and in that all frames are
computed as I-frames, this means that no reference frareassad in the Al mode.
Therefore the Al parallel algorithm does not disturb theawedr of the sequential
algorithm respect to quality and bit-rate.

We have developed five parallel approaches, all of them supp® LB, LP and
RA modes, except Option IV that only supports the Al mode. Adwaee said in the
Al mode no reference frames are used at all, therefore tleeer@te pictures structure
is not used. Thus Option | and Option IV are similar but thé ¢tage has been tuned
to fit the Al mode. The first four approaches developed are:

e Option I: (LB, LP and RA) all processes encode the first I-frameé iaclude it
in the reference picture list, after that each GOP is prazkby one process, so
processes will encode isolated GOPs that link in the reter@icture list.

e Option II: (LB, LP and RA) the video sequence is divided in as ynparts as
the number of parallel processes, before processing tlo& bf@djacents GOPs
each process encodes the first GOP, that is the first I-frame.

e Option IlI: (LB, LP and RA) in this approach the video sequersalso di-
vided as many parts as the number of processes, similar tordptbut in this
case each process starts encoding one I-frame at the hagiohits block of
adjacents GOPs.

e Option IV: (Al) as Option | each GOP is sequentially assigteedne process,
but all GOPs are composed of a single I-frame.

— GOP1 — L GOP N+2 — | GOP (M-1)*(N+1)+1]

Fo POl | | | | L1l 1[s
FI F2 F3 F4 | < [F(N+1)"4+1) p 2

— GO — % - _ | % | GOP (M-1)*(N+1)+2| g

p1| FO | p1 P2 N GOP N+3 IS S
m|" OO |5 | OO (5| - OO |8

= e

GOP 0| - F5 F6.F7 F8 '(CCJ -(CCJ . %

. - GO|:3 N+1—] U? | GOP 2*(N“)_ U>)\ | Gop M*(N+1)_ E
en| en O [11 TS

)

F(N*4+1

Figure 1: Option I: Parallel distribution.

Figure 1 shows the parallel distribution performed wheni@pt is used. As we
have said, a synchronization process is located after e@id &coding. All pro-
cesses compute the first GOP, i.e. one I-frame, but obviaudly the root process
(PO) writes data on the bit stream. After that, each processdes a GOP cf frames
(or 8 for RA mode). The GOP assigned to each process depends omthefrthe
parallel process, because the GOPs are assigned sedyé¢atech process.

As each process will have its own working buffers in orderttwesthe reference
picture list, the real pattern of the reference picturesdudenges from parallel to
sequential algorithm and also it changes depending on tideuiof processes used in
the parallel algorithm. Note that each process builds its buffer with the reference
picture list numbering the frames according to the ordey #re stored in the local
buffer. For instance, in sequential processing, the sefrante of a GOP uses frames
1-2-6-10as reference picturesli(means the previous frame, and so on). Considering
a GOP size equal té (as in LB and LP modes), fram& points to the last frame of
the previous GOP (the frame two positions before the curfrante in the original
video sequence). In parallel processing, as we assigrteso®OPSs to each process,
the previous GOP is not the previous adjacent GOP in themaligiideo sequence
and therefore frame2 will not point to the frame two positions before the current
frame. If, for instance, the number of processeg, ihen the previous GOP for this
process will be located in the video sequefic@OPs away from the current GOP. So
for the second frame of a GOP, the reference pict@reill point to frame-22 (-2-
(6-1)x4=-22) in the original video sequence. We can conclude that botallphand
sequential algorithms will produce different bit strearddée will analyze, in Section
5, the impact of this fact in terms of PSNR and bit-rate, andwiepropose several
parallel strategies in order to minimize this issue.

The parallel distribution performed in Option Il is reprated in Figure 2. In this
proposal we still perform a synchronization process aftetheGOP. All processes
compute the the first frame as an I-frame, that is the first G@Ppbviously again
only the root process (P0) writes data on the bit stream. firsisSrame is included in
the reference picture list of all processes, but in this taseeference pictures are not

— GOP1 — — GOP2 — — GOPJ —
PO Polf | | | L1 L 111s
FI F2 F3 F4 | = | F5 F6 F7 F8 | & =
S S S
FO — GOPJ+1— | G| - GOPJ+2— | @ — GOPJ+J—| | §
P1 P1 g N
[1] i1 fjs|LLddfjs| --LLLT]|s
copo|- [V < : < :)
: &} &} U>f
: < : S : £
—GOP N*J+1—{ | | [—GOP N*J+2— | —GOP N*J+J— _E
PN PN] 111 S
F(N*J*4+1)
Figure 2: Option II: Parallel distribution.
FO — GOP1 — — GOP2 — — GOPK —
po| [l [Po] LT 11 1 11 L1115
GOP 0 F1 F2 F3 F4 < F5 F6 F7 F8 < =
or| 2 | by | EgoP K T | |- copksa— | © | GOP 2°K+2-1 'g
[1] LIl \s(CLdiTliljs| -LLI11|s
GOP K+1| |F(K4+1+1) = _ = , c
. &} _ &} =
. c) c) (0p]
0 =) : | GOP N*(K+1)+1 | U>)’ |] (I>')\ | GOP (K+1)*(N+1)-1] (_CU
ey [l [en) T 111 R

GOP N*(K+1) F(N*K*4+N*1+1)

Figure 3: Option IlI: Parallel distribution.

significantly disturbed, because each process works wittoapgof adjacent GOPs.
In the previous example, the pattern is only altered for tts¢ thhree GOPs. From this
point onward all reference pictures needed are availalileeiprivate working buffer

of each process.

The parallel distribution of Option Ill, showed in Figure@Bgesents a parallel struc-
ture similar to Option II. We still assign a block of adjac&®PS to each process,
but we change the structure of frames indicated by the LB, Ld°PRé modes, since
in this case each process does not encode the first frame vidé@ sequence as an
I-frame, instead of that, each process encodes the firsefdiis block of adjacent
GOPs as an I-frame.

As previously mentioned, the Option IV parallel strategyhie same as the Op-
tion I, where the first one is applied to LB, LP and RA modes, amdl#st one is
applied to Al mode. Figure 4 shows the parallel distribufimnOption IV. Note that a
GOP always consists of one I-frame, and moreover theserlesaare IDRs, therefore
there are no differences between the parallel and the segustecution, because this
mode does not use the reference picture list. Note thatsctise, as in Option | and
Option 11, in the synchronization processes after each G@mbit stream can be up-
dated with data provided by all processes, while in Optibthi bit stream can only

N N Ty e Ry
) il [W O i
|_GOPN+2_|.
] |

F1

P1

Synchronization
Synchronization
Synchronization

PN) 1] FGﬁN—I

FN F(N+N) FN FN

Final Synchronization

Figure 4: Option IV: Parallel distribution.

- corP1 — - corp2 —| - Gop3 [GOP (N+1)3*L+1] |GOP (N+1)'3"L+2| |GOP (N+1)*3*L+3|
PO PO I 1 11 I T11]s
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12| < c =
9 S 8
o Folo [cors |l |- cors || |- cops T @ |jeor e | | || = —1s
0l L 11 [11 [L11s5|¢ 511 11 L1115
. |eopro| . F13 F14 F15 F16 F21 F22 F23 F24 | = o | = . c
G| 9 |¢ . o)
. . Sl @ |S . . @
’ " | =GOPN*3+t+ || [—GOPN*3+2— || —GOP N*3+3—| &2 %‘ e — || = — |8
I 1| I N i o LI || B | e

F(N"3*4+1) F((N+1)34)

Figure 5: Option V: Parallel distribution.

be updated with data provided by the root process, and ortlyea¢nd of the video
encoding we can update the bit stream with the data provigeldorest of processes.

Finally we have developed another strategy, named Optianth,both main goals,
a) all processes are able to write data in the bit stream mecgiéntly than Option
Ill, and b) to produce slight changes in the frame patterrhefdtandard modes LB,
LP and RA, and therefore attempt to reduce PSNR and bit-r&etgfintroduced
by the parallel algorithm. The proposed Option V strategmbimes features of the
other presented proposals. Firstly, all processes enémdirst GOP, composed by
a single I-frame, introducing it in each local buffer whidbres the reference picture
list, and in the same way as in Option | and Option Il, only thetmprocess updates
the bit stream. After that, a fixed number of adjacent GOPs&uhGOPBLOCK)
are assigned to each process depending on their parallel @bviously the size of
the GOPBLOCK must be the same for all processes. Figure 3 shows the®pti
V parallel structure when the size of the GBROCK is equal to3. Note that the
root process can update the bit stream after each GOP camopytahile the rest of
processes can update the bit stream after the B0PCK computation. We want to
remark that when we increase the GBPOCK size the disturbance of the reference
picture list decreases.

Remark that figures 1, 2, 3 and 5 show parallel distributiomsiciering the GOP
size equal tat, such as in LB and LP modes, but not in RA mode in which the GOP
size is equal t®. Regarding the Option V algorithm the GALOCK size sets

5000 80 /
7. /
—~ 4000 o
o 3 50 7
o 00, T s /
£ 3
= - 40 -~
2000 .\\.\ ¥ e /
1000 ~_ 20 —!‘//
_1.‘-—__._; 10
o ———9 | o
1Proc. 2Proc. 4Proc. 6Proc. 8Proc. 10Proc. 2Proc. 4Proc. 6 Proc. 8Proc. 10 Proc.
=4=120 Frames, 1245 64.4 334 231 16.8 131 =4=120 Frames| 19 3.7 5.4 74 9.5
—- 240 Frames, 252.4 126.6 70.4 446 331 27.8 —- 240 Frames| 2.0 3.6 57 76 9.1
480 Frames, 478.3 254.4 1326 85.0 65.7 53.4 480 Frames| 19 3.6 56 73 9.0
(a) Time (s.) (b) Speed-up

Figure 6: Option IV parallel algorithms when computity), 240 and480 frames.

the number of GOPs, thus in the example shown in Figure 3 th&beu of frames
included in one GOMBLOCK is equal tol2 (three GOPs of four frames) for LB and
LP modes; while for RA mode it is equal #d (three GOPs of eight frames).

5 Numerical experiments

In this section we analyze the parallel algorithms desdriimeSection 4, in terms
of parallel performance, PSNR and bit-rate. As the expartmesported were ob-
tained on a shared memory platform, we have used the OpenR]ifdgramming
paradigm. In particular the multicore platform used is a HBIiBnt SL390 G7
with two Intel Xeon X5660, each CPU with six cores at 2.8 GHzréfore the
experiments reported use up 10 processes. The testing video sequence used is
BQSquare_416x240_60.yuv, and disposes a00 frames at60H = with a frame size
equal to416x240 pixels. We have run the parallel algorithms encodigg, 240 and
480 frames for Al, LB and LP modes, and encodiigh and512 frames for RA mode.
The GOP size for LB and LP modes is equalitavhile for RA mode is equal t6.
Also, LB and LP modes compute only the first frame as I-frami@)eMRA mode in-
serts one I-frame (CDR type) eve3g frames in our experiments. In the Al mode all
frames are I-frames and one GOP consists on one I-frame.l tasgs the value of
quantization parameter (QP) is equaBtb

In Figure 6, we present computational results for the Optibparallel algorithm.
Figure 6(a) shows the computational times when encottg 240 and480 frames,
and Figure 6(b) shows the speed-up corresponding to Figaje Blote that Option
IV is the only algorithm related to the Al mode due to the siiwipl of this mode,
in which there are no dependencies between frames. Thdgbagiorithm devel-
oped offers good time reductions when increasing the nuwi@ocesses, achieving
speed-ups close to the ideal ones. Remark that in Option IVetleeence sequential
execution (i.e using process) obtains the same results (bit rate and PSNR) than the
parallel executions, since we are using Al mode configumatio

In Figure 7 we present the computational times for Optiongti@h Il and Option
Il parallel algorithms, for the LB mode. The results showand parallel behavior

20000 20000
18000 | 18000
16000 16000
. 14000 . 14000
¥ 12000 ¥ 12000
2 10000 2 10000
E n E n
= s000 i so00
6000 500.0
4000 ——— | 4000 4&%?: — |
2000 10 2000
00 v 0o L ¥
1Proc. 2 Proc. 4 Proc. 6 Proc. 8 Proc. 10 Proc. 1Proc. 2 Proc. 4 Proc. 6 Proc. 8 Proc. 10Proc.
~=4—120 Frames| 437.8 247.2 122.2 86.4 65.0 86.4 =4—120 Frames 437.8 247.2 122.2 86.4 65.0 60.1
~-240 Frames 884.8 541.4 308.4 223.0 162.7 223.0 =240 Frames| 884.8 541.4 308.4 223.0 162.7 1333
480 Frames| 1807.2 1054.9 674.1 425.1 332.2 425.1 480 Frames, 1807.2 1054.9 674.1 4251 332.2 273.7
(a) Option I. (b) Option 1.
20000
18000 |
16000
. 14000
M, 12000
ﬂJ
1000.0
E [
= 800.0
600.0
4000
200.0 |
0.0
1Proc. 2 Proc. 4 Proc. 6 Proc. 8 Proc. 10 Proc.
=4=120 Frames 420.9 223.8 114.8 76.2 57.3 50.1
~@—240 Frames 909.9 456.5 237.3 158.3 125.9 98.0
480 Frames 1803.6 906.9 473.7 3173 238.0 197.5

(c) Option .

Figure 7: Computational times for the parallel algorithms tfee LB mode when
computing120, 240 and480 frames.

in all attempts. Note that when using julsprocess, all proposed algorithms show
similar timings than the ones obtained by the sequentialioer

Figure 8 shows the speed-ups associated to the results shdwigure 7. This
figure confirms the good behavior of the proposed parall@ralgns, obtaining good
speed-ups in all cases. However, the results obtained bsihgOption Il and Option
[l are significantly better than those obtained by OptioiNate that the reference
picture list performed in each process when using Optioresdwt include adjacents
GOPs.

Figures 9 and 10 show the computational times and the spesd-espectively,
when parallel algorithms encode the video sequence fatigwhie LP mode. It should
be noted that the results shown are better than those oBtainen the LB is used.
In particular, when using the Option Il parallel algorittthe speed-up results are as
good as those obtained using the Option 1V parallel algarith

Taking into account all previous computational results,car conclude that Op-
tion Il and Option Il obtain better performance than Optlpwhen LB or LP modes
are used. In order to analyze the computational behavionwie RA mode is used
we test our parallel proposals encoditigh and512 frames. Note that the RA mode
works with a GOP size equal tand inserts and I-frame eveBp frames. Similar
conclusions are obtained for RA mode, looking at computatibmes and speed-ups
shown in Figure 11.

As said in Section 4, the parallel versions do not providestrae results than the

10

: E— : —
sin A
ﬂ s:n /

20 = 20 =

Speed-up
»
5 5
Speed-up

10
00 0o
2 Proc. 4 Proc. 6 Proc. 8Proc. 10 Proc. 2 Proc. 4 Proc. 6 Proc. 8Proc. 10 Proc.
~=4—120 Frames| 1.8 3.6 51 6.7 7.3 =4#—120 Frames| 19 3.9 55 7.3 8.3
~-240 Frames 16 29 4.0 54 6.6 ~-240 Frames 19 3.6 52 7.3 83
=480 Frames| 1.7 2.7 4.3 5.4 6.6 =#—480 Frames| 19 3.7 5.5 7.2 8.9

(a) Option I. (b) Option II.

100

90 A
a0 e
a 70 /
? 6.0
oo o
;J% 0 /
3.0 -/
20 r
10
0.0
2Proc. 4Proc, 6Proc. 8 Proc. 10Proc,
—4—120 Frames| 19 37 5.6 7.4 8.5
~8-240 Frames, 20 3.8 5.7 7.2 9.3
4480 Frames 20 38 5.7 7.6 9.1

(c) Option .

Figure 8: Speed-up for the parallel algorithms for the LB madhen computing 20,
240 and480 frames.

14000 14000
12000 A 12000 \
10000 10000
L 8000 2 so00
E ™~ 2 AN
E 000 E o0 -
- .\ \\ = \
e \\\ﬂ———ﬂ e \'\\\—N__
2000 — 2000 \\—-:__-__-‘—-—__‘
S ——— ¢ —— H
00 00
1Proc. 2 Proc. 4 Proc. 6 Proc. 8 Proc. 10 Proc. 1Proc. 2 Proc. 4 Proc. 6 Proc. 8 Proc. 10 Proc.
=4—120 Frames| 294.5 170.6 92.7 716 43.2 46.4 =4—120 Frames; 292.7 153.1 79.3 60.1 38.3 38.9
~-240 Frames 591.8 367.1 2225 161.7 116.0 104.5 ~-240 Frames 607.1 3237 170.7 118.0 86.0 75.9
—#—480 Frames| 1195.3 751.4 454.4 330.4 260.3 2309 —#—480Frames| 1164.6 632.1 327.0 224.6 173.1 143.1

(a) Option I. (b) Option II.

14000

12000
1000.0 \
L 8000
] \
E oo a
= '\
o \.\\‘\\
200.0 — ——
0.0 ===
1Proc. 2 Proc. 4Proc. 6 Proc. 8Proc. 10 Proc.
=4—120 Frames 292.0 145.5 78.0 50.7 38.6 308
=240 Frames| 606.9 304.8 159.4 107.1 82.2 66.8
~4—480 Frames| 1195.5 619.4 308.4 2132 161.3 132.8

(c) Option .

Figure 9: Computational times for the parallel algorithmstf@ LP mode when com-
puting 120, 240 and480 frames.

11

7.0 80 pre———
——%
60 /-__‘ 70 =
5 so // -— g o —
. 50 >
o o
40
] ////”,’ 3 a0 /
& 3” / & 30 /
20 e 20 —r/
10 10
00 i}
2Proc. 4Proc. 6Proc. 8Proc. 10 Proc. 2Proc. 4Proc. 6Proc. 8Proc. 10 Proc.
—+—120 Frames| 1.7 3.2 a1 6.8 6.3 ——120 Frames| 19 3.7 29 7.6 7.5
—8-240 Frames| 16 27 37 51 57 8240 Frames| 19 36 51 7.1 80
480 Frames 16 26 3.6 46 5.2 480 Frames 18 3.6 5.2 6.7 8.1
(a) Option I. (b) Option 1.
120
100
N e /
z /
3 6.0
b1 =
vl 40 /
20— g
0.0
2Proc. 4Proc. 6Proc. 8 Proc. 10Proc,
——120 Frames| 20 37 5.3 7.6 9.5
~8-240 Frames 2.0 3.8 5.7 7.4 9.1
480 Frames 19 39 5.6 7.4 9.0
(c) Option .

Figure 10: Speed-up for the parallel algorithms for the LRIenwhen computing20,
240 and480 frames.

ones produced by the sequential algorithm. So, in Figure dZhow how parallel
versions modify the sequential version bit-rate. It is imiaot to remark that Figure
12 shows results for options 1l and IlI, but not for Option Bécause in this case the
parallel and the sequential versions exhibit the sameabét-r Furthermore, we can
observe that the bit-rate increase introduced by Optiogdrghm is not acceptable.
This algorithm drastically changes the structure of thenezice pictures and as a
consequence it causes the large bit-rate increase. Insdkdhe bit-rate increase
becomes larger, in percentage, as the number of processesdd becomes shorter,
in percentage, as the number of frames encoded does.

Table 1 shows the PSNR data, i.e. a quality measurementhdopdrallel algo-
rithms Il and Ill. We can observe that the quality of the erembdideo decreases when
using Option Il algorithm, although, in Figure 12, we havewh that the bit-rate in-
creases. In contrast, the bit-rate increase for Optiondibr@thm shown in Figure 12
is compensated by a quality increase as it can be seen in Table

Finally we will analyze the Option V parallel algorithm takj into account a new
parameter which modifies the parallel algorithm. As we canisd-igure 5, in the
Option V parallel algorithm not only one GOP or one block of B®is assigned to
each process, but several blocks (no adjacents) of GOPacéadsg) are assigned to
each process. The number of adjacent GOPs that perform ofeBEOCK is the
new parameter. Note that if the size of the GBPOCK is equal tol both Option V
and Option | parallel algorithms are identical, on the othmend if the GOPBLOCK

12

1400.0 7.0
12000 4\ 6.0 /
1000.0 5.0 A
— o
8 AN 3 0o -
> 800.0 \\ 3 . /
E 500.0 = o 3.0
(= & /
4000 \ 20 >
200.0 — 1.0
00 00
1Proc. 2 Proc. 4 Proc. & Proc. 2 Proc. 4 Proc. 8 Proc.
—#—256 Frames 610.4 351.8 197.3 115.1 —4—256 Frames 1.7 31 5.3
==512 Frames 12435 698.2 392.0 2111 ==512 Frames 1.8 3.2 5.9
(a) Option 1. (b) Option 1.
1400.0 8.0
12000 J\ 70 /
6.0
- 1000.0 a //
= 800.0 7 >0
o ki 40 /
E 6000 -] : /
= \ o 3.0
4000 20 ./
200.0 1.0
00 0.0
1Proc. 2 Proc. 4 Proc. 8 Proc. 2 Proc. 4 Proc. 8 Proc.
=#=256 Frames 628.0 327.5 170.9 91.1 =4—256 Frames 1.9 3.7 6.9
—l-512 Frames 1243.7 642.1 329.6 172.7 —l-512 Frames 1.9 3.8 7.2
(c) Option II. (d) Option II.
1400.0 8.0
12000 — B, 70 /I.
- 10000 \ o 6.0 /
) 5000 \ 7 >0
g e 2
= 5000 L 2
= \ 2 30
4000 \\\.\ 20 ./
200.0 ‘...______:_.-.— 1.0
00 00
1Proc. 2 Proc. 4 Proc. & Proc. 2 Proc. 4 Proc. 8 Proc.
—#—256 Frames 629.4 3219 159.9 83.9 —4—256 Frames 2.0 3.9 7.5
=#=512 Frames 1240.3 638.1 325.7 166.5 =#-512 Frames 1.9 3.8 7.5
(e) Option . (f) Option lI.

Figure 11: Computational times for the parallel algorithmsthe RA mode when
computing256 and512 frames.

size is equal tdNumber of Frames to Encode / Number of Processes Option V and
Option Il parallel algorithms are the same. Now will analyize Option V algorithm
attending to bit rate and PSNR data. The results reported wietained encoding
256 and512 frames. Note that when we enco8lE2 using8 processors each process
computes4 frames, i.e.16 GOPs when LB or LP mode is used afidGOPs when
RA mode is used. As expected, as we increase the BIOPCK size the bit rate
decreases, see Figure 13(a) for LP mode and Figure 14(a) fonéd®, and also the
PSNR improves, see figures 13(b) and 14(b) for LP and RA modggcévely.

13

(%)

ase (%)

4 Proc. 8 Proc. 2 Proc. 4 Proc. 4 Proc. 8 Proc. 2 Proc. 4 Proc.

Option II-LB Option I1I-LB Option II-LP Optionlll-LP

W 120 Frames 4.3% 14.7% 41.8% 11.1% 30.8% 70.0% m120 Frames 4.1% 14.1% 38.6% 10.0% 28.6% 65.4%

w240 frames 3.4% 10.4% 26.4% 5.6% 17.4% 37.3% m 240 frames 3.0% 9.7% 24.8% 5.0% 15.5% 34.2%

480 frames 3.5% 8.1% 17.6% 3.5% 9.5% 21.6% 480 frames 2.9% 7.2% 15.9% 3.1% 8.6% 19.3%
(a) LB mode. (b) LP mode.

40.0%

35.0%

30.0%

ease (%)

25.0%

20.0%

2z 15.0%

=
= 10.0%

5.0%

4Proc.)
Option II-RA Option III-RA
| m 256 Frames 29% | 89w [205% 54% | 164% | 37.2%
|W512Frames 25% | 61% | 13.6% 32% | 88k | 200%
(c) RA mode.

Figure 12: Percentage of bit-rate increase for the paralgrithms.

6 Conclusions

In this paper we have proposed several parallel algorithiieeoHEVC video en-
coder. These algorithms are based on a coarser grain fiaedlten approach with the
organization of video frames in GOPs and different GOP msedlocation schemes.
A good parallel behavior has been shown in the experimempisried, which were
obtained using a multicore platform. However the developlgdrithms are able to
run on distributed memory architectures since a coarsan geaallelization has been
used. We have presented results using the different modesged by the reference
software, analyzing its performance. After implementing &lgorithms in the HEVC
software some experiments were performed showing intagestsults as (a) GOP

Algorithms 1 Proc 2 Proc 4 Proc 8 Proc

Option 1I-LB-480 frames | 31.28 31.24 31.19 31.04
Option I1I-LB-480 frames | 31.28 31.29 31.32 31.37
Option 1I-LP-480 frames | 31.15 31.11 31.05 30.94
Option 11I-LP-480 frames | 31.15 31.16 31.18 31.21
Option lI-RA-512 frames | 31.92 31.90 31.87 31.80
Option IlI-RA-512 frames | 31.92 31.93 31.94 31.95

Table 1. Luminance PSNRs (dB) for parallel algorithms.

14

800.00 31.00

U
75000 3080
— +

700.00 ~_ 3060)(—/*4
650.00 3040
600.00 3020
550.00 2000 —
500.00 = —_

— . 2580

450.00
- — 29.60

400.00
GOP_BLOCK= | GOP_BLOCK= | GOP_BLOCK= | GOP_BLOCK= | GOP_BLOCK= 2640
1 2z 4 6 8

PSNR [dB)

Bit rate (Kbps)

GOP_BLOCK=1 | GOP_BLOCK=2 | GOP_BLOCK=4 | GOP_BLOCK=6 | GOP_BLOCK=8

—+—2Proc. 47143 456.42 433.01 420.23 41582 —+—2Proc. 3074 30.74 30.82 30.88 30.90
—m—4Proc. 60089 54338 502.79 465.83 453 83 —B-4Proc 3032 30.44 30.61 30.73 30.79

6Proc. 68454 60366 52664 511.06 48374 6Proc. 3007 30.30 3055 3063 30.72
—~—8Proc 756.19 66025 56039 52767 47882 ——8Proc. 2992 3016 3045 30.60 30.76

(a) Bitrate. (b) PSNR.

Figure 13: Bit rate and PSNR for Option V algorithm varying G®&P BLOCK size
for LP mode.

560.00 32.00
540.00 =
3150 —
520.00
B 50000 — 3160 - 1
= -]
¥ 45000 A‘T - =
@ = 3140
§ 45000 —-.__\.\ z e
& 44000 & 5120
S 0—-—._____-_
42000
‘—g.“___;u 3100
400.00 ~
380.00 30.80
GOP_BLOCK=1 GOP_BLOCK=2 GOP_BLOCK=4 GOP_BLOCK=8 GOP_BLOCK=1 GOP_BLOCK=2 GOP_BLOCK=4 GOP_BLOCK=8
——2Proc 436.05 431.05 41411 398.54 ——2Proc 3158 3166 3172 3182
—B—4Proc. 48097 47695 44653 41556 —B-4Proc. 3133 3154 3167 31.80
8Proc. 543.92 52815 47036 41672 8Proc. 3116 3148 3165 31.80

Figure 14: Bit rate and PSNR for Option V algorithm varying G®®P BLOCK size
for RA mode.

organization determines the final coding performance, o#e best approach the
Option IV (Al mode) algorithm when comparing both sequdrdrad parallel versions
in terms of speed-upl/efficiency; (b) although the Optioral§jorithm introduces a bit-
rate overhead as the number of processes increases, tladl peeallel performance
and the improvements in PSNR make it a good approach when LBr BA coding
modes are demanded; and (c) the Option V algorithm offergasifieatures than Op-
tion Il with the improvement to be able to update the bigitneduring encoding pro-
cess with data obtained from all processes, not just frormdbeprocess.In general,
all proposed versions attain high parallel efficiency ressw@howing that GOP-based
parallelization approaches should be taken into accourgdace the HEVC video
encoding complexity. As future work, we will explore hierhical parallelization ap-
proaches combining GOP-based approaches with slice anplatibllelization levels,
which are aimed to exploit the shared memory parallelisimerathan the distributed
memory parallelism.

15

Acknowledgements

This research was supported by the Spanish Ministry of Btucand Science under
grant TIN2011-27543-C03-03, the Spanish Ministry of Sceeand Innovation under
grants TIN2011-26254 and TIN2011-15734-E.

References

[1] B. Bross, W. Han, J. Ohm, G. Sullivan, Y.-K. Wang, and T. Wird, “High
efficiency video coding (HEVC) text specification draft 1D6cument JCTVC-
L1003 of JCT-VC, Geneva, January 2013.

[2] ITU-T and ISO/IEC JTC 1, “Advanced video coding for geiceaudiovisual
services,1TU-T Rec. H.264 and 1 SO/IEC 14496-10 (AVC) version 16, 2012.

[3] J. Ohm, G. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegaf@omparison of
the coding efficiency of video coding standards - includirghtefficiency video
coding (hevc),"Circuits and Systems for Video Technology, IEEE Transactions
on, vol. 22, no. 12, pp. 1669-1684, 2012.

[4] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC compigxnd imple-
mentation analysisCircuits and Systems for Video Technology, |EEE Transac-
tionson, vol. 22, no. 12, pp. 1685-1696, 2012.

[5] M. Alvarez-Mesa, C. Chi, B. Juurlink, V. George, and T. SchiéParallel
video decoding in the emerging HEVC standard,1mbernational Conference
on Acoustics, Speech, and Sgnal Processing, Kyoto, March 2012, pp. 1-17.

[6] E. Ayele and S.B.Dhok, “Review of proposed high efficienageo coding
(HEVC) standard,”International Journal of Computer Applications, vol. 59,
no. 15, pp. 1-9, 2012.

[7] Q. Yu, L. Zhao, and S. Ma, “Parallel AMVP candidate listnstruction for
HEVC,” in VCIP’ 12, 2012, pp. 1-6.

[8] J. Jiang, B. Guo, W. Mo, and K. Fan, “Block-based parall¢tarnprediction
scheme for HEVC,'Journal of Multimedia, vol. 7, no. 4, pp. 289 —294, August
2012.

[9] F. Bossen, “Common test conditions and software referemc#igurations,”
Joint Collaborative Team on Video Coding, Geneva, Tech. RepV@cI1100,
January 2013.

[10] HEVC Reference Software, https://hevc.hhi.fraunhdi'svn/sviHEVCSoftware/
tags/HM-10.0/.

16

[11] D. Marpe, H. Schwarz, and T. Wiegand, “Context-basedtda binary arith-
metic coding in the H.264/AVC video compression standa@iktuits and Sys-
tems for Video Technology, |EEE Transactions on, vol. 13, no. 7, pp. 620-636,
2003.

[12] “Openmp application program interface, version 3QgenMP Architecture Re-
view Board. http://www.openmp.org, 2011.

17

