
Abstract

Recently, a new video coding standard called HEVC has been developed to deal
with the nowadays media market challenges, being able to reduce to the half, on av-
erage, the bit stream size produced by the former video coding standard H.264/AVC
at the same video quality. However, the computing requirements to encode video im-
proving compression efficiency have significantly been increased. In this paper, we
focus on applying parallel processing techniques to HEVC encoder in order to signif-
icantly reduce the computational power requirements without disturbing the coding
efficiency. So, we propose several parallelization approaches to the HEVC encoder,
tested on multicore platforms but also well suited to distributed memory architectures.
Our proposals use OpenMP programming paradigm working at a coarse grain level
parallelization which we call GOP-based level. GOP-based approaches encode si-
multaneously several groups of consecutive frames. Depending on how these GOPs
are conformed and distributed it is critical to obtain good parallel performance, taking
also into account the level of coding efficiency degradation. The results show that near
ideal efficiencies are obtained using up to10 cores. The parallel algorithms developed
support all standard modes proposed by the reference software.

Keywords: Parallel algorithms, video coding, HEVC, multicore, performance, GOP-
based algorithms.

1 Introduction

Recently, the new High Efficiency Video Coding (HEVC) [1] standard has been de-
veloped by the Joint Collaborative Team on Video Coding (JCT-VC)which was estab-
lished by the ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T Video Cod-

1



ing Experts Group (VCEG). This new standard will replace the current H.264/AVC [2]
standard in order to deal with nowadays and future multimedia market trends. 4K def-
inition video content is a nowadays fact and 8K definition video will not take too long
to become a reality. Evenmore, the new standard supports high quality color depth
at 8 and 10 bits. The new HEVC standard achieves the same videoquality than the
H.264/AVC high profile at approximately half the bit-rate.

Regarding complexity, HEVC decoder has a similar behavior tothe H.264/AVC
one [3]. However, HEVC encoder is several times more complexthan H.264/AVC
encoder and it will be a hot research topic in years to come.

Several works about complexity analysis and parallelization strategies for the emerg-
ing HEVC standard can be found in the literature [4] [5] [6]. Most of the paralleliza-
tion proposals are focused in the decoding side, looking forthe most appropriate par-
allel optimizations at the decoder that provide real-time decoding of High-Definition
(HD) and Ultra-High-Definition (UHD) video contents.

At the moment, there are only a few works focused on the HEVC encoder. In [7]
authors propose a fine-grain parallel optimization in the motion estimation module of
the HEVC encoder allowing to perform the motion vector prediction in all Prediction
Units (PUs) available at the Coding Unit (CU) at the same time. In [8] authors propose
a parallelization inside the Intra prediction module that consists on removing data
dependencies among subblocks of a CU, obtaining interestingspeed-up results with a
negligible loss in coding performance.

In this paper we will analyze the available parallel strategies in the HEVC standard
and their viability over the reference software, called theHEVC test model (HM).
We will focus on applying parallel processing techniques toHEVC encoder in or-
der to significantly reduce the computational power requirements without disturbing
the coding efficiency. Our proposals use OpenMP programmingparadigm working
at a coarse grain parallelization level which we call GOP-based level. GOP-based
approaches encode simultaneously several Group Of Pictures (GOP). Depending on
how these GOPs are conformed and distributed it is critical to obtain good parallel
performance, taking also into account the level of coding efficiency degradation.

After implementing the algorithms in HEVC reference software for all supported
modes (All Intra (AI), Random Access (RA), Low-Delay B (LB), andLow-Delay
P (LP)), some experiments were performed showing interesting results. In general,
all proposed versions attain high parallel efficiency results, showing that GOP-based
parallelization approaches should be taken into account toreduce the HEVC video
encoding complexity and achieving near ideal efficiencies with speed-ups up to10x
when using up to10 cores, proving the high scalabitity of our parallelizationproposals.

The remainder of this paper is organized as follows: In Section 2 an overview of
the available profiles in HEVC and common condition test are presented. Section 3
provides an overview of the high-level parallelism strategies proposed in the HEVC
standard. Section 4 presents the GOP-based parallel alternatives proposed, while in
Section 5 a comparison between the proposed parallel alternatives is presented. Fi-
nally, in Section 6 some conclusions and future work are discussed.

2



2 HEVC profiles

In [9] the JCT-VC defines the common test conditions and software reference config-
urations to be used for HEVC experiments. In that paper it canbe found a series of
settings in order to evaluate HEVC video codec and to comparethe different contri-
butions made to it.

A total of 24 video sequences are specified, arranged in 6 classes. Also the Quan-
tization Parameter (QP) and the set of configuration files forthe encoding process
are detailed. Using these common conditions, makes easier to perform comparisons
between innovative proposals.

Classes from A to E include natural video sequences at diverseframe sizes. Class F
comprises sequences than contain synthetic video in part ofthem or in its whole. Two
of the sequences in class A have a bit depth of 10 bits and the rest of the sequences
have a bit depth of 8 bits. The frame rate of the sequences ranges from 20 to 60 fps.

Configuration files are provided within reference software package [10]. There are
8 different test conditions which are a combination of 2 bit depths: Main (8 bits) and
Main10 (10 bits) with 4 coding modes: All Intra (AI), Random Access (RA), Low-
Delay B (LB), and Low-Delay P (LP).

In All Intra mode every frame is coded as an I-frame i.e. it is coded without any
motion estimation/compensation. So each frame is independent from the other frames
in the sequence. This mode gets lower compression rates (compared to the other 3
modes) because P-frames and B-frames can usually obtain better compression rates
than I-frames at the same quality level. On the other hand, the coding process for All
Intra mode is faster than for the other 3 modes because no timeis wasted in motion
estimation. Every frame is coded in rendering order. Applications that require a fast
encoding process and are not concerned about limited bandwidth or storage capacity,
fit perfectly in this coding mode.

Random Access mode combines I-frames and B-frames. A B-frame isa frame
that uses motion estimation/compensation in order to achieve good compression rates.
Each block of a B-frame can use up to 2 reference frames, so in the coding process 2
lists of reference pictures are maintained. The GOP (Group Of Pictures) size used is 8.
Reference frames can be located earlier or later than the frame we are currently cod-
ing. So, in this mode, coding (and decoding) order is not the same as rendering order.
So as to allow navigating along the coded sequence (pointingto a certain moment)
or to allow functions like fast forward, an I-frame is inserted periodically. Depending
on the frame rate of each sequence the intra refresh period varies. We have a value
of 16 for 20 fps, 24 for 24 fps, 32 for 30 fps, 48 for 50 fps, and 64for 60 fps. The
intra period is a multiple of 8 (the size of the GOP) which inserts an I-frame approx-
imately every second. Applications that do not have time constraints (when coding a
video sequence) and need features like the aforementioned fast forward, are the target
applications of this coding mode.

Low-Delay modes (LP and LB) code each frame in rendering order. First an I-
frame is inserted in the coded bit stream and then only P-frames (or B-frames) are

3



used for the rest of the sequence, being the GOP size equal to4. All the reference
pictures are located earlier than the current frame. These two modes achieve better
compression performance than AI mode and do not suffer from the delay that RA
mode introduces. Applications like video-conference which have bandwidth and time
constraints can benefit from low delay modes.

3 HEVC high-level parallelism strategies

High-level parallel strategies may be classified in a hierarchical scheme depending on
the desired parallel grain size. This classification shouldcarefully be applied taking
into account the available parallel hardware resources in order to perform the most
adequate and efficient implementation. So, we define from coarser to finer grain par-
allelism levels: GOP, tile, slice, and wavefront. When designing a HEVC parallel
version we first analyze the available hardware where the parallel encoder will run, in
order to determine which parallelism levels are the most appropriate.

The coarsest parallelization level, GOP-based, is based onbreaking the whole video
sequence in GOPs in such a way that the processing of each GOP is completely in-
dependent from the other GOPs. In general, this approach canobtain good parallel
efficiency on both shared memory and distributed memory platforms. However, de-
pending on the way we define the GOPs structure and remove the inter-GOP depen-
dencies, the coding performance may be affected.

Tiles are used to split a picture horizontally and vertically into multiple sub pictures.
By using tiles, prediction dependencies are broken just at tile boundaries. Consecu-
tive tiles are represented in raster scan order. The scan order of Coding Tree Blocks
(CTBs) remains a raster scan. When splitting a picture horizontally, tiles may be used
to reduce line buffer sizes in an encoder, as it operates on regions narrower than a
full picture. Tiles also permit the composition of a picturefrom multiple rectangular
sources that are encoded independently.

Slices follow the same concept as in H.264/AVC allowing a picture to be parti-
tioned into groups of consecutive Coding Tree Units (CTUs) in raster scan order, each
for transmission in a separate network adaptation layer unit that may be parsed and
decoded independently, except for optional inter slice filtering. There is a break in
prediction dependences at slices boundaries, which causesa loss in coding efficiency.
The use of slices is more concerned with error resilience or maximum transmission
unit size matching than a parallel coding technique, although it has undoubtedly been
exploited for this purpose in the past.

Wavefronts split a picture into CTU rows, where each CTU row maybe pro-
cessed by a different thread. Dependences between rows are maintained except for
the CABAC [11] context state, which is reinitialized at the beginning of each CTU
row. To improve the compression efficiency, rather than performing a normal CABAC
reinitialization, the context state is inherited from the second CTU of the previous row.

Current HM reference software does not directly support mostof the high-level par-

4



allelism approaches mainly due to its implementation design. In the next section we
will present several GOP-based parallelization approaches that may be implemented
in cluster-based or multicore-based hardware architectures.

4 GOP-based parallel algorithms

The HEVC reference software proposes four working modes, based on I-frames, B-
frames and P-frames, on the other hand these standard modes are also based on the
coding structure, i.e. the intra period, the GOP size and thereference pictures struc-
ture. In our work the version10.0 of the HEVC reference software has been used. The
experiments reported were performed using the Main profile (i.e. bit depth of 8 bits).

The parallel algorithms designed are based on the GOP structure. We have devel-
oped several strategies, described below, but in all of themone GOP is assigned to one
process, the synchronization processes are located after the GOP encoding, and the
reference pictures structure is not shared. The main goals of these mild restrictions
are, on the one hand, to fill the bitstream as the information is available, and on the
other hand, to be able to extend the work to distributed memory platforms without
drastically increasing the amount of information that should be transmitted.

Note that, the AI mode differs from the rest of modes on both the GOP size (equal
to 1 for the AI mode and greater than1 for the rest of modes) and in that all frames are
computed as I-frames, this means that no reference frames are used in the AI mode.
Therefore the AI parallel algorithm does not disturb the behavior of the sequential
algorithm respect to quality and bit-rate.

We have developed five parallel approaches, all of them support the LB, LP and
RA modes, except Option IV that only supports the AI mode. As wehave said in the
AI mode no reference frames are used at all, therefore the reference pictures structure
is not used. Thus Option I and Option IV are similar but the last one has been tuned
to fit the AI mode. The first four approaches developed are:

• Option I: (LB, LP and RA) all processes encode the first I-frame and include it
in the reference picture list, after that each GOP is processed by one process, so
processes will encode isolated GOPs that link in the reference picture list.

• Option II: (LB, LP and RA) the video sequence is divided in as many parts as
the number of parallel processes, before processing the block of adjacents GOPs
each process encodes the first GOP, that is the first I-frame.

• Option III: (LB, LP and RA) in this approach the video sequence is also di-
vided as many parts as the number of processes, similar to Option II, but in this
case each process starts encoding one I-frame at the beginning of its block of
adjacents GOPs.

• Option IV: (AI) as Option I each GOP is sequentially assignedto one process,
but all GOPs are composed of a single I-frame.

5



I

F0

GOP 0

GOP 1

GOP 2

GOP N+1

.

.

.

F5 F6 F7 F8

F1 F2 F3 F4

S
y
n
c
h
ro

n
iz

a
ti
o
n

GOP N+2

GOP N+3

GOP 2*(N+1)

.

.

.

S
y
n
c
h
ro

n
iz

a
ti
o
n

...

GOP (M-1)*(N+1)+1

GOP (M-1)*(N+1)+2

GOP M*(N+1)

.

.

.

F
in

a
l 
S

y
n
c
h
ro

n
iz

a
ti
o
n

F((N+1)*4+1)

F(N*4+1)

P0

P1

.

.

.

PN

P0

P1

.

.

.

PN

Figure 1: Option I: Parallel distribution.

Figure 1 shows the parallel distribution performed when Option I is used. As we
have said, a synchronization process is located after each GOP encoding. All pro-
cesses compute the first GOP, i.e. one I-frame, but obviouslyonly the root process
(P0) writes data on the bit stream. After that, each process encodes a GOP of4 frames
(or 8 for RA mode). The GOP assigned to each process depends on the rank of the
parallel process, because the GOPs are assigned sequentially to each process.

As each process will have its own working buffers in order to store the reference
picture list, the real pattern of the reference pictures used changes from parallel to
sequential algorithm and also it changes depending on the number of processes used in
the parallel algorithm. Note that each process builds its own buffer with the reference
picture list numbering the frames according to the order they are stored in the local
buffer. For instance, in sequential processing, the secondframe of a GOP uses frames-
1 -2 -6 -10 as reference pictures (-1 means the previous frame, and so on). Considering
a GOP size equal to4 (as in LB and LP modes), frame-2 points to the last frame of
the previous GOP (the frame two positions before the currentframe in the original
video sequence). In parallel processing, as we assign isolated GOPs to each process,
the previous GOP is not the previous adjacent GOP in the original video sequence
and therefore frame-2 will not point to the frame two positions before the current
frame. If, for instance, the number of processes is6, then the previous GOP for this
process will be located in the video sequence6 GOPs away from the current GOP. So
for the second frame of a GOP, the reference picture-2 will point to frame-22 (-2-
(6-1)x4=-22) in the original video sequence. We can conclude that both parallel and
sequential algorithms will produce different bit streams.We will analyze, in Section
5, the impact of this fact in terms of PSNR and bit-rate, and wewill propose several
parallel strategies in order to minimize this issue.

The parallel distribution performed in Option II is represented in Figure 2. In this
proposal we still perform a synchronization process after each GOP. All processes
compute the the first frame as an I-frame, that is the first GOP,but obviously again
only the root process (P0) writes data on the bit stream. Thisfirst frame is included in
the reference picture list of all processes, but in this casethe reference pictures are not

6



I

F0

GOP 0

GOP 1

GOP J+1

GOP N*J+1

.

.

.

F5 F6 F7 F8F1 F2 F3 F4

S
y
n
c
h
ro

n
iz

a
ti
o
n

GOP 2

GOP J+2

GOP N*J+2

.

.

.

S
y
n
c
h
ro

n
iz

a
ti
o
n

...

GOP J

GOP J+J

GOP N*J+J

.

.

.

F
in

a
l 
S

y
n
c
h
ro

n
iz

a
ti
o
n

F(J*4+1)

F(N*J*4+1)

P0

P1

.

.

.

PN

P0

P1

.

.

.

PN

Figure 2: Option II: Parallel distribution.

I

F0

GOP 0

GOP 1

GOP K+2

GOP N*(K+1)+1

.

.

.

F5 F6 F7 F8F1 F2 F3 F4

S
y
n

c
h

ro
n

iz
a

ti
o

n

GOP 2

GOP K+3

.

.

.

S
y
n

c
h

ro
n

iz
a

ti
o

n
...

GOP K

GOP 2*K+2-1

GOP (K+1)*(N+1)-1

.

.

.

F
in

a
l 
S

y
n

c
h

ro
n

iz
a

ti
o

n

I

F0

GOP K+1

I

F0

GOP N*(K+1)

F(K*4+1+1)

F(N*K*4+N*1+1)

P0

P1

.

.

.

PN

P0

P1

.

.

.

PN

Figure 3: Option III: Parallel distribution.

significantly disturbed, because each process works with a group of adjacent GOPs.
In the previous example, the pattern is only altered for the first three GOPs. From this
point onward all reference pictures needed are available inthe private working buffer
of each process.

The parallel distribution of Option III, showed in Figure 3,presents a parallel struc-
ture similar to Option II. We still assign a block of adjacentGOPS to each process,
but we change the structure of frames indicated by the LB, LP and RA modes, since
in this case each process does not encode the first frame of thevideo sequence as an
I-frame, instead of that, each process encodes the first frame of its block of adjacent
GOPs as an I-frame.

As previously mentioned, the Option IV parallel strategy isthe same as the Op-
tion I, where the first one is applied to LB, LP and RA modes, and the last one is
applied to AI mode. Figure 4 shows the parallel distributionfor Option IV. Note that a
GOP always consists of one I-frame, and moreover these I-frames are IDRs, therefore
there are no differences between the parallel and the sequential execution, because this
mode does not use the reference picture list. Note that in this case, as in Option I and
Option II, in the synchronization processes after each GOP the bit stream can be up-
dated with data provided by all processes, while in Option III the bit stream can only

7



F0

S
y
n

c
h

ro
n

iz
a

ti
o

n

...

F
in

a
l 
S

y
n

c
h

ro
n

iz
a

ti
o

nP0

P1

.

.

.

PN

GOP 0

I

F1

GOP 1

I

FN

GOP N

I

F0

S
y
n

c
h

ro
n

iz
a

ti
o

n

GOP N+1

I

F1

GOP N+2

I

F(N+N)

GOP N+N

I

F0

S
y
n

c
h

ro
n

iz
a

ti
o

n

GOP 0

I

F1

GOP 1

I

FN

GOP N

I

F0

GOP 0

I

F1

GOP 1

I

FN

GOP N

I

Figure 4: Option IV: Parallel distribution.

I

F0

GOP 0

GOP 1

GOP 4

GOP N*3+1

.

.

.

F5 F6 F7 F8F1 F2 F3 F4

GOP 2

GOP 5

GOP N*3+2

.

.

.

S
y
n
c
h
ro

n
iz

a
ti
o
n

...

GOP (N+1)*3*L+3

.

.

.

F
in

a
l 
S

y
n
c
h
ro

n
iz

a
ti
o
n

F13

F(N*3*4+1)

GOP 3

GOP 6

GOP N*3+3

.

.

.

GOP (N+1)*3*L+1

GOP (N+1)*3*L+3+1

GOP (N+1)*3*L+N*3+1

.

.

.

GOP (N+1)*3*L+2

.

.

.

F9 F10 F11 F12

F24

F((N+1)*3*4)

F14 F15 F16 F23F22F21

S
y
n
c
h
ro

n
iz

a
ti
o
n

L
G

O
P

_
B

L
O

C
K

s
P0

P1

.

.

.

PN

P0

P1

.

.

.

PN

Figure 5: Option V: Parallel distribution.

be updated with data provided by the root process, and only atthe end of the video
encoding we can update the bit stream with the data provided by the rest of processes.

Finally we have developed another strategy, named Option V,with both main goals,
a) all processes are able to write data in the bit stream more frequently than Option
III, and b) to produce slight changes in the frame pattern of the standard modes LB,
LP and RA, and therefore attempt to reduce PSNR and bit-rate effects introduced
by the parallel algorithm. The proposed Option V strategy combines features of the
other presented proposals. Firstly, all processes encode the first GOP, composed by
a single I-frame, introducing it in each local buffer which stores the reference picture
list, and in the same way as in Option I and Option II, only the root process updates
the bit stream. After that, a fixed number of adjacent GOPs (named GOPBLOCK)
are assigned to each process depending on their parallel rank. Obviously the size of
the GOPBLOCK must be the same for all processes. Figure 3 shows the Option
V parallel structure when the size of the GOPBLOCK is equal to3. Note that the
root process can update the bit stream after each GOP computation, while the rest of
processes can update the bit stream after the GOPBLOCK computation. We want to
remark that when we increase the GOPBLOCK size the disturbance of the reference
picture list decreases.

Remark that figures 1, 2, 3 and 5 show parallel distributions considering the GOP
size equal to4, such as in LB and LP modes, but not in RA mode in which the GOP
size is equal to8. Regarding the Option V algorithm the GOPBLOCK size sets

8



(a) Time (s.) (b) Speed-up

Figure 6: Option IV parallel algorithms when computing120, 240 and480 frames.

the number of GOPs, thus in the example shown in Figure 3 the number of frames
included in one GOPBLOCK is equal to12 (three GOPs of four frames) for LB and
LP modes; while for RA mode it is equal to24 (three GOPs of eight frames).

5 Numerical experiments

In this section we analyze the parallel algorithms described in Section 4, in terms
of parallel performance, PSNR and bit-rate. As the experiments reported were ob-
tained on a shared memory platform, we have used the OpenMP [12] programming
paradigm. In particular the multicore platform used is a HP Proliant SL390 G7
with two Intel Xeon X5660, each CPU with six cores at 2.8 GHz, therefore the
experiments reported use up to10 processes. The testing video sequence used is
BQSquare 416x240 60.yuv, and disposes of600 frames at60Hz with a frame size
equal to416x240 pixels. We have run the parallel algorithms encoding120, 240 and
480 frames for AI, LB and LP modes, and encoding256 and512 frames for RA mode.
The GOP size for LB and LP modes is equal to4 while for RA mode is equal to8.
Also, LB and LP modes compute only the first frame as I-frame, while RA mode in-
serts one I-frame (CDR type) every32 frames in our experiments. In the AI mode all
frames are I-frames and one GOP consists on one I-frame. In all cases the value of
quantization parameter (QP) is equal to32.

In Figure 6, we present computational results for the OptionIV parallel algorithm.
Figure 6(a) shows the computational times when encoding120, 240 and480 frames,
and Figure 6(b) shows the speed-up corresponding to Figure 6(a). Note that Option
IV is the only algorithm related to the AI mode due to the simplicity of this mode,
in which there are no dependencies between frames. The parallel algorithm devel-
oped offers good time reductions when increasing the numberof processes, achieving
speed-ups close to the ideal ones. Remark that in Option IV thereference sequential
execution (i.e using1 process) obtains the same results (bit rate and PSNR) than the
parallel executions, since we are using AI mode configuration.

In Figure 7 we present the computational times for Option I, Option II and Option
III parallel algorithms, for the LB mode. The results show a good parallel behavior

9



(a) Option I. (b) Option II.

(c) Option III.

Figure 7: Computational times for the parallel algorithms for the LB mode when
computing120, 240 and480 frames.

in all attempts. Note that when using just1 process, all proposed algorithms show
similar timings than the ones obtained by the sequential version.

Figure 8 shows the speed-ups associated to the results shownin Figure 7. This
figure confirms the good behavior of the proposed parallel algorithms, obtaining good
speed-ups in all cases. However, the results obtained usingboth Option II and Option
III are significantly better than those obtained by Option I.Note that the reference
picture list performed in each process when using Option I does not include adjacents
GOPs.

Figures 9 and 10 show the computational times and the speed-ups, respectively,
when parallel algorithms encode the video sequence following the LP mode. It should
be noted that the results shown are better than those obtained when the LB is used.
In particular, when using the Option III parallel algorithmthe speed-up results are as
good as those obtained using the Option IV parallel algorithm.

Taking into account all previous computational results, wecan conclude that Op-
tion II and Option III obtain better performance than OptionI, when LB or LP modes
are used. In order to analyze the computational behavior when the RA mode is used
we test our parallel proposals encoding256 and512 frames. Note that the RA mode
works with a GOP size equal to8 and inserts and I-frame every32 frames. Similar
conclusions are obtained for RA mode, looking at computational times and speed-ups
shown in Figure 11.

As said in Section 4, the parallel versions do not provide thesame results than the

10



(a) Option I. (b) Option II.

(c) Option III.

Figure 8: Speed-up for the parallel algorithms for the LB mode when computing120,
240 and480 frames.

(a) Option I. (b) Option II.

(c) Option III.

Figure 9: Computational times for the parallel algorithms for the LP mode when com-
puting120, 240 and480 frames.

11



(a) Option I. (b) Option II.

(c) Option III.

Figure 10: Speed-up for the parallel algorithms for the LP mode when computing120,
240 and480 frames.

ones produced by the sequential algorithm. So, in Figure 12 we show how parallel
versions modify the sequential version bit-rate. It is important to remark that Figure
12 shows results for options II and III, but not for Option IV,because in this case the
parallel and the sequential versions exhibit the same bit-rate. Furthermore, we can
observe that the bit-rate increase introduced by Option I algorithm is not acceptable.
This algorithm drastically changes the structure of the reference pictures and as a
consequence it causes the large bit-rate increase. In all cases the bit-rate increase
becomes larger, in percentage, as the number of processes does and becomes shorter,
in percentage, as the number of frames encoded does.

Table 1 shows the PSNR data, i.e. a quality measurement, for the parallel algo-
rithms II and III. We can observe that the quality of the encoded video decreases when
using Option II algorithm, although, in Figure 12, we have shown that the bit-rate in-
creases. In contrast, the bit-rate increase for Option III algorithm shown in Figure 12
is compensated by a quality increase as it can be seen in Table1.

Finally we will analyze the Option V parallel algorithm taking into account a new
parameter which modifies the parallel algorithm. As we can see in Figure 5, in the
Option V parallel algorithm not only one GOP or one block of GOPS is assigned to
each process, but several blocks (no adjacents) of GOPs (adjacents) are assigned to
each process. The number of adjacent GOPs that perform one GOP BLOCK is the
new parameter. Note that if the size of the GOPBLOCK is equal to1 both Option V
and Option I parallel algorithms are identical, on the otherhand if the GOPBLOCK

12



(a) Option I. (b) Option I.

(c) Option II. (d) Option II.

(e) Option III. (f) Option III.

Figure 11: Computational times for the parallel algorithms for the RA mode when
computing256 and512 frames.

size is equal toNumber of Frames to Encode / Number of Processes Option V and
Option II parallel algorithms are the same. Now will analyzethe Option V algorithm
attending to bit rate and PSNR data. The results reported were obtained encoding
256 and512 frames. Note that when we encode512 using8 processors each process
computes64 frames, i.e.16 GOPs when LB or LP mode is used and8 GOPs when
RA mode is used. As expected, as we increase the GOPBLOCK size the bit rate
decreases, see Figure 13(a) for LP mode and Figure 14(a) for RAmode, and also the
PSNR improves, see figures 13(b) and 14(b) for LP and RA modes respectively.

13



(a) LB mode. (b) LP mode.

(c) RA mode.

Figure 12: Percentage of bit-rate increase for the parallelalgorithms.

6 Conclusions

In this paper we have proposed several parallel algorithms of the HEVC video en-
coder. These algorithms are based on a coarser grain parallelization approach with the
organization of video frames in GOPs and different GOP process allocation schemes.
A good parallel behavior has been shown in the experiments reported, which were
obtained using a multicore platform. However the developedalgorithms are able to
run on distributed memory architectures since a coarser grain parallelization has been
used. We have presented results using the different modes proposed by the reference
software, analyzing its performance. After implementing the algorithms in the HEVC
software some experiments were performed showing interesting results as (a) GOP

Algorithms 1 Proc 2 Proc 4 Proc 8 Proc
Option II-LB-480 frames 31.28 31.24 31.19 31.04
Option III-LB-480 frames 31.28 31.29 31.32 31.37
Option II-LP-480 frames 31.15 31.11 31.05 30.94
Option III-LP-480 frames 31.15 31.16 31.18 31.21
Option II-RA-512 frames 31.92 31.90 31.87 31.80
Option III-RA-512 frames 31.92 31.93 31.94 31.95

Table 1: Luminance PSNRs (dB) for parallel algorithms.

14



(a) Bit rate. (b) PSNR.

Figure 13: Bit rate and PSNR for Option V algorithm varying theGOPBLOCK size
for LP mode.

(a) Bit rate. (b) PSNR.

Figure 14: Bit rate and PSNR for Option V algorithm varying theGOPBLOCK size
for RA mode.

organization determines the final coding performance, being the best approach the
Option IV (AI mode) algorithm when comparing both sequential and parallel versions
in terms of speed-up/efficiency; (b) although the Option IIIalgorithm introduces a bit-
rate overhead as the number of processes increases, the overall parallel performance
and the improvements in PSNR make it a good approach when LB, LPor RA coding
modes are demanded; and (c) the Option V algorithm offers similar features than Op-
tion III with the improvement to be able to update the bitstream during encoding pro-
cess with data obtained from all processes, not just from theroot process.In general,
all proposed versions attain high parallel efficiency results, showing that GOP-based
parallelization approaches should be taken into account toreduce the HEVC video
encoding complexity. As future work, we will explore hierarchical parallelization ap-
proaches combining GOP-based approaches with slice and tile parallelization levels,
which are aimed to exploit the shared memory parallelism rather than the distributed
memory parallelism.

15



Acknowledgements

This research was supported by the Spanish Ministry of Education and Science under
grant TIN2011-27543-C03-03, the Spanish Ministry of Science and Innovation under
grants TIN2011-26254 and TIN2011-15734-E.

References

[1] B. Bross, W. Han, J. Ohm, G. Sullivan, Y.-K. Wang, and T. Wiegand, “High
efficiency video coding (HEVC) text specification draft 10,”Document JCTVC-
L1003 of JCT-VC, Geneva, January 2013.

[2] ITU-T and ISO/IEC JTC 1, “Advanced video coding for generic audiovisual
services,”ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC) version 16, 2012.

[3] J. Ohm, G. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand,“Comparison of
the coding efficiency of video coding standards - including high efficiency video
coding (hevc),”Circuits and Systems for Video Technology, IEEE Transactions
on, vol. 22, no. 12, pp. 1669–1684, 2012.

[4] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC complexity and imple-
mentation analysis,”Circuits and Systems for Video Technology, IEEE Transac-
tions on, vol. 22, no. 12, pp. 1685–1696, 2012.

[5] M. Alvarez-Mesa, C. Chi, B. Juurlink, V. George, and T. Schierl, “Parallel
video decoding in the emerging HEVC standard,” inInternational Conference
on Acoustics, Speech, and Signal Processing, Kyoto, March 2012, pp. 1–17.

[6] E. Ayele and S.B.Dhok, “Review of proposed high efficiency video coding
(HEVC) standard,”International Journal of Computer Applications, vol. 59,
no. 15, pp. 1–9, 2012.

[7] Q. Yu, L. Zhao, and S. Ma, “Parallel AMVP candidate list construction for
HEVC,” in VCIP’12, 2012, pp. 1–6.

[8] J. Jiang, B. Guo, W. Mo, and K. Fan, “Block-based parallel intra prediction
scheme for HEVC,”Journal of Multimedia, vol. 7, no. 4, pp. 289 –294, August
2012.

[9] F. Bossen, “Common test conditions and software referenceconfigurations,”
Joint Collaborative Team on Video Coding, Geneva, Tech. Rep. JCTVC-L1100,
January 2013.

[10] HEVC Reference Software, https://hevc.hhi.fraunhofer.de/svn/svnHEVCSoftware/
tags/HM-10.0/.

16



[11] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary arith-
metic coding in the H.264/AVC video compression standard,”Circuits and Sys-
tems for Video Technology, IEEE Transactions on, vol. 13, no. 7, pp. 620–636,
2003.

[12] “Openmp application program interface, version 3.1,”OpenMP Architecture Re-
view Board. http://www.openmp.org, 2011.

17


