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ABSTRACT 
It is well known that PSNR does not always rank quality of an 
image or video sequence in the same way that a human being. 
There are many other factors considered by the human visual 
system and the brain. So, a lot of efforts were required to find an 
objective video quality metric that is able to measure the quality 
distortion similarly to the one perceived by the destination user. 
We analyze the behaviour of some of the most relevant objective 
quality metrics when they are applied to video compressed by a 
H264/AVC codec at different bit-rates and with error resilience 
options enabled. Video data is transmitted in a wireless MANET 
environment and packet losses are modelled for different 
scenarios including variable congestion and mobility states. We 
take as reference the PSNR metric and try to find out if there is a 
more accurate metric in terms of human quality perception that 
could substitute PSNR in the performance evaluation of different 
coding proposals under packet loss scenarios. 

Categories and Subject Descriptors 
C.2.1 [Network Architecture and Design]: Wireless 
communication; G.3 [Probability and statistics]: Markov 
processes; I.4 [Image processing and computer vision]: 
Compression (coding), Feature Measurements.  

General Terms 
Algorithms, Measurement, Performance,  

Keywords 
Quality Assessment Metrics, Wireless Ad-hoc Networks, Markov 
Models, Video Compression, Error Resilience 

1. INTRODUCTION 
The most reliable way of assessing the quality of a video is 
subjective evaluation. The Mean Opinion Score (MOS), is a 
subjective quality metric obtained from a panel of human 
observers. It has been regarded for many years as the most 
reliable form of quality measurement technique. However, this 

method is too cumbersome, slow and expensive for most 
applications. Objective quality metrics provide video designers 
with means for making meaningful quality evaluations without 
convening viewer panels. 

There is a consensus on a primer classification of objective 
quality metrics [16] attending to the availability of original non-
distorted info (video reference) to measure the quality degradation 
of an available distorted version. Full Reference (FR) metrics 
perform the distortion measure having full access to the original 
image/video. No Reference (NR) metrics have no access to 
reference image/video estimating distortion only from the 
distorted version. And finally, Reduced Reference (RR) metrics 
work with some information about the original video to perform 
quality measurements. The most widely used FR objective video 
quality metrics are Mean Square Error (MSE) and PSNR. They 
are simple and quick to calculate, providing a good way to 
evaluate the video quality [3]. However, these metrics do not 
always capture the distortion perceived by the Human Visual 
System (HVS). In the last years, new objective image and video 
quality metrics have been proposed, mostly for FR/RR Quality 
Assessment (QA). They emulate human perception of video 
quality since they produce results which are very similar to those 
obtained from subjective methods.  

We are going to evaluate different available objective quality 
metrics. The main goal is to find candidates that replace the 
classical PSNR metric to better assess the reconstructed video 
quality of encoded streams that were delivered through error 
prone networks, like MANETs (Mobile Ad-Hoc NETworks). For 
that purpose, we have used the H.264/AVC video coder to 
produce bitstreams at different bitrates and a HMM model that 
accurately reproduce packet loss patterns in MANET networks. 
Then, we perform a bitstream erasure process based on the lost 
patterns suggested by the HMM model at different MANET 
scenarios. The resulting packet streams are delivered to de 
H.264/AVC decoder in order to get the resulting Hypothetical 
Reference Circuits (HRC) that will be used to compare the QA 
results from the different objective quality metrics under study.  

The organization of the paper is as follows: In the next section we 
will describe the main frameworks defined around objective QA 
metrics. In section 3, we describe the HMM Model for packet loss 
patterns in MANETS. In section 4, the models and methods used 
for metric comparison are explained. Section 5 analyzes the 
behaviour of the different metrics under the selected scenarios. 
And finally in section 6 some conclusions are given. 
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2. OBJECTIVE QUALITY METRICS 
Different frameworks have been proposed in the literature that 
group QA metrics depending on the way they are designed. We 
briefly describe ideas behind the proposed frameworks.  

2.1 Error Sensitivity  
The Error Sensitivity framework (ESF) cover all metrics that were 
designed taking into account different models based on the 
current knowledge of the HVS. Generally, the emulation of HVS 
is a bottom-up approach that begins with the first retina 
processing steps followed with different models about the visual 
cortex behaviour. Also, some metrics deal with cognitive issues 
about the human visual processing system. Usually the HVS 
models first decompose the input signal into spatio-temporal 
subbands in both the reference and distorted signal. Then, an error 
normalization and weighting process is carried out to obtain the 
estimated degradation measure [5,6,8,15,24].  

2.2 Structural Distortion/Similarity  
The Structural Distortion Framework (SDF) is focused on a top-
down approach, analyzing the HVS to emulate it at a higher 
abstraction level. Authors supporting this framework argument 
that the main function of the human eyes is to extract structural 
information from the viewing field, being the HVS highly adapted 
for this purpose. Therefore, a measurement of structural distortion 
should be a good approximation to perceived distortion [16-20]. 

2.3 Statistics of natural images 
This framework is related with the statistical behaviour of natural 
images and we will refer to it as Statistics of Natural Images 
Framework (SNI). Here, a natural image/video is defined as those 
captured with high quality devices working in the visual spectrum 
(natural scenes). Authors supporting this framework argument 
that the HVS has evolved with the statistical patterns (spatial and 
temporal) found in the signals captured form the visual field. 
Also, they state that these statistical patterns of natural scenes 
have modulated the biological system, adapting the different 
processing layers to these statistics. So, the metrics defined under 
this framework will extract the information from a visual input 
signal in the form of statistical information [10,11,13,21]. 

3. HMM MODEL FOR PACKET LOSSES 
PATTERNS IN MANETS NETWORKS 
The IEEE 802.11 standard for wireless LANs defines several 
mechanisms for reliable packet transmission in noisy wireless 
channels. Since all data is protected with a CRC field, it is 
unlikely that a corrupted packet gets to the destination, even if 
using an unacknowledged service, like with broadcast or multicast 
traffic. We can therefore assume that either the whole packet is 
received or nothing at all is received. In a previous work [1] we 
found that routing related losses can provoke quite large packet 
loss bursts in MANET environments.  
We assume that stations belonging to the MANET are found in 
different routing states (e.g. route available, route discovery, re-
routing, etc.). Anyway, independently of the routing state, packet 
losses can occur for a variety of other reasons (collisions, channel 
noise, queue dropping, etc.). Therefore, an outside observer 
cannot relate a packet loss with a certain routing state. We deal 
with a situation where the observation is a probabilistic function 

of the state, that is, only the output of the system and not the state 
transitions are visible to an observer. We will therefore try to 
solve the classification problem using a hidden Markov model [9]. 
HMMs are well known for their effectiveness in modeling bursty 
behavior, relatively easy configuration, quick execution times 
achieved and general application. So, we consider that they fit our 
purpose of accelerating the evaluation of QA metrics for video 
delivery applications on MANET scenarios, while offering 
similar results as with simulation or real-life testbeds. 

3.1 General methodology 
Relatively to the methodology proposed in our previous work [2] 
we start selecting a single data stream for analysis, as well as the 
criteria for considering a packet good or unusable by the 
application. We then have to map each packet sequence number 
with values 1 - considering the packet good - or 0 if the packet 
does not arrive to destination or does not meet any of the chosen 
criteria. This output mapping is stored in a trace file named ST, 
that will be parsed to obtain the distributions of consecutive 
packets arriving (CPA) and consecutive packets lost (CPL) stored 
respectively in trace files C1 and C0. We then use the latter two to 
tune the proposed HMMs. 
In a HMM, the number of states is not defined by the possible 
output events. So, in [2], the study was focused in defining a very 
simple 2-state model: one of the states models a currently broken 
path and the other models path availability where the probability 
for a packet to reach destination is given by function h(s), being s 
is the packet size. This function models packet losses mostly due 
to collisions, but also due to channel noise, packet fragmentation, 
buffers overflow, and the type of MAC used. 
However, as it was proven in the aforementioned work, the 
accuracy of the two-state HMM model was not satisfactory 
enough for certain MANET routing protocols, like DSR and other 
reactive routing protocols, and so a three-state model was 
proposed where the routing behavior was better represented, 
increasing the accuracy of the model. In our experiments we did 
not have to use more than three states, showing that the model 
complexity can be kept low and still provide the desired behavior. 

3.2 Three-state HMM packet loss burst model 
In this section we present the HMM that is able to model large 
packet lost bursts in mobile ad hoc networking scenarios based on 
reactive routing protocols (like DSR). As shown in Figure 1, 
states L and R represent those situations where a path towards the 
destination is lost and no packet can arrive successfully.  

 
Figure 1: Three-state Markov chain for packet loss burst 

model in MANETs 
In those situations, state L models short path breakages, mainly 
due to transient congestion on the path to destination and 
interference errors, and state R models the route discovery 
process which is triggered to find out a new path to the 
destination just after declaring the current path lost.  
The state F represents the situation when packets correctly arrive 
to destination, with a probability defined by function h(s), where s 



is the packet size. In states L and R all packets are lost. Mapping 
state L as 0, state F as 1, and state R as 2, we obtain the following 
transition probability matrix: 
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Then, using the ns-2 network simulation tool, we define the 
network scenario we are going to model (number of nodes, 
working area, mobility and traffic patterns, network architecture 
model parameters, etc.) and obtain the trace file ST as mentioned 
in previous subsection. With this simulation trace we will be able 
to tune our model and obtain and estimation of the model 
parameters that will represent the 
desired MANET scenario. For more details about this process and 
the validation of the model, please refer to [2].  
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4. EVALUATION OF QUALITY METRICS 
4.1 HMM model description and methods 
We will use the three-state model presented in previous section. 
The MANET network scenario is composed of 50 nodes moving 
in an 870x870 square meters area. Node mobility is based on the 
random way-point model, and speed is fixed constant at 4 m/s. 
The routing protocol used is DSR. Every node is equipped with 
an IEEE 802.11g/e enabled interface, transmitting at the 
maximum rate of 54 Mbit/s up to a range of 250 meters. Notice 
that a QoS differentiated service is provided by IEEE 802.11e [4]. 
Concerning traffic, we have six sources of background traffic 
transmitting FTP/TCP traffic in the Best Effort MAC Access 
Category throughout the entire simulation time (runs of 300 
seconds long). The foreground traffic will be composed with real 
traces of an H.264 video encoded (using the Foreman CIF video 
test sequence) at a target data rate of 1 Mbit/s. The video source is 
mapped to the Video MAC Access Category. 
We describe two scenario classes: (a) congestion related 
scenarios, and (b) mobility related scenarios. The first class is 
composed of 6 scenarios (from M1 to M6) with 1 to 6 video 
sources (increasing levels of congestion are represented with this 
class). The second class is composed of 3 scenarios (S1 to S3) 
with only one video source but with increasing degrees of 
mobility (from 1 to 4 m/s).  
We obtain losses of less than 7 consecutives packets (isolated 
burst), losses of several small packets (consecutive small burst) 
and large packet bursts (large bursts) with even more than 1000 
losses. We have used the Foreman CIF seq. (300 frames at 30 fps) 
to build an extended sequence by repeating the original up to the 
desired frame number.  
We have use the H264/AVC codec, properly setting the error 
resilience and concealment options, so that the decoder is able to 
reconstruct sequences even with such amount of packets lost. 
Codec produces one I frame every 30 P frames, with no B frames. 
Encoder is set to get 7 slices per frame, forcing the decoder to put 
each slice into a separate packet and to generate its output in RTP 
packet format. We force 1/3 of the macroblocks of each frame to 
be encode in intra mode. These error resilience parameters where 
proposed for MANET network scenarios in [1] as an appropriate 
error resilience configuration.  
We get a RTP bitstream for each extended sequence. We applied 
them the packet loss patterns obtained through the model 

eliminating the lost packets from, getting a ‘filtered bitstream’. 
This process simulates packet losses in the MANET scenarios. 
The ‘filtered bitstream’ will be the input to the decoder. 
The decoder behaviour varies with the packet loss burst type. For 
isolated bursts the decoder applies error concealment to repair the 
frames affected by the burst. With consecutive bursts error 
resilience is used to repair the affected frames. Quality decreases 
when losses occur, increasing slowly with time by the use of the 
intra coded macroblocks until the next I frame completely cancels 
error. When the decoder faces large bursts it will stop decoding 
and wait until new packets arrives. This produces a shorter 
bitstream in the decoder than the produced by the encoder. 
Therefore both bitstreams are not directly comparable. A more 
realistic behaviour would be to freeze the last completely decoded 
frame until the loss bursts ends, and with the new incoming 
packets try to reconstruct the frame progressively  So, the 
observer will see a frozen frame and not a jump in the sequence.  
We post processed the decoded bitstream in order to achieve the 
same length than the encoded one by repeating the last decoded 
frame as many times as lost frames are produced by the burst.  

4.2 Metrics comparison 
Once we have the original and the decoded sequences we are able 
to run the Quality Assessment Metrics against them. This run will 
produce two set of quality: the objective quality values of the 
metric and the rescaled values in DMOS. We will enumerate the 
evaluated metrics:  
Mean Structural SIMilarity index (MSSIM )  [22] a FR-Image 
metric from the SDF. Visual Information Fidelity (VIF ) measure 
[12] located in the SNI framework, a FR-Image metric. No-
Reference JPEG Quality Score (NRJPEGQS ) [24] a NR-Image 
metric designed specifically for JPEG compressed images. No-
Reference JPEG2000 Quality Assessment (NRJPEG2000 ) [19] a 
NR-metric that use Natural Scene Statistics models. Reduced-
Reference Image Quality Assessment (RRIQA) [21] RR-metric 
based on a Natural Image Statistic model. PSNR-DMOSp, the 
traditional PSNR in the predicted DMOS space (see [7]), that we 
call PSNR-DMOSp. 
In [7] authors concluded that the PSNR-DMOSp metric can be 
taken as the ‘subjective’ counterpart of the traditional PSNR in a 
DMOS scale. In this scale PSNR-DMOSp models correctly the 
effect of the saturation of quality in both ends. When the quality 
is quite good, higher values of PSNR are not visually perceptible; 
on the other end, when quality is too bad, it is difficult to decide 
whether a frame with lower PSNR value is worse than the former. 
This effect is correctly scored by all the evaluated metrics. 
As explained in [7] each metric runs its code producing an 
objective quality value for each frame. This value is measured in 
its own scale. So we can not compare them directly. In order to 
compare the metrics we have to rescale their objective quality 
values to the common DMOS scale. For scale conversion we use 
the equation 1 of [7] with the corresponding parameters as 
explained in the referred paper. The goodness of each metric 
depends on how well the metric follows the quality values in 
subjective experiments. The metric which offered better 
adjustments to human subjective quality scores, according to the 
experiments in [7] was VIF and the worst was PSNR-DMOSp. In 
the DMOSp scale (linear scale) quality increases as the value of 
DMOSp decreases. So, higher quality scores have lower DMOSp 



values. As pointed out in [7] noticeable differences correspond to 
at least 4.91 DMOSp points. 
The FR metrics take as input both the original sequence and the 
reconstructed one for scoring quality. NR metrics score quality 
only with the information available on the reconstructed 
sequence. RR metrics do the job in two steps: (a) they first extract 
some relevant information from the original frame, and then (b) 
this information will be compared with the same type of 
information extracted from the reconstructed frame.  
In Figure 3 we can observe that the behaviour of the metrics is 
quite different between them. This behaviour is what we have to 
analyze in order to find, if any, if there is a metric that could 
substitute the traditional PSNR metric for evaluate performance of 
codecs under packet losses scenarios.  

5. Analyzing the metrics behaviour 
After running the metrics over the testing sequence we obtain the 
objective quality values and the DMOSp values. In Figure 2 for 
model M2, we can see the objective quality value of the 
traditional PSNR in dB at three different compression levels (Low 
compression Qp=26, Medium compression Qp=36 and High 
compression Qp=44) for large packet loss bursts. We observe the 
evolution of quality during the burst duration.  
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Figure 2. PSNR comparison at different compression levels 

for a wide burst of lost packets 
Quality drops drastically with the first frame affected by the burst, 
and decrease even more as the differences of the frozen frame 
towards the original frame (where movement continues) 
increases. Differences with the original frame vary depending on 
the similitude with the reconstructed frame. Nearly at the middle 
of the burst an additional drop of quality can be observed. It 
corresponds with a scene change, that is, with the beginning of a 
new cycle of the foreman sequence, producing a drastically scene 
change that makes differences even higher. When the burst ends, 
quality rapidly increases with the arriving of packets belonging to 
a new frame that can be compared with its corresponding original 
one. As shown in Figure 2, at the scene change, the traditional 
PSNR scores the additional differences with even worse PSNR 
values arriving even up to 10-15 dBs where perception of quality 
changes at these levels is quite difficult. 
What the observer really sees during this large burst is a frozen 
frame, with more or less quality depending of the compression 
level. If some quality metric takes only into account the quality of 
this frozen frame and not the differences with the original 
changing one, the effect of the burst in the scene would go 
unnoticed for this metric, and then the average quality of the 
sequence would be the same as with no packet lost bursts. For 

evaluating the quality of packet loss scenarios in MANET 
networks the chosen metric must have a drop of quality in these 
cases. This can only be achieved by comparing with the original 
changing frame during the duration of these large bursts. 

 
Figure 3. Metric comparison for a wide burst in DMOSp 

 
Figure 4. Packets arriving after a wide burst 

Figure 3 shows the evolution of the metrics during a large burst, 
the same burst as in Figure 2 but in the DMOSp space. There is a 
panel for each compression level. We observe some interesting 
effects. 
The NR metrics, do not detect the presence of a frozen frame as 
expected. Variations in quality for these metrics can be scored 
only when the packet loss burst affect partially to the frozen 
frame producing impairments on it, as in the two right pictures of 
Figure 4. When the large burst ends, packets belonging to perhaps 
P type frames begin to arrive. Then the decoder represents, only 



the intra coded macroblocks belonging to these packets, over the 
last correctly decoded frame (the same that we have frozen). The 
whole frame will be progressively drawn and quality increases in 
the same manner. In Figure 3 this happens around frame 2521 
where the NR metrics reacts to and score down quality, while the 
FR metrics begin to increase its quality score. When the frame is 
fully reconstructed then the NR metrics follows again the scored 
quality for the compression level like the FR metrics. The 
NRJPEGQS metric reacts better (higher quality differences) than 
the NRJPEG2000 because it is designed for detecting blockiness 
introduced by the discrete cosine transform. 
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Figure 5. Metric comparison for consecutive short bursts 

 
Figure 6. Decoded frames between two consecutive bursts 

In Figure 4 (from left to right) the first picture corresponds to the 
original frame and the rest of the pictures correspond to 
reconstructed frames. The second picture corresponds to the last 
frozen frame of the burst. The third and fourth pictures 
correspond to the firs frames after the large burst where can be 
observe how the decoder represents progressively the intra 
macroblocks as they arrive in the incoming packets. In these 
frames occurs the mentioned reaction of the NR metrics.  
Looking again to Figure 3 we see that the DMOSp value before 
the burst and after it, increases as the compression does (different 
panels) for all metrics (more compression lower quality), except 
for metric NRJPEGQS that can not detect as good as the rest of 
the metrics (included the other NR metric) the blur effect 
introduced by the encoder. The RRIQA metric shows high 
variability in its scores between consecutive frames. These 
variations are higher inside the large burst and as the compression 
decreases. Outside the burst the variations are closer to the 
noticeable differences in the DMOSp scale, but in any case its 
behaviour differs too much from the homogeneous scoring of the 
FR metrics. Besides, the RRIQA do not recover the quality scored 
before the burst, except for the lower compression scenario. 
Another interesting behaviour of metrics occurs in periods 
between large bursts, that is, where no frames are lost and where 
no packets are lost. There, differences in DMOSp values between 
metrics increases as compression do.  
MSSIM, VIF and PSNR-DMOSp show a similar behaviour being 
the quality scores almost parallel between them, except in some 

punctual situations. MSSIM and PSNR-DMOSp have closer 
quality scores between them than VIF, which has a better 
adjustment to subjective scores, and therefore could be taken as 
reference between the FR metrics. The drawback as mentioned in 
[7] is its high computational cost in comparison with the other 
two FR metrics, and of course with the PSNR-DMOSp one. 
Another interesting effect present in Figure 3 occurs at the point 
where the scene changes and the foreman sequence begin again. 
There, a change in the quality is only scored clearly by RRIQA 
(not in all compression levels in the same direction) and to a 
lesser extend by PSNR-DMOSp. The rest of the FR metrics seems 
to have achieved its saturation ‘bad quality’ level at this point. 
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 Figure 7. Metric comparison for consecutive short bursts  

 
Figure 8. Packet lost affecting only one frame 

Figure 5 shows the effect of the consecutive short bursts that 
causes the lost of only few frames or part of them. Here we have 
use model M6 and a quantization parameter of Qp=29. We find 
the same effects mentioned for Figure 3. Additionally we notice a 
new effect produced around frame numbers 362 and 363. Frames 
beside these two frames are frozen. The first picture of Figure 6 
(from left to right) represents the original frame, the other two 
frames corresponds to frames 362 and 363. These two frames 
follows in the lower half of the frame correctly the original frame 
and in the upper half only intra macroblocks are rendered. So for 
these two frames we have partially (for the lower half) perfect 
correspondence with the original one, and therefore quality must 
increase at least in some extent. This is only reflected by the VIF 
and MSSIM metrics, even PSNR-DMOSp is not able to catch this 
effect because is computed with the information of the whole 
frame. After frame 363 quality  decreases again  because  the  
next frame is frozen. So, VIF and MSSIM counts two burst where 
PSNR-DMOSp counts only a larger one. 
Figure 7 shows an isolated burst, (model M3, Qp=29). The blur 
impairment introduced by the encoder is perceived by all metrics 
except by the NRJPEGQS. The error concealment mechanisms 
need up to 6 frames to achieve the quality score before the burst. 
Figure 8 shows (from left to right) the original frame and two 
subsequent pictures where the effect of the lost packets is quite 
good concealed.  
Figure 9 presents only the quality variation produced by the 
packet loss without the variation introduced by compression. Only 
during the burst duration we get variation in quality. RR and NR 
metrics scores an increment of quality in some regions inside the 



duration of the burst.  In general it is expected that quality will be 
scored worst in some extent when packets are lost. We also see 
how MSSIM and PSNR-DMOSp react to the scene change with a 
higher extent than in Figure 3 because the DMOSp value has not 
reached the saturation value jet. However the VIF metric scores 
uniformly during the whole burst. 
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Figure 9. Metric comparison for a wide burst in DMOSp with 

no compression effect 

6. CONCLUSIONS 
We have analyzed the behaviour of different QA metrics when 
measuring reconstructed video quality sequences encoded and 
delivered through error prone wireless networks, like MANETs. 
The analysis results are the following ones: (1) NR metrics are not 
able to proper detect and measure the sharp quality loss due to the 
lost of several consecutive frames.(2) The RR metric has a non 
deterministic behaviour under the presence of packet losses, 
having difficulties to identify and measure this effect when the 
video is encoded with moderate to high compression rates. (3) 
The other metrics, SSIM, PSNR-DMOSp and VIF show a similar 
behaviour in all cases, as expected. Although they exhibit slight 
differences, we propose the MSSIM metric as a trade-off between 
a high quality measurement process (near human visual 
perception) and its computational cost. 
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