
Paper 29

© Civil-Comp Press, 2019
Proceedings of the Sixth International Conference on
Parallel, Distributed, GPU and Cloud Computing for Engineering,
P. Iványi and B.H.V Topping (Editors)
Civil-Comp Press, Stirlingshire, Scotland

Evaluation of FPGA-based motion estimation module
for HEVC video coding standard

O. LÓPEZ1, R. GUTIERREZ 1, E. ALCOCER1, V. GALIANO 1, H. MIGALLON 1, G. VAN
WALLENDAEL 2, M.P. MALUMBRES 1

1Miguel Hernández University, Spain
2Multimedia Lab Ghent University, Belgium

Abstract

Motion estimation is one of the most complex task of HEVC video encoder, requiring most of
the encoding time mainly due to (a) a large set of Coding Tree Unit partitioning modes, (b) the
presence of multiple reference frames, and (c) the varying size of Coding Units in comparison
with its predecessor H264/AVC. Besides, HEVC uses VariableBlock Size Motion Estimation
to obtain advanced coding efficiency. In this work, we designand evaluate a hardware IME
design when applied to a particular System-On-Chip platform, taking into account the impact
on the Rate/Distortion performance when applying different CTU sizes and the effect of the
DMA transfers in the CTU encoding time.

Results show that the overall video encoding time could be reduced a 77% when using our
hardware IME module, being this kind of accelerators an interesting cost effective solution to
speed-up last generation video encoders.

Keywords: HEVC, FPGA, video coding, motion estimation, special purpose hardware

1 Introduction

The High Efficiency Video Coding (HEVC) standard [1] was launched on January 2013 by
the Joint Collaborative Team on Video Coding (JCT-VC) in order to replace the previous
H.264/AVC [2] standard with the intention to overcome with nowadays and future multimedia
market trends like 4K and 8K definition video content and highquality color depth at 10 bit.
HEVC improves the coding efficiency over its predecessor (H.264/AVC) by a factor of almost
twice for an equivalent visual quality [3].

Regarding complexity, HEVC encoder is several times more complex than the H.264/AVC
encoder [4]. As in previous video standards, Motion Estimation (ME) is the most complex
task of encoder, requiring more than 90% of the encoding time[5]. In HEVC, ME is even
more complex due to several issues such as the use of a large set of Coding Tree Unit (CTU)
partitioning modes and the presence of multiple reference frames in comparison with previ-
ous H264/AVC video coding standard. Besides, HEVC adopts Variable Block Size Motion

1



Estimation (VBSME) to obtain advanced coding efficiency, but it comes at the expense of an
increment in the computational complexity.

Several hardware architectures has been proposed in the literature in order to speed up
the HEVC ME module to reduce the overall encoder complexity.The Integer-pel Motion
Estimation (IME) block is in charge of motion estimation andin most of the state-of-the-art
proposals, the IME hardware architectures are only focusedon the motion search algorithm
since it takes most of the computational time of the IME block. Usually, the most used motion
search algorithm in hardware implementations is the Full Search (FS) algorithm. It searches at
all points of the established search area of a reference frame, and, as a consequence, it is able
to provide an optimal result, obtaining a vector that minimizes the residual error of the current
CTU prediction).

Authors in [5–9] present an IME hardware block using FS strategy. In [5], a Sum of Abso-
lute Differences (SAD) unit on a Field-Programmable Gate Array (FPGA) is proposed, being
able to test all partition modes of a CTU except the set of asymmetric partition modes. Authors
fixed a search area size lower than the one established by the HEVC standard, being able to
run as fast as 30 fps at 2k video resolutions. In the hardware module presented in [7], the max-
imum CTU size is reduced to 32x32 with a search area size of±23 pixels. This architecture
is implemented on an FPGA device and achieves 30 fps at 1080p video resolutions. In [8],
different search areas are studied, achieving a maximum frame rate of 57 fps for a 720p video
resolution.

In a previous work [10], authors presented a new hardware architecture that performs IME
computation using FPGA technology, which is based in two innovative techniques: The first
one is a new SAD adder tree structure, and the second one is a new memory scan order. This
proposal is able to achieve encoding frame rates up to 116 fpsand 30 fps at 2K and 4K video
resolutions, respectively. The new SAD adder tree structure performs the additions at the first
level of the CTU quad tree, starting from the maximum size of the CTU, and halving the
amount of additions at the next quad tree levels. This approach is different from the rest of
state-of-the-art approaches where usually the CTU is first divided into smaller blocks for con-
secutive accumulations, keeping the same additions in eachstep and thus requiring a higher
number of steps to acquire all SADs. With that new proposal, authors took advantage of the
resources provided by the FPGA, obtaining the minimum possible latency when calculating
SADs of all levels and partitions for a CTU. In this manner, SADs that corresponds to asym-
metric partitions are obtained in a fast and efficient way. With respect to the second innovative
technique, the new memory scan order, a series of reconfigurable shift registers and process-
ing elements are responsible for storing the necessary pixels of both reference and current
frames, keeping them always available to calculate both theSADs and Motion Vectors (MVs)
of a CTU. In this way, authors avoid external memory accessessince available data are highly
reused by reconfiguring the displacement in an efficient way.

In this work, we implemented and evaluate the IME design presented in [10] when applied
to a specific evaluation board. We have slightly modified the design to adapt it to the selected
board to finally provide three implementations: (a) one unitworking with a maximum CTU
size of 32x32 pixels (CTU32), (b) four CTU32 units working in parallel, and (c) one unit
working with a maximum CTU size of 64x64 pixels (CTU64). All of them have fixed the
motion search area size to the one proposed in the standard. We have evaluated the three
versions, studying the hardware resources required, clockfrequency operation, the end-to-end
delay chain of the hardware modules (Input DMA transfer, motion estimation computation

2



and output DMA transfer), and the R/D performance of hardware proposals with respect the
software ones.

The rest of the paper is organized as follows. Section 2 presents a brief overview of the
architecture design while in Section 3, numerical experiments analyzing the results of our
hardware design over an evaluation board are presented. Finally, in Section 4 some conclu-
sions and future work are drawn.

2 Hardware Architecture Description

In this section, we present a brief overview of a complete IMEdesign in a System-On-Chip
(SoC) platform that consist of two well-defined parts, a Processing System (PS) based on
an ARM processor and several hard peripherals like Ethernet, USB, etc., and a FPGA Pro-
grammable Logic (PL). Our architecture has been modeled in VHDL, and it has been synthe-
sized, simulated, implemented, and tested on the Xilinx SoC, Zynq-7 Mini-ITX Motherboard
XC7Z100 (xc7z100ffg900-2). The correctness of our design was tested and verified with the
HEVC HM 14 reference model [11].

In the proposed architecture, ARM processor manages the transfer between the IME SAD
module and a Double Data Rate (DDR) memory which stores both reference and current
frames, by a Direct Memory Access (DMA) module. ARM processor works at 666.66 MHz,
and the DDR at 533.33 MHz, whereas the clock frequency of the PL is restricted by the max-
imum frequency of the SAD HEVC module which is the responsible for the IME calculation.

Regarding the IME process, each video frame is subdivided and partitioned into basic cod-
ing units called CTUs. The coding structure in HEVC consistsof CUs with a maximum size of
64x64 pixels, as large as that of CTUs (Coding Tree Units), which can be recursively divided
in picture squares until achieving a block size of 8x8 pixels. Each coding unit (CU) consists of
Prediction Units (PUs) whose size can vary from the maximum size of the CU to 4x8 or 8x4
for Inter prediction, supporting 8 partitioning modes [12]. In our proposal, the SAD HEVC
module responsible for IME calculation can be configured to work with CTU sizes of 64x64
and 32x32. In the case of 64x64 CTU size, the PL can work at 200 MHz whereas with a 32x32
CTU size the PL clock frequency was restricted by the evaluation board used, 250 MHz, al-
though the module could work at a maximum frequency of 333 MHz. Therefore the maximum
frequency is limited to 200MHz.

Our SAD HEVC module consists of (a) internal memory areas to allocate CU pixels of
current frame and the pixels belonging to the search area in the reference frame, (b) a distortion
block where pixels belonging to both CUs are subtracted, (c)a Sum of Absolute Difference
(SAD) adder tree block, and (e) an accumulative comparator block that saves the minimum
SAD values and its corresponding MVs for all CU partitions, as shown in Figure 1. For more
details of this module, see [10].

In Table 1, we show the hardware resources used to implement our SAD HEVC module
for maximum CTU sizes of 64x64 and 32x32, respectively, on a Zynq-7 Mini-ITX Mother-
board XC7Z100 FPGA. As shown, our SAD HEVC module requires a 56.5% and 15.3% of
the total used area for CTU64 and CTU32 implementations, respectively. Furthermore, the
4xCTU 32 implementation is able to compute 4 CTUs of 32x32 at the same time using 59.7%
of the available area.

3



SAD HEVC 

Module
Internal

BRAMs

Shift

Registers

Distortion

Input

Memory

Snake 

ScanReference 

search area
Current

CTU

SAD Adder

Tree

Comparator
Output Minimum SADs

& Optimal MVs

Figure 1: Hardware SAD HEVC module

Table 1: Utilization resources on Mini-ITX
Resources CTU64 CTU 32 4xCTU32 Available
LUTs 156880 42405 165700 277400
Flip-flops 180249 50466 190240 554800
Block-RAMs 41,5 25,5 102 755

3 Numerical experiments

Motion estimation is a task integrated in the Inter Prediction module of the HEVC encoder.
We have considered the Low Delay P (LD-P) coding mode in our evaluation test. In LD-P
coding mode, the first picture is encoded as an intra-picture, whereas the following pictures
are encoded as generalized unidirectional pictures (inter). This coding structure is the most
popular for video conferencing, designed for interactive real-time communication.

Given the previous configuration, we have performed severalexperiments of the HEVC
IME in order to observe how the CTU size impact on the R/D performance and coding com-
plexity of the HEVC encoder. We have chosen CTU sizes of 64x64and 32x32, and their corre-
sponding Search Range (SR) sizes as 100% of the CTU size. In addition, four video sequences
from the HEVC common conditions video set were selected: RaceHorses (832x480-30 fps),
ParkScene (1920x1080-24 fps), Traffic (2560x1600-30 fps) and PeopleOnStreet (2560x1600-
30 fps). In order to perform these tests, we have used the HEVCHM 14 reference model [11].
The HEVC reference software was compiled with Visual Studio2010 and run over a PC plat-
form with an Intel Core i7-6800K CPU 3.40GHz with 16GB RAM.

First of all, we have analyzed the impact of the CTU size on theR/D performance using
the Bjontegaard metric (BD-rate) [13]. So as to obtain the BD-rate we have compressed all
tested video sequences at four compression levels (QP values): 22, 27, 32, and 37. The R/D
curve used as reference will be the one obtained with the HEVCreference software using a
64x64 CTU size. As can be seen in Table 2 better performance isobtained when using CTUs
of 64x64 size. The use of lower CTU sizes has a penalty in R/D ofup to 4.3% of BD-rate,
being more noticeable for higher resolution video sequences.

4



Table 2: % BD-Rate comparison between CTU sizes of 64x64 and 32x32
Video Sequence % BD-Rate
RaceHorses 2.4
ParkScene 3.8
PeopleOnStreet 3.7
Traffic 4.3

0

5

10

15

20

25

30

RaceHorses ParkScene People Traffic

T
im

e
 (

h
.)

CTU 64

CTU 32

Figure 2: Encoding time (30 frames) using both CTU sizes 64x64 and 32x32 for all tested
video sequences.

After the R/D evaluation, we will measure the impact of CTU size in the encoding time. In
Figure 2 we show the total time required to encode 30 frames (1second) at a QP 37 of all tested
video sequences using CTU sizes of 64x64 and 32x32. As shown,the total encoding time
when the maximum CTU size is set to 64x64 is more than 4 times than the time required for the
case of 32x32 CTU size, requiring more than 22 hours to compress a 4k video sequence. Also,
in Figure 3, we show the percentage of the overall encoding time that was spent by HEVC
reference software using the FS algorithm to perform the ME,when the R/D optimization is
disabled. Depending on both the maximum CTU size and the quantization parameter (QP),
the percentage of time spent by the ME process ranges from 85%to 97.8% in our tests. Those
results agree with the ones obtained in [5]. As expected, theencoder spends more time in the
IME module when the CTU size is higher. Therefore, a hardwaredesign performing the IME
computation in a fast and accurate way makes sense in order toreduce the overall encoding
time as much as possible.

In order to evaluate the impact of the inclusion of our hardware IME proposal in the HEVC,
we have measured the number of cycles required for a) transferring both current CTU and its
reference window, b) IME processing and c) transferring SADs and motion vectors (MVs) of
all PUs. In Table 3 we show the number of cycles required to perform the IME process for
a given CTU, where, as previously said, all SADs and MVs of allprediction units including
asymmetric partitions are calculated at the same time. So, the time required to process one
CTU, will be the time required to transfer the CTU and the search area, the processing time
required by our HEVC SAD module, and the time required to return the processing results.
As shown, the most part of the CTU coding time corresponds to the DMA transfer of both the
CTU and the corresponding search window of the reference frame form the DDR memory to

5



50

55

60

65

70

75

80

85

90

95

100

RaceHorses ParkScene People Traffic

%
 T

im
e

CTU 32

CTU 64

Figure 3: Percentage of SW reference encoding time requiredfor SAD module with a Full-
Search strategy.

the internal memory of the hardware IME. In Table 3 we can see the total time required by our
hardware IME module to perform the motion estimation process of a given CTU. Considering
those times, the hardware IME module is able to process 13959CTUs per second in the 32x32
size case and 3264 in the 64x64 size case running at 200MHz.

Table 3: Required cycles and time for the hardware IME
DMA DMA SADs and MVs Total Total Time (ms)
send receive computing cycles at 200MHz

CTU 32 10069 151 4139 14359 0.07179
CTU 64 44276 605 16400 61281 0.30640

Table 4: Reference frames used in a GOP
Frame 1 -1 -5 -9 -13
Frame 2 -1 -2 -6 -10
Frame 3 -1 -3 -7 -11
Frame 4 -1 -4 -8 -12

As stated before, in LD-P coding mode, the first frame is encoded as an I-frame and the rest
of frames are encoded as P frames. P frames perform the motionestimation using previous
encoded and decoded pictures as reference frames. In HEVC, Pframes can use multiple
reference frames. In this paper, a group of pictures (GOP) consists of four P frames where
each one can use up to four reference frames. In Table 4 we showthe references used by
each P frame. At the beginning of encoding a video sequence, the first P frame has only one
available reference, the I frame (relative picture order is-1). Second, third and fourth P frames
will use two reference frames. However, after encoding several GOPs, P frames inside that
GOPs will use four reference frames. As previously mentioned, the times shown in Table 3, are
the ones required to perform the motion estimation of one CTUover one reference frame. So,
when multiple reference frames are available, that motion estimation process must be repeated
for the different reference frames, reducing up to 4 times the number of CTUs per second that
can be computed if four reference frames are used.

6



Table 5: Frames per second computed by hardware IME at 200 MHz
video CTU 32 4xCTU 32 CTU 64

resolution CTUs fps fps CTUs fps
832x480 390 8.93 35.71 104 7.85
1920x1080 2040 1.70 6.83 510 1.60
2560x1600 4000 0.87 3.48 1000 0.82

In order to deal with that situation, we have developed a SAD HEVC module containing 4
CTU 32 modules, each one with each own DMA channel, which is able to compute 4 CTUs
of 32x32 at the same time. Performing the motion estimation over the four reference frames
at the same time will reduce the encoding time a 77% on average. Table 5 shows the number
of frames per second (fps) that can be computed for differentresolution video sequences if
our IME module were used. Also shown in Table 5, the number of CTUs per frame to pro-
cess depending on both the video resolution and the CTU size.As can be seen, using the
4xCTU 32 module, we can compute 4 times more fps, reaching real-time encoding for the
lowest resolution video sequence.

4 Conclusion

In this work, we have presented a full hardware IME architecture. We have analyzed how
the CTU size impact on the HEVC performance in terms of Rate/Distortion and processing
time. As shown, there are small differences in R/D, being 4.3% the maximum BD-rate in-
crement when we use a CTU size of 32x32 for higher resolution video sequences. Regarding
complexity, CTU size have a noticeable impact over the totalencoding time, being the faster
configuration the one that uses a 32x32 CTU size. Remark, thatthe ME module requires be-
tween 85% to 97.8% of the total encoding time, so our IME hardware module will significantly
reduce the overall encoding time.

Respect to the evaluation of the hardware IME proposal, we have measured the time re-
quired by DMA transfers as well as the computing time. The results show that up to 13928
and 3263 CTUs per second can be processed for CTU sizes of 32x32 and 64x64, respectively,
working at 200MHz. Also, it can be observed that the system bottleneck resides in the DMA
transfer process, requiring more than 70% of the total processing time of a single CTU.

Furthermore, we have presented a SAD HEVC module for the caseof 32x32 CTU size,
containing 4 IME modules, each one with each own DMA channel.This new module is able
to compute 4 CTUs of 32x32 at the same time. Using this hardware module on a HEVC LD-P
coding mode configuration, we can reduce a 77% on average the total encoding time, because
this module is able to compute the motion estimation for all reference frames at the same time.

As future work, we will reduce the DMA transfer time, reusingpart of the search area for
the IME calculation in contiguous CUs, only transferring the new reference pixels required at
every moment and packing in a 64 bit word eight pixels of the reference search area.

7



Acknowledgment

This research was supported by the Spanish Ministry of Economy and Competitiveness under
Grant TIN2015-66972-C5-4-R co-financed by FEDER funds.

References

[1] B. Bross, W. Han, J. Ohm, G. Sullivan, Y.-K. Wang, and T. Wiegand, “High efficiency
video coding (HEVC) text specification draft 10,”Document JCTVC-L1003 of JCT-VC,
Geneva, January 2013.

[2] ITU-T and ISO/IEC JTC 1, “Advanced video coding for generic audiovisual services,”
ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC) version 16, 2012, 2012.

[3] G. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the high efficiency video
coding (HEVC) standard,”Circuits and systems for Video Technology, IEEE Transac-
tions on, vol. 22, no. 12, pp. 1648 –1667, December 2012.

[4] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC complexity and implementation
analysis,”Circuits and Systems for Video Technology, IEEE Transactions on, vol. 22,
no. 12, pp. 1685–1696, 2012.

[5] A. Medhat, A. Shalaby, M. S. Sayed, and M. Elsabrouty, “A highly parallel sad architec-
ture for motion estimation in hevc encoder,” inIEEE Asia Pacific Conference on Circuits
and Systems (APCCAS’14), Ishigaki, Nov. 2014, pp. 280–283.

[6] J. Byun, Y. Jung, and J. Kim, “Design of integer motion estimator of hevc for asymmetric
motion-partitioning mode and 4k-uhd,”Electronics Letters, vol. 49, no. 18, pp. 1142–
1143, 2013.

[7] X. Yuan, L. Jinsong, G. Liwei, Z. Zhi, and R. K. Teng, “A high performance vlsi archi-
tecture for integer motion estimation in hevc,” inIEEE 10th International Conference on
ASIC (ASICON’13), Shenzhen, Oct. 2013, pp. 1–4.

[8] T. D’huys, “Reconfigurable data flow engine for hevc motion estimation,” inIEEE Inter-
national Conference on Image Processing (ICIP’14), Paris, Oct. 2014, pp. 1223–1227.

[9] A. N. Purnachand Nalluri, Luis Nero Alves, “High speed sad architectures for variable
block size motion estimation in hevc video coding,” inIEEE International Conference
on Image Processing (ICIP’14), Paris, Oct. 2014, pp. 1233–1237.

[10] E. Alcocer, R. Gutierrez, O. Lopez-Granado, and M. P. Malumbres, “Design and
implementation of an efficient hardware integer motion estimator for an hevc video
encoder,”Journal of Real-Time Image Processing, pp. 1–11, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s11554-016-0572-4

[11] HEVC software repository HM–14.0 reference model,
https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-14.0.

8



[12] I. Kim, J. Min, T. Lee, W. Han, and J. Park, “Block partitioning structure in the hevc
standard,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 22,
no. 12, pp. 1697–1706, Dec 2012.

[13] G. Bjøntegaard, “Document vceg-m33: Calculation of average psnr differences between
rd-curves,” ITU-T VCEG Meeting, Austin, Texas, USA, Tech. Rep, Tech. Rep., 2001.

9


