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Abstract. Discrete Wavelet Transform has been widely used in image
compression because it is able to compact frequency and spatial localiza-
tion of image energy into a small fraction of coefficients. In recent years
coefficient sign coding has been used to improve image compression. The
potential correlation between the sign of a coefficient and the signs of its
neighbors opens the possibility to use a sign predictor to improve the im-
age compression process. However, this relationship is not uniform and
constant for any image. Typically, image encoders use entropy coding
to compact the wavelet coefficients information. This work analyzes the
impact of the input parameters over a genetic algorithm that distributes
into contexts (sets) the wavelet sign predictors in such a way that the
overall aggregate entropy will be reduced as much as possible and a as a
consequence higher compression rates can be achieved.
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1 Introduction

Genetic algorithms were first introduced by Holland in [1] and they are nowadays
well known and very popular to find optimal/suboptimal solutions in very large
and complex problems [2].

In a genetic algorithm, the evolution usually starts from a population of
randomly generated individuals and runs in generations. In each generation the
fitness of every individual in the population is evaluated, multiple individuals
are stochastically selected from the current population (based on their fitness
value), and modified (recombined and possibly randomly mutated) to form a
new population. The new population is then used in the next iteration of the
algorithm. Commonly, the algorithm terminates when either a maximum number
of generations has been produced, or a satisfactory fitness level has been reached.

In this work we are looking for an optimal/suboptimal solution of our partic-
ular problem related with wavelet image compressors. This kind of image com-
pressor is based in the use of a mathematical transform called Discrete Wavelet
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Transform (DWT). Wavelet transforms have proved to be very powerful tools
for image compression, since many state-of-the-art image codecs, including the
JPEG2000 standard [3], employ DWT into their algorithms. The energy of a
wavelet transform coefficient is restricted to non-negative real numbers, but the
coeflicients themselves are not, and they are defined by both a magnitude and
a sign. Shapiro stated in [4] that a transform coefficient is equally likely to be
positive or negative and thus one bit should be used to encode the sign. In recent
years, several authors have begun to use context modeling for wavelet sign cod-
ing [5-7], showing that despite the equiprobability of wavelet sign values, some
sign correlation can be found among wavelet coefficients, resulting in overall
compression ratio improvements.

In a previous work [8] we have observed that the sign of a wavelet coefficient
may be strongly correlated with the sign of some neighbor coefficients. However,
this relationship is not uniform and constant for any image, or even consistent
within the same image. By increasing the number and kind of images under
analysis, the relationship between the signs of the neighbor coefficients may be
generalized or, on the other hand, it is possible that, when increasing the number
of images, some relationships become contradictory.

In this work, after obtaining the sign prediction for a given neighborhood and
its success probability, we will use a Genetic Algorithm (GA) to distribute all the
neighborhood permutations into r sets in such a way that the overall aggregate
entropy will be reduced as much as possible and a as a consequence higher
compression rates can be achieved by the entropy encoder used in the wavelet-
based image encoder. We will analyze the impact of the input parameters in the
performance of the GA.

The paper is organized as follows: in section 2 we define the optimization
problem. In section 3 we propose a GA algorithm that matches the problem
definition and we perform a detailed analysis GA parameters that supply the
best sign context distribution in the shortest time. The paper then presents the
main results in section 4 and finally general conclusions are highlighted.

2 Context-based sign coding approach

Most wavelet image codecs do not consider the use of sign coding tools since the
wavelet coefficients located at the high frequency subbands form a zero-mean
process, and therefore they are equally likely positive as negative.

Schwartz, Zandi and Boliek [9] were the first authors to consider wavelet
coefficient sign coding, using the sign of one neighboring pixel in their context
modeling algorithm. The main idea behind this approach is to find correlations
along and across edges.

The HL subbands of a multi-scale 2-D wavelet decomposition are formed
from low-pass vertical filtering and high-pass horizontal filtering. The high-pass
filtering detects vertical edges, thus the HL subbands mainly contain vertical
edge information. Oppositely defined are the LH subbands that contain primarily
horizontal edge information.



Title Suppressed Due to Excessive Length 3

As Deever explained in [10], given a vertical edge in an HL subband, it
is reasonable to expect that neighboring coefficients along the edge have the
same sign as the coefficient being coded. This is because vertical correlation
often remains very high along vertical edges in images. When a low-pass filter
is applied along the image columns, it results in a series of similar rows, as
elements in a row tend to be very similar to elements directly above or below
due to the high vertical correlation. Subsequent high-pass filtering along similar
rows is expected to yield vertically correlated transform coefficients.

It is also important to consider correlation across edges, being the nature
of the correlation directly affected by the structure of the high pass filter. For
Daubechies’ 9/7 filters, wavelet coefficient signs are strongly negatively corre-
lated across edges because this filter is very similar to a second derivative of a
Gaussian as derived from theory of zero crossings and edge detection [11]. So,
it is expected that wavelet coeflicients will change sign as the edge is crossed.
Although the discrete wavelet transform involves sub sampling, the sub sampled
coeflicients remain strongly negatively correlated across edges. In this manner,
when a wavelet coefficient is optimally predicted as a function of its across-edge
neighbors (e.g. left and right neighbors in HL subbands), the optimal prediction
coefficients are negative, indicating an expected sign change. This conclusion is
general for any wavelet with a shape similar to a second derivative of a Gaussian.

In Fig. 1 we plot the spatial distributions of signs in the HL subband of two
popular test images: Barbara and Lena. The visible sign structures suggest that
the sign bits of wavelet coeflicients are compressible.

(a) Sign map for Barbara (b) Sign map for Lena

Fig. 1. Sign patterns in the HL subband for Barbara (left) and Lena (right). Black,
gray and white dots for negative, positive and non-significant coefficients, respectively

To estimate sign correlation in a practical way, we have applied a 6-level
Dyadic Wavelet Transform decomposition of the source image and then a low
quantization level to the resulting wavelet coeflicients. Taking into account that
the sign neighborhood correlation depends on the subband type (HL,LH,HH) as
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Deever assesses in [7], we have used different neighbors in each subband type
exploiting the correlation along and across the edges (see Table 1). So, for a
particular subband type, we have defined n neighbors that can hold one of the
three possible sign values, that is positive, negative and null (zero). This lead
us to a set of 3" different Neighbor Sign Patterns (NSP) for each subband type,
being n the number of neighbors used in the sign prediction.

HL subband LH subband HH subband
Neighborhood || Neighbors Neighbors Neighbors
3 N, NN, W W, WW, N N, W, NW
4 N, NN, W, WW|W, WW, N, NN [N, W, NW, NNWW
4b N, NN, NNN, [W, WW, WWW/ N, W, NW,
\W% N NNWW
5 N, NN, NNN, (W, WW, WWW/ N, W, NW,
W, WW N, NN NNWW, NNNWWW

Table 1. Neighborhood analyzed

Other encoders like JPEG2000 and the one proposed by [12] use four neigh-
bors (N,S,E,W) for the context formation, but since most non-embedded en-
coders use a Morton order (Z-order)[13] in the coding stage, no information is
available about S and E neighbors and they cannot be employed in context for-
mation. This represents a restriction when looking for sign correlation among
the neighborhood which it is shared by most of the non-embedded encoders.

So, for each subband type and each neighborhood we can obtain the sign
prediction table that contains the sign predictions, the number of occurrences
and the probability of success for every NSP [k], k = 1..3™. Then, when coding
the sign of a wavelet coefficient in a particular subband, first we will get the sign
value of the corresponding neighbor set in order to form the current NSP. Then
we will look up this NSP in the table to find the sign prediction of the current
wavelet coefficient. Finally, what we are going to encode is the correctness of
this prediction. The performance of our binary entropy encoder will depend on
the behavior of our sign predictor, the higher success prediction rate, the higher
compression rate is achieved.

In order to improve the final compression performance of our entropy encoder,
we propose the use of up to ten contexts for each subband type. So, for each
subband type, we distribute the provided NSPs predictions into r sets (contexts)
in such a way that the overall aggregate entropy will be reduced as much as
possible and a as a consequence higher compression rates can be achieved. We
have fixed to ten as a maximum the number of context in order not to increase
to much the image encoder complexity, as in [6] where authors reduced and fixed
the context number to five. We will use a GA algorithm to distribute all NSPs
into r sets.
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3 Genetic Algorithm for Wavelet Sign Prediction

The goal of our GA proposal will be to find a good context distribution of the
NSPs prediction table for each subband type SBy, wheret = {HL, LH, HH }. So,
for a particular wavelet coefficient C; ; with sign value SC; ; = {+,—, NULL},
that belongs to subband S By, the prediction table will provide a sign prediction,
SC; j, based on its Neighborhood Sign Pattern, NSP [k], where k represents the
specific sign pattern of the neighborhood of the current wavelet coefficient, Cj ;
and the set (context) number where the NSP will be assigned for the entropy
encoder.

There is no univocal relationship between a neighbor sign permutation and
the sign prediction, i.e not always for a same NS P [k] pattern, the sign prediction
of the current wavelet coefficient, SC; ;, is always positive or negative. However,
it is possible to find out that for a particular NSP [k] sign pattern, SAC'W- is
more probably to be positive than negative or vice versa. But, the problem is
still more complex, because a sign prediction for a neighbor sign pattern could
fit well for an image and not for others. Evenmore, the context distribution and
the number of context to use will affect the encoder compression performance.
Therefore, the idea is to find suboptimal neighbor sign pattern predictions and
context distribution that better fit for a representative set of images, so we
can capture the canonical wavelet sign redundancy introduced by a particular
wavelet filter. In this manner, once the universal prediction table is found, it
could be used at both encoder and decoder sides.

At this point, the motivation of using GAs to compress the sign of wavelet
coeflicients is twofold. First, when the number of selected neighbors for the anal-
ysis of sign correlation grows or when there is a great number of images to be
used in the analysis and also when the number of context to distribute the NSPs
in grows, the search space is excessively wide. Second, it is not intuitive to find
a way of combining the predictions obtained for several images, and mix them
in an unique prediction table.

The context distribution problem is similar to the mathematics problem of
finding the ways to partition a set of k objects into r sets. The number of possible
partitions is called Stirling number of the second kind [14] and is denoted by
S(k,r) (see equation 1). For example, if we use three neighbors for the sign
prediction we have 27 NSPs (33) and distributing then into 5 contexts, the
Stirling number of the second kind is 61338207158409090, which means that we
have that number of possibilities to distribute the 27 NSPs into 5 contexts.

(k1) = %é(—l)” () )

4 Genetic Algorithm Design and Analysis

In this work, we analyze the effect of several parameters over the results (fitness
and convergence) obtained by the GA. The parameters analyzed are:
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— Population size

— Mutation probability
— Neighborhood

— Context number (sets)

We have executed the GA using the following variations. For each execution
we have performed 100 iterations because of the influence of the random seed
over the generation of the best individual. This lead us to a total of 100,000
executions.

Population size: 10, 25, 50, 100, 150, 200, 300, 400

— Mutation probability: 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001 (from 5% to
0.1 %o).

— Neighborhood: 3, 4, 4b, 5

— Context number (sets): 4, 5, 6,7, 8,9

In Fig. 2 we show the normal probability graphic for the fitness values. As
it can be seen, they are not normal and so we will use other kind of analysis,
mainly based on dispersion graphics.

99.97 T T T
99+ :
95 ]

1_ 4
42 45 48 5.1 54 5.7 6
Fitness

Fig. 2. Normal probability graphic

In Fig. 3 we show the best result obtained in each GA execution, where the
results are ordered as a function of the GA parameter values used in the the
following script.
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Fitness

0 2 4 6 8 10 12
Row (x 10000)

Fig. 3. Chronological sequence of GA fitness results

For context (from 4 to 9) do
For neighbors in (3; 4; 4b; 5) do
For population_size in (10; 25; 50; 100; 150; 200; 300; 400) do
For mutation_probability in
(0.05; 0.01; 0.005; 0.001; 0.0005; 0.0001) do
Run GA #images.txt #contexts #neigbors
#population_size #mutation_probability

where images.txt contains the wavelet coeflicients sign prediction for each
NSP and image set.

In Fig. 3 we can see 6 successive stairs. All stairs have a similar shape, but
the results are different on each stair. The number of stairs correspond to the
number of contexts analyzed, i.e 4, 5, 6, 7, 8, 9. Looking at that figure we can
conclude that we obtain a better compression as the number of context used in
the entropy encoder increases and also, that the rest of parameters has nearly
no influence over context parameter.

In each stair, there are 4 steps which corresponds to the neighborhood ana-
lyzed, i.e 3, 4, 4b and 5. The effect of this parameter is quite significative and it is
represented by the difference between steps. This difference can be seen on both
the minimum and maximum fitness values. At each step or neighborhood we can
appreciate an upper limit which is the maximum compression independently of
the rest of GA parameters (population size and mutation probability). Obvi-
ously, this limit is higher for the neighborhood that uses 5 neighbors. Otherwise,
there is a lower bound on each step. The lower bound for 3 and 4b neighborhood
is quite similar, being this lower bound higher for the neighborhood 4. This effect
is more clearly shown in Fig. 4 where fitness values are represented as a function
of the neighborhood. At this point, we could not asses which neighborhood, 4b or
5 is the best one to be used in the compression algorithm because neighborhood
5 obtains better results but with a greater dispersion than neighborhood 4b.
Moreover, compression algorithm complexity increases as the number of neigh-
bors does.

The results variation in each neighborhood shown in Fig. 4 is due to the
intrinsic GA parameters like population size and mutation probability. In order
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Fig. 4. Dispersion fitness vs neighborhood

to easily analyze the results, we will reduce the analysis to the context number 6
and neighborhood 4b and 5. In Fig. 5 (a) and Fig. 5 (b) we can see the dispersion
graphic for the fitness values as a function of the mutation probability for those
executions that used the context number 6. Fig. 5 (a) represents executions using
4b neighborhood and Fig. 5 (b) represents executions using 5 neighborhood. As
it can be seen for the range from 0.0005 to 0.005, the mutation probability
does not affect to the fitness values obtained by the GA. Using lower mutation
probability it is possible to obtain suboptim results, but an important number
of executions obtain very low fitness values. On the other hand, with mutation
probabilities higher than 0.005 the algorithm fluctuates in a random way and the
fitness results get worse considerably, both the maximum value and the mean
value.

Analyzing the results when the mutation probability values are in the range
from 0.0005 to 0.005, we can observe that results are grouped (gathered), i.e.
there are less variability and also we can observe that we obtain better results
when using neighborhood 5.

Finally we will analyze the effect of population size over the fitness results. In
Fig. 6 we can see the dispersion graphic for all executions and as shown there is
a great variability in the results, but this variability and also the range are quite
similar for all population sizes except for population size of 10 that presents the
worst results.

Previous analysis show that the best results are obtained for the neighbor-
hood 5 and mutation probabilities from 0.0005 to 0.005. Fig. 7 shows the dis-
persion graphic for mutation probabilities in the range of 0.0004 to 0.006 using
neighborhood 5 and 6 contexts. We can see three groups of results. First, with a
population size of 10 individuals, the GA is not able to achieve as good results
as when using greater population sizes. Secondly, population sizes of 25, 50 and
100 individuals present optimal and identical results. Third, for populations sizes
of 150, 200, 300 and 400 the graphic does not allow to see if the results are as
good as for the previous group. In this last group, the GA algorithm achieve
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Fig. 5. Dispersion fitness vs probability using neighborhoods a) 4b, b) 5

the optimum result, but in a great number of executions, the result is not the
optimum and there is a greater dispersion.

In order to determine if there are differences when using population sizes
of 25, 50, 100, 150, 200, 300 and 400, we present Table 2 with mean, median
and standard deviation values. As it can be seen, both standard deviation and
variation coefficient grow as the population size does.

5 Conclusions

In this paper we have analyzed the input parameter of a GA that is able to
distribute the sign prediction for a given neighborhood into r sets obtaining the
lower aggregate entropy. From the analysis performed, we can conclude that the
algorithm obtains better results as the number of context used increase. Even
more, the neighborhood used for the wavelet sign prediction has a greater impact
over the results, being the neighborhood that uses 5 neighbors the one that better
results obtains. Regarding intrinsic parameters of the GA, when we use mutation
probabilities in the range from 0.0005 to 0.005 we obtain less variability in the
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Fig. 6. Dispersion fitness vs population size

Population 25

50

100

150

200

300

400

Average 5.85746
Standard Deviation || 0.00671
Variation Coefficient||0.1146%

Minimum 5.83509
Maximum 5.86922
Range 0.03413

5.86096
0.00835
0.1426%
5.8343
5.86922
0.03492

5.86153
0.01034
0.1765%
5.83435
5.86922
0.03487

5.86004
0.01182
0.2017%
5.82985
5.86922
0.03937

5.86034
0.01181
0.2016%
5.8289
5.86922
0.04032

5.85782
0.01397
0.2385%
5.82945
5.86922
0.03977

5.85712
0.01517
0.2591%
5.82575
5.86922
0.04347

Table 2. Execution results statistics for mutation probability from 0.0004 to 0.006,
using neighborhood 5 and 6 contexts.

execution results. Finally, we also have analyzed the population size, being those
in the range from 25 to 100 the ones that better results and behavior obtain.
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