
Accommodating Short and Long Web Traffic

Flows over a DiffServ Architecture

Salvador Alcaraz1, Katja Gilly1, Carlos Juiz2, and Ramon Puigjaner2

1 Miguel Hernández University,
Departamento de F́ısica y Arquitectura de Computadores,

Avda. del Ferrocarril, 03202 Elche, Spain
{salcaraz,katya}@umh.es

2 University of Balearic Islands,
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Abstract. DiffServ architecture has been widely used to achieve QoS
over the Internet. Taking into account that HTTP traffic is the most
extended protocol over the Internet community, many solutions have
been proposed to supply QoS to this protocol. Traditionally, DiffServ
architectures have considered two-colour markings in order to distinguish
between high and low priorities. We investigate the special treatment for
web traffic, whose pattern is very close to mice and elephants distribution
flows in Internet. We differentiate flows into short and long classes in
order to ensure QoS for short flows, but we try to achieve certain QoS
for some long flows. Metering, shapering and marking processes are used
to classify the incoming flows at the DiffServ using three-colour marking.
The final algorithm has been named Long Flow Promotions (LFP). The
simulation tool used is ns2 and the realistic synthetic web traffic has been
generated with PackMime-HTTP. The results are compared to RED and
DropTail queue management. LFP gets reasonably low latency values
while providing high priority level to short flows and improving some
performance parameters such as overhead and dropped packets.

Keywords: web traffic, DiffServ, token bucket, QoS, short and long
flows, packet promotion.

1 Introduction

Since the World Wide Web (www) was developed by Tim Berners-Lee [1] work-
ing at CERN, in Geneve, the Hypertext Transfer Protocol (HTTP) has been the
communications protocol most widely used in Internet [2]. Recently, new appli-
cations (kazaa, P2P, etc.) and features (web 2.0) have been added to the Internet
traffic, nevertheless the latest studies [3] show that web traffic is still the most
usual data flow in Internet. At the early stages, the web traffic was composed
of static and small pages, that used to contain a few objects. Later, database
queries, dynamic pages and some ad-hoc objects based on flash technology were
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added to web traffic, that meant an increase in the web pages size and, hence,
more packets per flow. Nowadays, web traffic implies that many technologies have
to act together and interconnect the web around the world. Although HTTP does
not provide any Quality of Service (QoS), different web users share the available
bandwidth and the network resources of the Internet Service Provider (ISP). In
this context, small web pages requested from web clients coexist with video
streaming and database queries. The difference of size between each kind of flow
can be considerable. If short flows are treated preferentially against long flows,
some web flows could be excessively penalised or suffer considerable delay from
server to client.

It is well documented that most of the Internet flows (around 80%) carry a
short amount of traffic (around 20%), while the rest of flows (around 20%) repre-
sent most of the traffic (around 80%). These types of flows are named mice and
elephants [4]. This fact sometimes leads to long response times for short browsing
requests when the bandwidth is mostly used by long flows. Therefore, ISPs need
to implement mechanisms to incorporate some enhanced QoS to their web sites
in order to permit clients fast browsing without an excessive penalisation to rest
of the flows. Regarding this subject, many solutions, environments and policies
have been proposed [5].

Every application protocol in Internet generates a different traffic workload,
but they might share the same First In First Out (FIFO) queue at the switching
and routing nodes. If queues are allowed to drop packets only during overflow
conditions, then bursty traffic flows will face greater dropping probabilities than
smooth traffic flows [6]. Random Early Detection (RED) [7] has been one of
the most important solutions to detect and avoid the congestion in computer
networks. With RED queue management, packets are dropped with a certain
probability before the queue reaches an overflow state. The main advantage of
RED over TailDrop queue was analysed by [8]. RED queue operates with a lower
queue size, especially during peak load and congestion conditions. This feature
allows bursts of packets to be accommodated into the available queue achieving
an overall performance improvement.

The remainder of this paper is organised as follows: section 2 describes our
proposal: the Long Flow Promotion algorithm (LFP). Section 3 presents a com-
parative of the simulation results of the LFP, RED and DropTail algorithms.
Finally, some concluding remarks are presented.

2 Long Flow Promotion (LFP)

Traditional QoS strategies are mainly based on marking and differentiating flows
over the Differentiated Services Model (DiffServ), which has two dedicated de-
vices: edge and core. Edge nodes mark the packets by adding different labels
to them. The information contained in these labels specifies the workload con-
ditions related to the Service Level Agreement (SLA) contracted by the client.
When the marked packets reach the core node, they are forwarded over dif-
ferent queues by applying the suitable Active Queue Management (AQM) or a
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stochastic treatment in order to achieve the required QoS. This paper presents
the LFP algorithm as an approach to improve the web traffic over a DiffServ
architecture focused to permit the coexistence between short and long flows in
the same shared network.
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Fig. 1. LFP architecture. The DiffServ model is composed by the edge and core devices
(in the middle). Edge device is composed by the meter, shaper and marker functions
(at the top) and core device (at the bottom) is composed by the set of queues Q =
{Qgreen, Qyellow, Qred} managed with priority queue scheduling algorithm.

Since web traffic has its own features, the LFP algorithm has been designed
to improve the QoS of this type of traffic. The algorithm has been developed
taking into account a couple of premises related to web traffic: a) End-users
expectations; b) Mice and elephants paradigm.

a) The issue of End-users expectations has been widely discussed [9], and it
is an important factor to determine the success of a website. When users are
browsing the Internet, they want to go as fast as they can. Users can tolerate a
long delay downloading heavy files such as multimedia streams, database queries
or large documents, but they might not stand long delays while surfing the
web; i.e. clicking into links or downloading small files such as images, sounds
or any other small object. For these reasons, the end-users expectation should
be strongly considered in a website development, and it is recommended to
implement a suitable mechanism to improve the end-users perception about
latencies and delays.

b) Web traffic flow size follows a well defined heavy-tailed [10] which is directly
related to the mice and elephants paradigm. As we have commented previously,
most of the traffic (around 80%) is carried out by a few flows (around 20%),
that are denominated elephants in Internet. Therefore, the rest of flows, that are
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Fig. 2. Mice and elephants flows and amount of transported data

named mice, transport around 20% of data information. This means that the
most usual flows in the Internet are short flows, although they only transport a
few bytes. Several studies of Internet traffic and packet distributions of the most
representative protocols in Internet have been undertaken striving to establish
the threshold (τ) that would differentiate between short flows (SF) and long flows
(LF) in web traffic. Chen et al. [11] proposed a table with five representative
types of web pages. The average of the web page size varies in the range of [9, 12]
Kbytes, from a minimum limit in the range of [1, 3] Kbytes, until maximum
values in the range of [80, 90] Kbytes.

Considering an average size of 12 Kbytes, and using a Protocol Data Unit (PDU)
of 1500 bytes, including an overhead of 60 bytes, and two ACK packets for the
Transport Control Protocol (TCP) three-way handshake, we consider in our pro-
posal a flow size average of 10 packets per flow as the threshold to differentiate
between short and long flows. Since τ has been established, it is now possible to
differentiate between short and long flows. SF will be those flows whose number
of packets is lower than or equal to τ and therefore, LF are the rest of the flows.
Fig. 2(a) shows a mice/elephants distribution for web response traffic. As it is
depicted in the figure, around 90 % of flows are classified as mice/SF, therefore,
the rest of the flows, around 10% are classified as elephants/LF. According to
the mice and elephants paradigm, the amount of Kbytes transported for each
type of flow is shown in Fig. 2(b). Using the same threshold, τ = 10 packets,
around 20% of the whole web traffic in Internet is transported by short flows
(mice/SF), and the remainder of Kbytes, around 80%, are transported by the
other type of flows (elephants/LF). We are going to describe now our proposal
for promoting flows in order to avoid unnecessary delays for the end-users.

2.1 Preferential Treatment for Short Flows (S1)

Following with the above premises, the overall incoming traffic that reaches the
QoS system should be measured and classified in order to assign the desired
QoS level to the most sensitive web traffic, that are the short flows. As it is
illustrated in Fig. 1, LFP is developed over a DiffServ architecture composed of
two types of devices: edge and core. LFP mechanism is defined as follows: web
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traffic from web servers (HTTP responses) reaches the DiffServ area where it
is firstly measured and classified at the edge device. In this device, after going
through the meter and the shaper process, the incoming packets are marked
with different labels. When the packets leave the edge device and reach the core
device, they are sent over a specific queue, depending on the assigned label.
Finally, the priority queueing scheduling strategy at the core device configures
the QoS level in the system.

The overall incoming traffic that reaches the system is divided in n flows
and defined as f1, f2, ..., fn. Each flow is composed of a sequence of p packets.
Therefore, the flow f contains p packets and the packets sequence is defined as:
pf
1 , pf

2 , ..., pf
p , where pj

i defines the i-packet from the flow j, and that arrives to
the system at the instant tji , as it is depicted in Fig. 3.

Let us define P f = {pf
i , ∀i ∈ [0, tk]} as the set of packets from flow f . There-

fore, V (tk) = {P f | ∀f} is the overall traffic at the interval [0, tk]. In order to
simplify the expressions, several assumptions have been taken:

– The amount of data from each flow is quantified as packets instead of Kbytes.
– Only one packet reaches the system in the interval [tk−1, tk).
– The web traffic considered corresponds only to responses. The request sizes

are negligible compared to the response sizes.

f1

f2

f3

f4p4
1

t41

p2
1

t21

p3
1

t31

p2
2

t22

p4
2

t42

p4
3

t43

p2
3

t23

p1
1

t11

p3
2

t32

p4
4

t44

p1
2

t12

p3
3

t33

p2
4

t24

p3
4

t34

p3
5

t35

p2
5

t25

p4
5

t45

p3
6

t36

p3
7

t37

p2
6

t26

(tk)

time

Fig. 3. Example of packet sequence that reaches the QoS system. Packets are labelled
as follows: pf

i is the k-th packet from flow f , and it arrives at instant tf
i .

Let us now describe the functions in the edge device. The meter is the first
function that is computed, χf (tk), and represents the number of packets of the
flow f at time [0, tk] (i.e. from its birth until tk). It is defined as follows:

χf (tk) = Ord(P f ) (1)

After the meter process, the packets go through the shaper function, that defines
the transition of a flow from short to long state, and it is defined by the threshold
τ . First of all, the differentiation condition, S1:

S1 ≡ χf (tk) ≤ τ (2)

The shaper function at the edge node is defined for each incoming flow f at
instant tk as the discrete function αf (tk) ∈ {0, 1}, defined as follows:

αf (tk) = I(S1), (3)
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where the discrete function I(S) is:

I(S) =

{
1 if S is true
0 otherwise

(4)

2.2 Packets Promotion Close to the Threshold (S2)

Considering only the S1 constraint to differentiate between short and long flows,
the consequences for a flow f that arrives to the DiffServ system, will be the
following:

– The range of packets [1, τ ] receives always the highest priority level.
– The range of packets [τ + 1, χf(tk)] receives always a low priority level.

Hence, S1 establishes a hard threshold between short and long flows. There-
fore, flows of τ + i packets, where i = 1, 2, 3... are considered as long flows,
despite their size being close to τ . Web traffic flow size distribution follows a
heavy-tailed distribution, that is, there are many flow sizes close to τ . For this
reason, the constraint that we define in this section tries to improve the QoS
parameters for those flows with sizes close to the threshold τ , by introducing
the packets promotion concept. This concept is related to those flows that are a
bit longer than the threshold (τ), and that under particular system conditions,
could be considered as short flows and, hence, receive a high priority QoS level.
The most appropriate conditions to promote packets are low congestion and idle
state of the system.

To deploy the S2 constraint, the Token Bucket Model [12] has been used
to detect the idle system state by counting the packet promotions. Although,
the packet promotion is restricted in order to prevent either the increase of the
system overhead or the promotion of the inappropriate packets.

The token bucket model is used to compute the amount of packets than can be
promoted. The token bucket operation is defined as follows: the bucket emulates
a depot of tokens, where each token indicates the possibility to send a packet
over the high priority queue. The maximum capacity of the token bucket is
defined by ζ tokens. New tokens are supplied at ω ratio in tokens/s. Tokens are
always consumed with packets forwarded over the high priority queue, therefore,
packets from short flows and promoted packets from long flows. The physical
token bucket capacity is limited by a low and high level. If the tokens level is
below the low level, it is considered that no tokens are available at the bucket.
Otherwise, if the tokens level is higher than the high level, no more tokens can fill
the bucket. The amount of available tokens in the bucket indicates the available
bandwidth to offer a high priority service to incoming flows. If V ∗(tk) defines
the amount of promoted packets, then the state of the token bucket at instant
tk is defined by ψ(tk) as follows:

ψ(tk) = ψ(tk−1) + IN(tk) − OUT (tk) (5)
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where:

IN(tk) = min(ω ∗ (tk − tk−1, ζ − ψ(tk−1))) (6)
OUT (tk) = V ∗(tk)I{V ∗(tk) ≤ (ψ(tk−1) + min(ω ∗ (tk − tk−1), ζ − ψ(tk−1)))}

As the token bucket model is used to bound the quantity of promoted packets,
θ(tk) represents the normalised capacity of the bucket, defined as follows:

θ(tk) =
[
ψ(tk)

ζ

]100

0

(7)

However, it is desirable that the state of the token bucket, ψ(tk), remains close
to a precise level or set point defined by κ ∈ [0, 100] as it is depicted in Fig. 1. As
the web traffic presents peaks of incoming traffic, ψ(tk) must range around a set
point κ. In order to permit this working area, top and bottom limits are defined
by the parameter δ ∈ [0, 100]. Therefore, the working area, that is defined by
κ ± δ operates as follows:

– If ψ(tk) is close to κ, the packets promotion is at open state.
– If ψ(tk) reaches κ − δ level, the packets promotion will turn to close state.

At this point, no packets are promoted. Hence, tokens are only consumed
with packets from short flows. As the token bucket continues being filled
with new tokens at ω ratio, then the token bucket level θ(tk) will catch up
κ+δ level again. At this point, the token bucket state will turn to open state
again and the promotion process will be reactivated.

The token bucket operation bounds are defined by [κ − δ, κ + δ] | 0 ≤ κ − δ ≤
κ + δ ≤ 100. Considering the above bounds, the differentiation function S2 can
be defined as follows:

S2 ≡
{
θ(tk) ≥ κ + δ

}
∨

{
(κ − δ ≤ θ(tk) ≤ κ + δ) ∧ βf (tk−1)

}
(8)

Once the metering process has concluded, the shaper process computes βf (tk)
function for each incoming flow:

βf (tk) = I(S2) (9)

S2 alleviates S1 weakness by using the packets promotion, but an adverse effect
appears under particular circumstances of low congestion: when there are a few
flows crossing the system, the token bucket state could be promoting some in-
appropriate flows. These flows can be extremely long, and they do not need any
higher priority level because the end-users expect a long delay for these flows
any way.

2.3 Detecting Elephant Flows (S3)

The presence of elephant flows in the QoS system is always bad news, and it
produces an overall system performance fall. For that reason, the main goal of
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the constraint S3 is the detection and isolation of extremely long flows. Such
flows are classified as elephant, hence, they do not need some QoS requirements,
and they can be treated with the lowest priority.

In order to detect and isolate those very long flows, the critical issue is to define
the measurement to be applied. As the web traffic nature is very variable (heavy
tail and self-similar distributions), setting a threshold as a fixed number of packets
to differentiate flows as long or very long is not suitable, because an excessive
low threshold could generate too many promoted packets and, by contrast, an
excessive high threshold could generate too few promoted packets. None of both
circumstances are desirable. For this reason, the value to determine when a flow
is long or very long must be adaptive to the traffic conditions of each situation.
Hence, we consider that it has to be calculated from the sizes of the last flows that
have crossed the QoS system. Therefore, Xtk,H is the set of the last H flow sizes
that have passed through the system, and is defined as follows:

Xtk,H = {χf(i) | i ∈ [tk−H , tk], H ∈ N, ∀f | P f ∈ V (tk)} (10)

Considering FXtk,H (x) as the distribution function of Xtk,H , the u − quantile
over (10) is defined by QXtk,H (u) as follows:

QXtk,H (u) = Inf{x | FXtk,H (x) ≥ u} (11)

QXtk,H (u) is a dynamic and variable flow size measurement of the recent history
of the flows crossing the system. As the S3 goal is the detection and isolation of
those flows whose sizes are extremely long, or longer than the last flows on the
system, then the S3 function is computed from (11) as follows:

S3 ≡ χf(tk) ≥ QXtk,H (u) (12)

With the above definitions, S3 is the differentiating condition between elephants
and just long flows. In this way, flows longer than QXtk,H (u) are considered as
elephants, therefore, they should be considered with the lowest priority level.
In the other case, they are considered as flows with medium priority level. By
applying (4) to the differentiation function, the function γf (tk) is added to the
shaper module:

γf(tk) = I(S3) (13)

2.4 Scheduling the Packets

The last process at the edge device is the marker, which uses the set of labels L =
{PS , PL, P↑, P↓} for marking the incoming packets with a label l ∈ L according
to the following rules:

l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

PS αf (tk)
PL αf (tk) ∧ βf (tk) ∧ γf(tk)
P↑ αf (tk) ∧ βf (tk) ∧ γf(tk)
P↓ αf (tk) ∧ βf (tk) ∧ γf(tk)

(14)
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From the above expressions, the LFP algorithm is modelled as the finite state
machine depicted in Fig. 4. LFP is composed by the set of states Q = {q0, q1, q2}
and the set of transitions T = {t1, t2, t3, t4, t5, t6}, where t1 = αf (tk), t2 =
αf (tk), t3 = γf (tk) ∧ βf (tk), t4 = γf (tk) ∧ αf (tk), t5 = γf (tk) and t6 = 1.

q0start q1 q2

t1
t2

t3

t4

t5
t6

Fig. 4. Finite State Machine of LFP algorithm

When the packets have left the edge device, they reach the next device at
the DiffServ architecture, that is the core device as it is illustrated in Fig. 1.
This device is defined with the set of queues Q = {Qgreen, Qyellow, Qred}. The
packets marked as PS or P↑ are forwarded over Qgreen; packets marked with PL

are forwarded over Qyellow and finally, packets marked with P↓ are forwarded
over the lower priority queue Qred. The dispatching algorithm based on priority
queuing where Qgreen is the highest priority queue, Qyellow is the intermediate
priority queue and finally, Qred as the lowest priority queue. Hence, the highest
QoS is assured for PS and P↑ packets. The penalisation is for P↓ packets because
they are always forwarded over Qred. And the rest of them, PL packets, receive
intermediate QoS level, as they neither are elephants, nor have received a high
priority QoS level due to incoming traffic conditions, token bucket configuration
or flow length.

The election of a suitable u−quantile over Xtk,H is important for establishing
the threshold of elephants detection. Experimental values are obtained from the
simulation results that are shown in Fig. 5. Let us considerer u = 99, then we
get a value of υ = 123 packets and only 20% of the long flows are marked as
elephants. A 90-quantile of Xtk,H gets a value of υ = 17 packets, and 35% of long
flows are marked as elephants. We have decided to select an intermediate value,
the 95-quantile, that means υ = 30 packets. In this case, 30% of long flows are
marked as elephants.

3 Simulation Results

The simulation has been driven using ns2 [13] in order to improve the end-to-
end web traffic latency and analyse the effect over other performance parameters
such as dropped packets, throughput and overhead. The network architecture
used is based on a single bottleneck dumbbell topology where the DiffServ model
has been implemented (see Fig. 1). The QoS system has been implemented as a
bottleneck link of 2 Mbps in order to appreciate the congestion level produced
by the incoming traffic. Some authors [14,15] have recommended the use of small
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buffers in internetwork devices, therefore, according to these recommendations,
every device buffer has been configured with a capacity of 50 packets. Parameters
related to the buffer size have been modified (minth = 10, maxth = 40). Both
edge and core devices at the DiffServ architecture have been configured as the
RED management with the original values (maxp = 0.02, wq = 0.001). Web
traffic is the only traffic that goes through the system. Web clients are modelled
as a cloud where the web requests go through the QoS system and reach the
web server cloud. Web server responses return from the web server cloud and
arrive to the clients after going through the system. For our purposes, web traffic
requests are negligible and the analysis is focused only in web traffic responses.
The incoming synthetic traffic has been generated by using HTTP PackMime
[16], where the web traffic is modelled as stochastic models obtained from the
traffic analysis of a real link. The web traffic intensity is modulated with the R
parameter, that sets up the incoming traffic as new conn/s in the system. We
run 10 simulations with the same parameter values but varying the seed, and the
results obtained are averaged in order to achieve a higher degree of confidence.
In order to analyse the effect of the congestion, three congestion levels have been
considered and summarised in the Table 1: low, medium and heavy.

After the marking process at the edge node and the scheduling packets process
at the core node, the packets distribution among Qgreen, Qyellow and Qred queues
is depicted in Fig. 6. As it has been mentioned above, the first τ packets from
every flow are marked with label PS , and therefore, are forwarded over Qgreen.
From τ + 1 packets onward every flow is considered as a long flow. Depending
on βf (tk), some packets are marked with P↑ and therefore, they are forwarded
over Qgreen as well. In the same way, after applying γf(tk), elephant flows are
detected, and therefore, their packets are marked with P↓ and forwarded over
Qred. Finally, the rest of packets are marked as PL and forwarded over Qyellow.
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Table 1. The R parameter has been used to establish each congestion level. The
parameters related to the incoming traffic are been calculated : C, mean of simultane-
ous connections; F, mean simultaneous flows. Performance parameters related to the
shared resource are:U, utilisation (%); Throughput in Mbps, is the amount of TCP
data transmitted per time;Goodput in Mbps, is the amount of HTTP data transmitted
per time; Overhead produced to transmit the required HTTP data; P drop packet drop
probability and F drop is the probability that a flow has dropped packets.

Level
Alg U Throughput Goodput Overhead P drop F drop

R C F

Low DropTail 17.8 0.371 0.356 4.12 1.2e-03 4.08e-03
6 3.22 32.73 RED 18.1 0.383 0.361 5.66 1.56e-02 3.89e-02

LFP 17.8 0.371 0.356 4.22 1.59e-03 3.33e-03

Medium DropTail 31.4 0.657 0.628 4.50 6.12e-03 2.10e-02
10 4.81 52.84 RED 32.9 0.706 0.658 6.79 2.77e-02 7.15e-02

LFP 30.9 0.647 0.618 4.51 4.82e-03 1.05e-02

Heavy DropTail 46.8 0.986 0.936 5.15 1.60e-02 5.63e-02
14 6.91 73.68 RED 43.6 0.947 0.872 7.85 3.85e-02 9.77e-02

LFP 43.3 0.912 0.867 4.94 9.43e-03 2.24e-02

Focusing on the end-to-end latency metric of a particular traffic level fixed
by R = 10 conn/s, the evolution of the latency over the flow size, is shown in
Fig. 7. This figure shows that DropTail always gets the worst latency for every
flow size. For the shortest flows, RED shows a slightly better behaviour than
LFP, but from τ onward, the latency trend changes and its values for LFP are
normally lower than RED. This can be explained because from the minimum
flow size to τ , every flow is treated with the highest quality of service level in
LFP, that clearly improves the latency versus DropTail. Meanwhile, the latency
in this range compared to RED suffers a minimal penalisation because of the
packets promotion. Close to the τ , all the packets from long flows are treated as
short flows packets, and hence, obtain the same latency.
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Fig. 8. Mean and standard deviation latency
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Fig. 9. Overhead
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Fig. 10. Dropped packets

The latency of short flows has been isolated and plotted in Fig. 8. The mean
latency and standard deviation for DropTail, RED and LFP, for each congestion
level have been drawn. Regarding the latency, there are not substantial differ-
ences between them. The latency for LFP always remains between DropTail
and RED. The standard deviation for LFP is always lower than the other two
proposals.

The end-to-end final latency must be analysed with other performance param-
eters. As it has been summarised in Table 1, LFP obtains a considerably lower
overhead than RED and very similar goodput, for every congestion level. Related
to dropped packets, LFP gets the lowest P drop and F drop for each congestion
level as well. The overhead evolution for each algorithm is clearly depicted in
Fig. 9. While DropTail and LFP get almost constant overhead when increasing
the web traffic load, RED shows a growing trend. Even for heavy congestion
level, RED overhead reaches up to 8%, while DropTail and LFP remain slightly
over 4%.
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Dropped packets effect for DropTail, RED and LFP is shown in Fig. 10. For
short flows, LFP is always the proposal with the fewest dropped packets for every
web traffic scenario. Obviously, the short flows preferential treatment produces
a growth in the long flow queue and therefore there are more dropped packets
at heavy congestion level. However, the dropped packets phenomena for long
flows using LFP is higher than DropTail, but it is lower than RED for every web
traffic scenario.

4 Conclusions

DiffServ architecture has been placed as the most suitable environment to deploy
QoS issues in the ISPs. As QoS is not implemented in HTTP protocol, we propose
an algorithm named LFP to get preferential treatment for short flows. We also
consider the promotion of some long flows under some circumstances and, finally,
the penalisation of the extremely long flows.

RED and DropTail are popular algorithms that also implement QoS in a Diff-
Serv environment. We have compared the ns2 simulation results obtained with
ns2 for LFP, RED and DropTail. We have observed that LFP clearly outper-
forms DropTail and obtains similar results than RED in terms of mean latency,
but improves its standard deviation. Considering the overhead, LFP shows an
important improvement compared to RED for all congestion levels. There are
also benefits in the packet drop probability as LFP always drops less packets
than RED. Therefore we consider that LFP algorithm described in this paper is
a suitable solution to be used in a QoS Diffserv architecture.
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