
Application of Neural Networks in Network
Control and Information Security

Ángel Grediaga1, Francisco Ibarra1, Federico Garćıa2,
Bernardo Ledesma1, and Francisco Brotóns1

1 Alicante University, P.O. 99 Alicante, E-03080, Spain
angel.grediaga@ua.es, ibarra@dtic.ua.es

http://www.ua.es/tia/
2 Miguel Hernández University, Avda. de la Universidad,

s/n. Elche E-03202, Spain
fedeg@umh.es

Abstract. The increment of intrusions and bad uses in computer sys-
tems and internal networks of a great number of companies has caused
an increase in concern for computer security. For some time one comes
applying measures based on fire walls and in systems of intrusion detec-
tion (IDS). In this document we present an alternative to the problem
of the IDS based on rules, using two different neural networks, a Multi-
Layer perceptron, and a self organizative map. A series of experiments
are carried out and the results are shown to be better than others found
in the literature.

Keywords: intrusion detection system, neural networks, self organiza-
tive map, perceptron.

1 Introduction

Security in computers has been studied as a discipline since 1970. It refers to the
measures and controls that protect the information systems against the negation
of service and the authorisation absence (accidental or deliberately) to reveal,
to modify, or to destroy the information and data systems [1][2]. However, the
scientific community dedicated to the computer system security, has noted that
technical prevention is not enough to protect the systems, such and like it was
proven in the year 2000 with the socalled Distributed attacks Denial of Service
(DDoS) [3]. These incidents demonstrated that technical prevention is inade-
quate, although the true reason is that the developed systems of information
are not certain, since they can have cracks in the implementation, as well as
shortcomings in the design. Intrusion detection was proposed as a complement
of technical prevention.

2 Experimentation Proposal

The proposal to palliate the main limitation of the traditional IDS and their
inability to recognize attacks lightly modified regarding the patterns with those

J. Wang et al. (Eds.): ISNN 2006, LNCS 3973, pp. 208–213, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Application of Neural Networks 209

that carry out the comparisons, is the use of neural networks. By means of
this proposal it is sought to prove that by means of using a neural network, it
is possible to carry out the distinction among packages that represent normal
flow in a computer network, and packages that represent attacks. Concretely
we will carry out the experimentation with a ML perceptron, and with a self
organizative map (SOM) [6] as for the type of IDS that we will implement using
neural networks, it will be an IDS host.

2.1 Selection of the Data

The first thing that it is necessary to think about when training a neural network
is what data will contain the samples that it uses as entrances, so much to train
as for checking. This belongs since the most important decision that can betaken,
will depend in great measure the distinction capacity that can acquire the neural
network works once the training is concluded. For the election of these data,
they have taken as reference the data that a traditional IDS uses, concretely
’Snort ’, the one which, apart from using numerous data characteristic of the
packages TCP, UDP, or ICMP, it also considers the content of the very package.
This is since something that outlines a serious problem, in principle that this
was the most important fact to distinguish among a dangerous inoffensive and
other package, but it is very complicated to introduce the content of the data
of the package in a neural network. Finally we have opted to take out four
characteristics of the same one in statistical form of probability of the four more
frequent characters that appear in it. The data used is the Table 1. In total there
are 29 entrances, which have been introduced to the network for each package,
but keeping in mind that when the package belongs to a protocol, the data of
the other protocols will be represented as nonexistent (for example introducing
the fact 0, or any other value that suits). When introducing the previous data
to the neural network, they have been normalized between 0 and 1 choosing a
maximum value for each item.

2.2 Obtaining of the Data

To obtain the dangerous packages two machines are used, one from which the
attacks rushed using the scanner ”Nessus” and another from which those pack-
ages were captured using the traditional IDS ”Snort”. In total 433 dangerous
packages were obtained. To obtain the inoffensive packages, a real computer net-
work is used, that is to say, where the habitual packages flow in any company or
corporation where it seeks to settle an IDS. Finally the study has been carried
out using a small departmental net. The fact that the IP address origin and the
destination are the same one in all the packages doesn’t rebound in the obtained
results, since that information isn’t kept in mind. Between Windows and Linux
5731 inoffensive packages were obtained. Next the two neural networks, the ML
perceptron and the self organizative map, are explained. It is necessary to indi-
cate that because the inoffensive training packages are much bigger in number
that the dangerous training packages, when training both neural networks, it

210 Á. Grediaga et al.

Table 1. Data used

Head IP of the package: Head TCP of the package:
Port origin Flag 1
Port destination Flag 2
Protocol Flag OR
TOS Flag TO
Size of the head IP Flag P
Total size of the package Flag R
Reserved Bit Flag S
Don’t Fragment bit Flag F
Fragments bit live Size of the window
Number of options IP Size head TCP

Number of options TCP
Head UDP of the package: Content Package:
Size of the head UDP + data (Len) Percentage of the most frequent datos1

Percentage of the most frequent datos2
Percentage of the most frequent datos3
Percentage of the most frequent datos4

Head ICMP of the package:
Message type (Type)
Code of the message (Code)
Protocol of the original package

has left introducing alternating a dangerous inoffen-sive and other package, and
when these last they have finished, then they went by the network again until
all the inoffensive packages finish happening.

3 Multi-layer Perceptron

For our case of ML perceptron, guided to distinguish among inoffensive packages
and packages that represent attacks to a host in a computer net, the configuration
that we have adopted is the following one: The activation function for each
neuron should be continuous and derivable, so the network can store information
on the exit of each neuron in a more precise way, only not differing between 0
and 1, that is to say that the exit can take values in the continuous one between
0 and 1. For this end, a sigmoidea function has been used. The number of neurons
in the first layer is similar to the number of data that is extracted of each package,
in this case 29, and in the exit layer, since we will only distinguish between two
possible values, we only use a neuron whose exit will indicate that the analyzed
package is inoffensive when it is smaller or the same as 0.5, and will indicate
that the analyzed package is dangerous when the exit is bigger than 0.5, since
the exit is enclosed between 0 and 1 for the activation function, and the training
exits have been introduced as 1 for dangerous packages, and 0 for inoffensive
packages. Only a hidden layer has been used. After carrying out diverse tests
varying the number of neurons of this layer, we obtained the best results with a

Application of Neural Networks 211

number of 30. The learning rate that has been used is variable. It begins with a
value of 0.5, and when the error begins to oscillate (the oscillations are detected
when the error ascends 4 times after 8 histories) it diminishes in 0.2 units. If the
error continues oscillating, it must descend the value again of a, until it arrives at
0.1. If it continues oscillating it is lowered up to 0.06, and it no longer is lowered
more. After proving several values for the moment, the one that had given The
half error of each history in the learning, something that will be good to check
if the error is lowered in each history, is calculated adding the error of all the
samples of the history and dividing it among the number of samples, where the
error of each sample is indicated in the equation (1)

E(hist) =
1
N

·
N∑

p−1

E(p). (1)

4 Self Organizative Map

The second proposal of neural networks work that has been proven to distinguish
inoffensive packages from dangerous packages is based on unsupervised learning,
concretely it is a self organizative map [6]. For our case of recognition of inoffen-
sive packages and dangerous packages of a computer net, where the extracted
information of each package is composed of 29 data, a rectangular SOM has been
used (toroidal) size 40 x 40, since it has been proven with sizes of 5 x 5, 10 x 10
and 20 x 20, and the error of each history oscillated too much, indicating that
clusters was superimposed, and therefore it lacked space so that these groupings
are formed without blocks among them. It has also been proven to use sizes of
30 x 30 and 50 x 50, but 50 x stops 50 the results they were the same ones that
using a size of 40 x 40, and 30 x stops 30, the results were a little worse. It is
also necessary to consider that as much as adult is the size of the map, more
will take a long time as much in the training as in the recognition, and this last
is something to keep in mind if one wants to implant the system in a computer
net, and that it works in real time, the minimum map size has been chosen for
the reason that offered better results. The distance function used to measure
the difference between a training sample and each neuron of the SOM has been
the distance euclidea. As for the coefficients of upgrade of weights (Cp) for the
winning neuron, and their neighbours, the following ones have been used, after
having proven other values and to see that they didn’t work better: Cp for the
winning neuron: 0.9 Cp for the neighbouring neurons of level 1: 0.1, Cp for the
neighbouring neurons of level 2: 0.005, Cp for the neighboring neurons of level
3: 0.0005]. The error of each sample is measured by the distance to the winning
neuron, equation(1).

5 Obtained Results

It is necessary to say that the obtained results have overcome the initial expec-
tations, since the fact of being able to distinguish between inoffensive packages

212 Á. Grediaga et al.

and dangerous packages without totally looking at the content of data of the
package was something that was thought it could only be gotten in a moder-
ate percentage of successes, but the percentage of successes gotten in the test
overcame 90%. The first thing that is necessary to decide in this stage is how
to measure the results. Since This is a problem bigger than which was thought
of in principle, we don’t prepare more than 433 dangerous packages with those
that to train and to test, and neither you can prove the result of the training of
the neural network work installing it in a computer net, since the surest thing is
it meets with packages completely different from the packages with those that it
has trained in the small network of two machines used in the project. Concretely
80% of the packages has been chosen for training, and 20% for testing, as much
for the inoffensive packages as for the obtained dangerous packages. The results
will measure them in terms of percentage of successes obtained in the testing
packages that will be: inoffensive, dangerous packages, and the entirety of them.

5.1 Results of the Multi-layer Perceptron

Next a summary of the error is shown after each history in the training of the
multilayer perceptron that has given better results, since this depends in great
measure of the random initialization of the weights. We will indicate the errors
of the first 10 histories, and then we will go advancing more quickly, since it
allowed to train until the error didn’t lower more, and there were 2153 histories
(min error= 0,002132). The results as for success Package types approximate
number of packages of training Inoffensive packages. Dangerous packages the
rate of success of all the test packages, approximately 1233, is of 0.984750. To
check that the obtained results have not been fruit of chance when selecting
the training packages and the test packages, they have been carried out 3 more
trainings, each one with a division of training packages and of different test. The
results, after 100 training test are the Table 2.

Table 2. 100 training test results

Division 1 Division 2 Division 3

Success inoffensive test packages 0.863755 0.849877 0.947186
Success dangerous test packages 1.000000 0.988372 0.876712
Success in all the test packages 0.872340 0.859004 0.942997

5.2 Results of the Self Organizative Map

Next the same thing will be shown for the training of the self organizative map
that has given better results. The configuration of the number of neurons of the
map and other parameters are previously the suitable ones. It is necessary to keep
in mind that the mensuration of the error is not calculated in the same way that
in the ML perceptron, for what the comparison in that sense is not possible. Yes
it will be possible to compare the rate of successes. We will indicate the errors of

Application of Neural Networks 213

the first 10 histories, and then we will go advancing more quickly, since it allowed
to train until the error didn’t lower more, and they were 85 histories (min error=
0.004966).. The rate of success of all the test packages, approximately 1233, it
is of: 0.991235. To check that the obtained results have not been fruit of chance
when selecting the training packages and the test packages, 3 more trainings have
been carried out, each one with a division of training packages and of different
test, The results, after 10 histories of training, are the Table 3.

Table 3. 100 training test results

Division 1 Division 2 Division 3

Success inoffensive test packages 0.995442 0.996567 0.997567
Success dangerous test packages 0.924051 0.911111 0.891304
Success in all the test packages 0.990646 0.990438 0.990189

6 Conclusions

Managing the detection of attacks is something complicated, since continually
new exploits arise and the at-tackers invent new ways to penetrate the systems.
The use of the neural network can suppose a great advantage in the detection of
these attacks, since they have the capacity to detect attacks that they have not
memorized directly. As a final conclusion one can say that the intent of checking
if a neural network work could learn how to distinguish inoffensive packages of
dangerous packages has been an entire success, still without using the whole
information of the content of each package.

References

1. Abrams, M.D., Jadodia, S., Podell, H.J. (eds.): Information Security: An Integrated
Collection of Essays. IEEE Computer Society Press, Los Alamitos California (1995)

2. Pfleeger, C.P., Pfleeger S.L.: Security in Computing. 3rd edn. Prentice Hall Inc.,
New Jersey (2003)

3. CERT: Incident Note IN-99-07: Distributed Denial of Service Tools. CERT Software
Engineering Institute, Carnegie Mellon University, Pittsburgh (2001)

4. Kumar, S.: Classification and Detection of Computer Intrusion. PhD thesis, Purdue
University, August (1995)

5. Denning, D.E.: An Intrusion-Detection Model. IEEE Trans. Software Engineering
SE13 (2) (1987) 222-232.

6. Kohonen, T.: Self-Organization and Associative Memory Springer-Verlag, New York
(1987)

	Introduction
	Experimentation Proposal
	Selection of the Data
	Obtaining of the Data

	Multi-layer Perceptron
	Self Organizative Map
	Obtained Results
	Results of the Multi-layer Perceptron
	Results of the Self Organizative Map

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

