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Abstract

This paper presents an eÆcient routing and ow control mechanism to implement

multidestination message passing in wormhole networks. The mechanism is a vari-

ation of tree-based multicast with pruning to recover from deadlocks and it is well

suited for distributed shared-memory multiprocessors (DSMs) with hardware cache

coherence. It does not require any preprocessing of multicast messages reducing no-

tably the software overhead required to send a multicast message. Also, it allows

messages to use any deadlock-free routing function. The new scheme has been eval-

uated by simulation using synthetic loads. It achieves multicast latency reductions

of 30% on average. Also it was compared with other multicast mechanisms proving

its bene�ts. Finally, it can be easily implemented in hardware with minimal changes

to existing unicast wormhole routers.

Key words: Interconnection networks, wormhole switching, tree-based multicast,

adaptive routing, distributed shared-memory multiprocessors

1 Introduction

The performance of scalable multiprocessors is often determined by how e�ec-

tively they support processor communication. In many cases, processor com-

munication is slowed down by insuÆcient throughput and high latency in the

interconnection network. It is important, therefore, to design cost-e�ective

techniques that enhance network throughput and reduce message latency.

? This work was supported by Spanish CICYT under Grant TIC97{0897{C04{01

Preprint submitted to Elsevier Preprint 22 December 1999



Interprocessor communications can be classi�ed into three types depending

on the number of message destinations, namely one-to-one (unicast), one-to-

many (multicast), and one-to-all (broadcast). Of these schemes, unicast and

broadcast can be considered a special case of multicast. Multicast communica-

tions routinely appear in parallel programs. Typical examples include explicit

distribution of data to several nodes or invalidation and update messages in

distributed shared-memory multiprocessors [14] (DSMs). Similarly, the inverse

of multicast, namely many-to-one messages, is also common. Examples include

barrier synchronization and global reductions. It appears, therefore, that op-

timizing the multicast operation would improve the performance of scalable

multiprocessors.

Multicast is supported in hardware by at least one commercial machine. In-

deed, the NCube-2 multicomputer supports broadcast and, in addition, mul-

ticast messages whose destinations belong to a subcube of the hypercube [20].

This multicast scheme uses a tree-based multicast mechanism to reach nodes

within a given subcube. This mechanism, however, is not deadlock-free. Cur-

rently, there is not any satisfactory commercial solution to hardware multicast.

EÆcient support for multicast has been the subject of much previous academic

research. The earliest studies [12,15] proposed optimal tree-based algorithms

for multicast routing based on graph-modeling theory. However, aspects like

topology, router design and deadlock problems were not considered. In [1],

three deadlock-free multicast protocols were presented. These multicast proto-

cols are specially designed for virtual cut-through networks [10] but no routing

algorithm was proposed.

Later, deadlock-freedom was studied for multicast communications in multi-

computer networks using wormhole switching [16,21]. The approach was to

de�ne a Hamiltonian path to route multidestination worms while avoiding

deadlock. Multicast messages are propagated following one path that visits

all destinations without branching at intermediate routers. This type of mul-

ticast is called path-based multicast. Routing algorithms like Dual-Path and

Multi-Path were proposed for 2-D meshes.

New partially and fully adaptive path-based multicast wormhole routing al-

gorithms called PM, FM, and LD were de�ned for 2-D meshes [17]. However,

the design of deadlock-free adaptive multicast routing algorithms is complex.

For this reason, a new theory and methodology for designing deadlock-free

adaptive multicast algorithms was proposed in [5,7]. The theory makes the

design of these algorithms easy and eÆcient. This theory is an extension of a

previously proposed theory for deadlock-free unicast routing [6]. Alternative

approaches to solve the same problem were proposed in [18,19].

Other works developed broadcast communication in wormhole networks using
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SDP (Spanning set of Dimensional-disjoint Paths) [22] . This scheme uses

several phases to transport one message to all the destinations. Two general

solutions proposed are the 1-port and the n-port. They are deadlock-free and

achieve better performance than path-based multicast.

After these studies, the BRCP (Base Routing Conformed Path) model was

developed [23]. This is a new path-based message passing mechanism that

transports multicast and broadcast messages and is deadlock-free. This mech-

anism routes multicast messages using the same routing algorithm as for uni-

cast messages, so routing algorithms like e-cube, planar-adaptive, turn-model,

or fully adaptive can be used. Multicast and broadcast messages are carried

toward their destinations in several sequential steps using two protocols: Hi-

erarchical Leader-based (HL) and Multiphase Greedy (MG). Finally, multi-

destination messages have been used to optimize barrier synchronization and

global reduction [24,25]. All these schemes use path-based multicast based on

the BRCP model.

Most of the work described above for whormhole networks uses path-based

multicast. Unfortunately, path-based multicast has several ineÆciencies, es-

pecially when messages are short. The �rst ineÆciency is that each multicast

message needs a message preparation phase to order the destinations. Usually,

this preparation phase involves a split-and-order function with a software cost

of O(n � logn), where n is the number of destinations. This preparation phase

may take more time than the transfer itself. This is the main limitation of

path-based multicast schemes when the latency of multicast messages is an

important issue.

The second ineÆciency is that, in most of the proposed schemes, path-based

multicast does not use a minimal path for all of the destinations of a multicast

message. As a result, more network resources are used and network contention

increases. The third ineÆciency is that, to prevent deadlocks, some path-

based multicast mechanisms use a routing function that follows a Hamiltonian

path. As a result, unicast routing must use the same routing function and,

therefore, it can not exploit the advantages of other unicast routing functions.

This limitation has been removed by the BRCP model. Finally, path-based

multicast routing requires several delivery channels at each node to avoid

deadlock [23].

In this paper, we propose a new tree-based multicast mechanism that over-

comes the limitations of the previously proposed mechanisms. First, the new

mechanism does not require an initial ordering of the destinations. This makes

the message preparation phase much faster. This, however, does not a�ect

deadlock freedom: a pruning mechanism guarantees deadlock freedom. A sec-

ond advantage is that it can use a minimal path for all the destinations of a

multicast message. A third advantage is that it is able to reuse any deadlock-
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free routing algorithm used by unicast messages. Therefore, the routing ex-

ibility for unicast messages is also available to multicast messages. Finally,

tree-based multicast with pruning does not require several delivery channels

to guarantee deadlock freedom.

Simulation results of networks under synthetic loads show that the new scheme

can signi�cantly reduce the latency of multicast messages. Furthermore, it has

a higher performance than the other multicast mechanisms when the multicast

traÆc is composed of short messages like in DSMs. Finally, the new scheme can

be easily implemented in hardware with minimal changes to existing wormhole

routers.

The rest of this paper is organized as follows. Section 2 describes the new

multicast mechanism. Section 3 analyzes deadlock avoidance. Section 4 ex-

plains the additional hardware needed to implement tree-based multicast and

its impact on the critical path of a conventional router. Section 5 evaluates

the scheme and compares it with other schemes. Finally, section 6 presents

conclusions and future work.

2 Tree-Based Multicast with Pruning

The new scheme proposed in this paper is named Tree-Based Multicast with

Pruning. Tree-based multicast has traditionally been considered a good mech-

anism for multidestination message routing. This mechanism was success-

fully used to broadcast and multicast messages in store-and-forward networks.

However, with the arrival of wormhole switching, it became very prone to

congestion and deadlocks in the interconnection network. As a consequence,

other multidestination routing mechanisms like path-based multicast have

been studied. In path-based routing, a multicast message visits destinations in

an ordered and sequential way. With an adequate ordering of the destinations,

a deadlock-free routing algorithm for unicast messages, and several delivery

channels, deadlock-freedom is guaranteed [23].

Path-based mechanisms, however, are ineÆcient because the multicast desti-

nations need to be ordered in the message preparation phase. This ordering

involves a software cost of O(n � logn), where n is the number of destinations.

This cost may increase the total latency of each message considerably.

For this reason, we have reconsidered tree-based multicast, which does not

necessarily require a destination ordering phase. Furthermore, if the base rout-

ing algorithm is minimal, each multicast message reaches all its destinations

following minimal paths. Unfortunately, deadlocks may occur. This issue is

addressed in Section 3 by prunning some branches of the tree. In the follow-
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ing, we �rst describe the mechanism in detail and then consider its limitations

and bene�ts.

2.1 Description of Tree-Based Multicast with Pruning

Each multicast message has several destinations, and for each destination it

needs an address it in the message header. In other papers, several schemes

for encoding the destination addresses have been proposed [2]. These address

encoding conventions reduce the number of its in multicast messages. They

are useful when short multicast messages with many destinations are used,

in order to reduce the overhead involved with addressing information. In this

paper, however, we consider the traditional all-destination scheme where each

destination uses one address it because the average number of destinations

in coherence messages for DSMs is very small.

The operation of the new tree-based multicast mechanism is similar to the

traditional one in some respects. In a multicast message, each address it

is routed along several intermediate nodes until it reaches its destination.

These nodes decide the best path to follow. They can open a new path if they

�nd that paths reserved by address its already processed are not minimal.

Therefore, a multicast message will be able to expand as many branches as

needed in its advance toward the destinations. As we will see later, however,

this does not increase the switch complexity at each node, since it is not

necessary to connect an input with several outputs simultaneously.

data flits d2 d3 dnd1

Fig. 1. Message format for tree-based multicast with pruning.

One of the di�erences in our scheme with respect to other multicast schemes

is the way in which we organize the information in a message. Figure 1 shows

the format of a multicast message. In this �gure, we can see that the �rst it

of each message, d1, corresponds to the �rst destination address. It is followed

by the data its of the message, and the remaining destination addresses,

d2; d3; :::; dn.

For our scheme to work correctly, the data its must be stored in an auxiliary

bu�er at each intermediate node, even if it is not a destination. This is the

reason why this mechanism is suitable for very short messages. However, the

required bu�er size is very small because multicast messages are very short in

DSMs (just one it in invalidation protocols). This bu�er is associated with

every input channel of every node. When the �rst address it of a message

arrives at an intermediate node, the following data its are copied to the

corresponding auxiliary bu�er. This bu�er stores the data until the tail of the
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message leaves the node. Thus, when a destination address it, di where i > 1,

is routed at a node nk, two things may happen:

� (a) If di opens a new path at node nk, that is, it does not follow any path pre-

viously established by destination addresses d1; :::; di�1 in the same message,

then node nk must inject the data its after sending di without interruption.

Recall that the data its are stored in the auxiliary bu�er. Thus, di estab-

lishes a new branch in the multicast tree. The same operation is performed

when the �rst address it of any new branch of a multicast tree, di, arrives

at an intermediate node.

� (b) If di uses a path previously established by dj (with j < i) in the same

message, then it simply crosses node nk following that path. Data its are

not injected after transmitting di, because they were sent after transmitting

the destination address it dj.

P

d1 data d2 d3 d4 d5

d1 data

data

d2 d4

d3 d5

A

A’’

A’

to d1,d2,d4

to d3,d5

A’A’AA

A’’

A’’

Fig. 2. A multicast branching example: The original multicast worm, A, is splited

into two worms, A' and A", at node P.

It is important to note that the message format remains the same during

the advance of the multicast worm. For each new branch, a "new" multicast

message is expanded on-the-y with the same format as the original one. In

�gure 2 we show an example of multicast worm propagation. The original

worm, A, has �ve destinations, represented by the destination address its

d1; :::; d5, and one block of data its. When this worm arrives at node P, the

router supplies a free east channel for the destination address it d1. When d1
crosses node P, the data its are transmitted to the output channel selected

by the destination address d1, producing a new worm A'. These data its are

also copied into the auxiliary bu�er associated with the corresponding input

channel at node P.

After the data its have crossed node P, d2 is the next destination address it

that must be routed. The router decides that it must follow the path previously

reserved by d1 (to the east). Therefore, d2 is transmitted to the output channel

reserved by d1. The next destination address it that arrives at router P is

d3. Now, the router decides that a north channel must be used to reach that

destination. Thus, a new branch is produced and the destination address it

d3 is sent north, creating the A" branch. Next, the data its (stored in the

auxiliary bu�er) are injected behind destination address it d3. When all the
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data its have crossed the switch at node P, the router continues with the next

destination address d4. This process is repeated until the last it, d5, leaves

node P. When this occurs, the input channel and the associated bu�er are

freed.

2.2 Limitations of the Scheme

The main limitation of the proposed multicast mechanism is the data size of

multicast messages. The data size must be small, typically a few its only,

because data need to be stored in an auxiliary bu�er at each input channel of

each node traversed by the message.

However, the size of invalidation or update multicast messages in distributed

shared-memory multiprocessors with hardware cache coherence protocols is

very small, typically one word. Thus, the proposed tree-based multicast mech-

anism is well suited for those architectures.

Anyway, if we consider a virtual cut-through switching network, this limi-

tation would be overcome [26]. In this case, multicast messages of arbitrary

length must be split into �xed-lenght packets, which can be easily stored at

intermediate nodes allowing the proposed branching process. However, bu�ers

must be large enough to store a whole packet. This constraint also applies to

unicast routing.

2.3 Bene�ts of the Scheme.

The proposed multicast scheme has several advantages over the traditional

path-based multicast routing proposed for wormhole networks: it does not

requiere an initial ordering of the destinations, it can route all the multicast

messages using minimal paths for all the destinations, it can use any deadlock-

free routing algorithm for unicast messages and it does not require several

delivery channels.

In this section, we would like to highlight the most important one: the impact

of initial destination ordering on start-up time for multicast messages. Start-

up time plays an important role when multicast messages are considered. In

path-based multicast schemes, a preparation step is required for multicast mes-

sages, which orders the destination set to avoid deadlocks. This software-based

ordering represents a considerable percentage of the total message latency, es-

pecially when the network is very fast and the messages are very short. Our

proposed multicast scheme does not need any preparation for multicast mes-

sages. Indeed, the start-up time for a tree-based multicast message will be the
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same as for unicast messages. We believe that this parameter will be crucial in

the implementation of hardware multicast on real interconnection networks.

3 Deadlock Recovery in Tree-Based Multicast with Pruning

When the network is lightly loaded, tree-based routing works well for multicast

and broadcast messages. For example, it is able to transport multicast mes-

sages with low latencies using a minimum number of channels. However, when

the network is heavily loaded, the branches generated by tree-based routing

increase contention and may cause deadlocks in the interconnection network.

to b4,b5

b3 b4 b5

a2 a3

to b2,b3

b2

data

T

QP

a1 b1

Channel reserved by message A

Source node for message B

Labelled flit

Channel reserved by message B.

Source node for message A

b6

to a2,a3,b6

Fig. 3. A deadlock between two multicast messages A and B.

We propose resolving deadlocks and reducing contention by controlling mul-

ticast branches through a pruning mechanism. When one of the branches of

a multicast message is blocked at a given node, a pruning of all the other

branches of the message is performed at that node. Moreover, as ow control

in wormhole switching stops its in previous nodes, pruning is also performed

at those nodes. Then, the pruned branches can freely advance and release

channels that could block other messages.

For example, Figure 3 shows a portion of a 2-D mesh using XY routing where

there are two multicast worms blocking each other. Message A has three des-

tinations: a1, a2, and a3. Message B has six destinations: b1; b2; :::; b6. The �rst

address it of A, a1, crossed Q and P and reached its destination. The �rst

address it of B, b1, also reached its destination crossing node Q. The blocking

state is reached when the header its of each message, a2 and b2, cannot ad-

vance because the other message is using the requested channel. This blocking

situation is indicated by arrows in Figure 3. Indeed, the path towards a1 can

not be freed because node Q is waiting to see if there are any more destina-

tions in the message after a2 that could use the same path to a1. Similarly,

the path towards b1 cannot be freed because node T is waiting to see if there
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are more destinations after b5 that can use the same path to b1. The result is

deadlock.

P
Q

T

P
Q

T

P
Q

T

(a) (b) (c)

pruning 2

pruning 1

Fig. 4. Resolving the deadlock between multicast messages A and B.

To recover from deadlock, the pruning mechanism is used at nodes Q and T .

Figure 4 presents an abstraction of the deadlock situation in Figure 3. The

pruning scheme is represented here in three steps: (a) deadlock con�guration;

(b) pruning action; (c) routing destination address its a2 and b2 at nodes Q

and P , respectively.

When node Q routes a2 and �nds that there is no free output channel for it,

a pruning of all the other branches of message A is performed at this node.

In this case, the branch opened by a1 is pruned, so that it can freely advance

toward its destination (Figure 4(b), pruning1). Such pruning will release the

channel at node P that is blocking the advance of message B. Then, message B

will advance, eventually releasing the channel at node Q requested by message

A. In the event that ow control also stopped the advance of its at node T,

message B would also prune its branch destined for b1 (Figure 4(b), pruning2).

This pruning is not necessary to recover from deadlock but shows that nodes

performing a pruning do not need to synchronize.

We now show that the pruning mechanism described above is able to recover

from deadlocks produced as a consequence of using tree-based multicast, as-

suming that the routing function for unicast messages is deadlock-free.

Lemma 1: Given an interconnection network I and a deadlock-free routing

function R for unicast messages, a tree-based multicast mechanism based on

R is deadlock-free if there is a total pruning function P that is used when a

multicast message can not advance.

Proof: Let us assume that the base routing function R is deadlock-free for

unicast message passing. A multicast message without branches has the same

behavior as unicast messages regarding deadlock. Both multicast messages

without rami�cations and unicast messages use the same propagation scheme:

the �rst it establishes the path toward the destination and all the remain-

ing its follow it without branching. Since R is deadlock-free, there is not any

deadlocked con�guration for unicast messages. Now, we will proceed by contra-
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diction. Suppose that tree-based multicast with pruning is not deadlock-free.

Therefore, we will be able to �nd a deadlocked con�guration. In a deadlocked

con�guration, no it can advance. Also, a multicast message with branches

cannot exist, because when multicast messages block, all the branches are

prunned. E�ectively, suppose that we have a multicast message with B branches

at node Q. If pruning is performed at that node, the result will be equivalent

to B unicast (or multicast without branches) messages. Thus, in a deadlocked

con�guration, no multicast message has branches. Therefore, we conclude that

there is a deadlocked con�guration for the routing function R that contains

only unicast messages, contrary to the initial assumption. �

The pruning mechanism uses a total pruning scheme at the nodes where an

address it is blocked: all message branches are cut. This pruning scheme will

be eÆcient if multicast messages have few destinations. However, in general, a

total pruning is not necessary to guarantee the absence of deadlocks; a partial

pruning would be suÆcient. Currently, we are developing a partial pruning

algorithm.

4 Router Design

In this section we describe the hardware extensions required to add support

for tree-based multicast routing to a unicast router. A typical unicast router

consists of a routing control unit, a switch, and several input and output

channels with their corresponding channel controllers. The routing control

unit selects the output channel for a message as a function of its destination

node, the current node, and the output channel status. In most routers, the

routing control unit can only process one message header at a time. The switch

is a crossbar. Thus, it allows multiple messages traversing it simultaneously

without interference. We will use the same crossbar as in unicast routers in

order to minimize the changes in hardware. Physical channels can be split

into several virtual channels. Virtual channels are assigned to the physical link

using a demand-slotted round-robin arbitration scheme. Each virtual channel

has an associated bu�er at both input and output sides.

The input and output channel controllers manage virtual channel multiplexing

and process every arrived it. The input controllers send header its to the

routing control unit to establish the path through the crossbar. The routing

control unit sets the crossbar. The subsequent its are transferred from the

input bu�er to the corresponding output channel bu�er. When the last it

of a message arrives at the input channel and traverses the crossbar to the

corresponding output channel, the release noti�cation is sent to the output

channel controller. Then the path through the crossbar is released and when

the last it is transmitted, the output channel is freed. We assume that all the
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operations inside each router are synchronized by its local clock signal.

Switch

Routing
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Fig. 5. Multicast extensions to an ordinary unicast router model.

Figure 5 shows the considered router model with some new parts as well as

some modi�ed. The most important modi�cation will be at the input channel

controller. The router requires an extra auxiliar bu�er to store the multicast

data it (MD) as explained in the previous section. This bu�er copies the data

it when it is stored at the queue head. The router needs a control signal to

enable/disable the copy. Also a table of reserved output channels per input

channel, a prunning register and some signals will be needed in the routing

control and switch units.

When a message arrives, the message header has information about the mes-

sage type (multicast or unicast) and the �rst destination. If it is a unicast

message, it is processed as usually. If it is a multicast message, we know that

the next it will be the multicast data it that must be stored in the aux-

iliary bu�er. At this time the input channel controller changes to multicast

mode. Thus, after routing and forwarding the header it, it enables the copy

of the next it (multicast data it) to the auxiliary bu�er. That data it is

also transmitted following the header. At the same time, the input channel

controller signals to the routing control unit the presence of new headers that

have to be routed.

The following message its are header its. Each header is sent to the routing

control unit, which checks if any of the reserved output channels for previous

headers in the same message is valid to reach its destination. If a previously

reserved output channel is selected by the routing function, then the header

it crosses to the output channel as if it were a data it. However, if there

is not any valid reserved output channel for this header, then a new output

channel is reserved (if it is free), the reserved output channel set is updated,

and a branching process is triggered at the input channel controller. This

process consists of sending the header stored in the input bu�er �rst, and

11



then sending the multicast data it from the auxiliary bu�er. If a branching

process is required for the last header it, then the release signal is not set

until the data it stored in the auxiliary bu�er crosses the switch.

If the routing control unit does not �nd a free channel when routing a header

after forwarding the multicast data it, then a total pruning of the branches

is required in order to prevent deadlocks as explained in previous section.

This can be easily implemented using an XOR operation between the routing

table entry and the reserved output channels associated to the current input

channel. The result will activate the release procedure for the reserved output

channels on the respective output channel controllers. The selection of the

pruned output channels can be performed in paralell with the routing of next

headers. Threfore, this procedure does not increase the routing cycle time.

The additional hardware does not change the timing for the switch and routing

control units. The only overhead for the routing control unit is the overhead

in the selection function, which has to check �rst if there is a reserved output

channel among those suplied by the routing function (AND operation). This

additional check slightly increases the selection delay (one gate delay). Also,

the pruning action is very simple and can be made after the routing cycle,

as stated below. Note that the timing for pruning is not critical because the

messages involved in that operation are blocked.

5 Evaluation

We have developed a it-level simulator for interconnection networks that sup-

ports unicast routing, path-based multicast routing and tree-based multicast

routing with pruning. It takes as input parameters, the switching technique

(wormhole or virtual cut-through), topology, routing algorithm, message size,

message distribution, number of destinations for multicast messages, network

size and number of virtual channels. In our experiments, we run several simu-

lations to analyze the behavior of tree-based multicast routing against unicast

routing and path-based multicast routing algorithms like Dual-Path [21] and

PM [17]. The multicast mechanisms are evaluated for 2-D mesh, 2-D torus

and 3-D torus topologies of di�erent sizes. In the following, we �rst describe

the simulation parameters and then compare the new scheme to path-based

multicast and unicast routing.
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5.1 Simulation Parameters

All multicast messages have only one data it, a typical data size for invalida-

tion and update messages in distributed shared-memory multiprocessors. The

number of destinations of each multicast message varies between 4 and 25. A

uniform distribution is used to construct the destination set of each multicast

message. Deterministic routing algorithms are used for tree-based multicast

and unicast in all the simulations. In particular, we use the dimension-order

routing algorithm. For 2-D meshes, this is the popular XY routing algorithm.

This routing algorithm does not require virtual channels. However, although

tori also use dimension-order routing, two virtual channels per physical chan-

nel are required to avoid deadlock [4]. The routing algorithms for Dual-Path

and PM have been described in [21,17]. In the multicast experiments of sec-

tions 5.2 and 5.3, traÆc consists of multicast messages only. In section 5.4 we

present simulations with a traÆc pattern composed of unicast and multicast

messages.

In all simulations, we have assumed that each physical channel has a band-

width of one it per clock cycle. Furthermore, both the switch and the circuit

implementing the routing algorithm require one clock cycle to process a it.

In section 5.2, each router has four injection and delivery channels. Multi-

ple delivery channels are required to avoid deadlock in path-based multicast

algorithms [23]. However, in sections 5.3, and 5.4 each router has only one

injection channel and one delivery channel. Several injection and delivery chan-

nels are not necessary to guarantee deadlock-freedom for tree-based multicast

and unicast routing schemes. Each physical channel has queues with capacity

for two its at each end and one auxiliary queue at the input side with capac-

ity for one it. When physical channels are split into virtual channels, each

virtual channel has two-it queues at both ends and a one-it auxiliary queue

at the input side.

5.2 Comparative Evaluation of Di�erent Multicast Mechanisms

In this section, we compare di�erent multicast schemes on a 8�8 2-D mesh

topology, using the simulation parameters. We compare our tree-based mech-

anism to two path-based schemes, namely the Dual-Path and the PM routing

algorithm. In addition, we also compare it to unicast routing. Dual-Path uses

a deterministic routing algorithm based on Hamiltonian paths, while PM is a

partially adaptive routing algorithm based on the turn model [8]. We include

the unicast mechanism as a reference.

We note that the startup time, needed to generate multicast messages in path-
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Fig. 6. Comparative evaluation of di�erent multicast mechanisms for an 8�8 2-D

mesh.

based multicast schemes, has not been considered when computing the network

latency. If we included such startup time, the Dual-Path and PM schemes

would increase their latency by the amount of cycles required to perform the

message preparation phase of each message. Therefore, the results presented

in this section for the Dual-Path and PM algorithms are optimistic.

Figure 6 shows the average message latency for the di�erent multicast mecha-

nisms using traÆc composed of multicast messages with 4 or 11 destinations.

Each plot has a label that indicates the associated multicast mechanism and

the number of destinations of each message.

The PM algorithm (PM-Mcast in Figure 6) has a higher latency than the

other algorithms for traÆc conditions bellow saturation. However, it achieves

a better throughput than the Dual-Path routing algorithm (Dual-P-Mcast in

Figure 6) when messages have relatively few destinations (leftmost chart).

When the number of destinations increases (rightmost chart), however, the

PM algorithm has the worst latency and throughput. The reason is that the

PM algorithm �rst routes a multicast message to its west-most destination fol-

lowing a deterministic path. This increases the distance travelled by multicast

messages, thus increasing latency. Then the message reaches all the remaining

destinations using a minimal adaptive routing function between sucessive des-

tinations. On this second stage, the multicast message cannot go west in order

to prevent deadlocks. Also, the overall path is not minimal. As a result, de-

pending on the spatial distribution of the source and destination nodes, this

mechanism will consume excessive network resources. Therefore, contention

will increase and the network latency of multicast messages will increase too.

The Dual-Path algorithm achieves better results than the PM algorithm when

the number of destinations grows. In general, Dual-Path divides each multi-

cast message into two independent messages that follow di�erent paths. Each

of these messages will cover less destinations and use less network resources

than PM. This is why DualPath is better than the PM algorithm, especially

for many destinations. However, it reaches the saturation point very quickly

if we compare it to unicast (Unicast in the �gures) and the tree-based mech-

anism (Tree-Mcast in the �gures). The reason is that DualPath almost only

14



uses the channels in the Hamiltonian path. It does not take full advantage of

the remaining channels in the network. Additionally, the overall path is not

minimal, consuming more resources than necessary.

Finally, we can see that tree-based multicast routing performs much better

than path-based multicast routing for all traÆc loads and number of destina-

tions, even without considering the startup latency. Therefore, in what follows,

we now focus on comparing our scheme to unicast routing. While Figure 6 as-

sumed multiple delivery channels, we now consider the more interesting case

of a single injection and delivery channel per node.

5.3 Tree-Based Multicast Versus Unicast

Tree-based multicast with pruning and unicast have been compared on several

topologies. Figures 7, 8, and 9 show the average message latency (in clock

cycles) as a function of traÆc for a 8�8 2-D mesh, a 8�8 2-D torus, and an

8�8�8 3-D torus, respectively. In these �gures, each plot has a label that

indicates the associated multicast mechanism and the number of destinations

for each message. As above, traÆc is measured as the number of its per cycle

that are received by each node.
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Fig. 7. Tree-based multicast versus unicast on a 8�8 2-D mesh with 4 to 25 message

destinations.

On a 8�8 2-D mesh, the proposed tree-based multicast mechanism obtains

latency reductions of up to 30% with respect to unicast routing. For both low

and high number of destinations, it can be observed that, at low traÆc, the

di�erence between the proposed tree-based multicast mechanism and unicast

routing increases proportionally with the number of destinations. Also, the

saturation point for tree-based multicast occurs at a slightly higher traÆc

than for unicast routing.

On an 8�8 2-D torus, the improvement achieved by tree-based multicast is not

as large as in meshes. The di�erence between both mechanisms is smaller. We

can see that when messages have a small number of destinations, tree-based

multicast still achieves a higher throughput. As the number of destinations

increases, however, tree-based multicast degrades faster than unicast. When
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Fig. 8. Tree-based multicast versus unicast on a 8�8 2-D torus with 4 to 25 message

destinations.
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Fig. 9. Tree-based multicast versus unicast on a 8�8�8 3-D torus with 4 to 25

message destinations.

traÆc load is high, and messages have many destinations, the unicast mech-

anism obtains better throughput than tree-based multicast. We believe that

the reason is that tree-based multicast produces many branches, increasing

contention considerably. The pruning mechanism recovers from deadlock, but

pruning is not performed until its have stopped. Therefore, some channels

remain busy for longer than if messages were sent using unicast routing. How-

ever, tree-based multicast still achieves a lower latency than unicast routing

almost up to the saturation point because data its are transmitted only once.

We believe that the di�erent behavior in meshes and tori is mainly due to the

higher average number of branches per multicast message in tori networks.

Note that multicast messages sent from nodes in upper (lower) rows of a 2-D

mesh produce few branches in the north (south) direction.

On a 8�8�8 3-D torus the results are similar to the ones obtained for a 2-D

torus. When traÆc load is high and messages have many destinations, the

unicast mechanism obtains even better results than those obtained with a 2-D

torus when compared to tree-based multicast. The reason is that the number

of dimensions is higher in a 3-D torus than in a 2-D torus. As a result, more

branches are produced, especially when the number of destinations is high,

increasing contention considerably. Nevertheless, tree-based multicast achieves

lower latency than multiple unicast almost up to the saturation point.

In order to check the scalability of the proposed multicast scheme we have run

several simualtions using larger networks. In particular, we show in Figures 10
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Fig. 10. Comparative evaluation of di�erent multicast mechanisms for a 16�16 2-D
mesh.
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Fig. 11. Comparative evaluation of di�erent multicast mechanisms for a 16�16 2-D
torus.

and 11 the results for 2-D mesh and 2-D torus networks with 256 nodes. As

can be seen, the plots are very similar to those obtained with smaller networks.

So we can conclude that our tree-based hardware multicast scheme has a good

scalability.

In general, we can see that, under tree-based multicast, performance decreases

when the number of destinations in each multicast message increases. This

occurs because multicast messages cannot travel long paths without branching.

As a consequence, more pruning will be performed. Note that pruning is also

performed when bu�ers are �lled and its stop advancing. Usually, address its

stop advancing several clock cycles before pruning is performed. Therefore, the

bandwidth of the channels occupied by stopped its is wasted. Thus, when

traÆc load increases and the number of destinations in each multicast message

is high, tree-based multicast will decrease performance with respect to unicast

routing. It is obvious that contention reduces the performance of this kind of

multicast scheme. We can see this e�ect in 2-D torus and 3-D torus. Pruning

is necessary to recover from deadlocks and to reduce contention. However, 2-D

meshes exhibit good performance for any number of destinations, in all the

cases we tried.
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5.4 Tree-Based Multicast Evaluation with Mixed TraÆc

In this section we analyze the performance using mixed traÆc consisting of

unicast and multicast messages. In Figure 12, we show the average message

latency of tree-based multicast and unicast routing. The traÆc pattern consists

of 40% of unicast messages with 8 data its per message and 60% of multicast

messages with one data it per message. This pattern may be representative

of the traÆc in a distributed shared-memory multiprocessor where updates

and invalidations produce multicast messages and cache misses are served by

unicast messages, each one containing a cache line (8 data its).
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Fig. 12. Tree-based multicast routing versus unicast routing on a 8�8 2-D mesh

using a mixed traÆc pattern.

It can be seen in Figure 12 that, under this load, tree-based multicast still

behaves much better than unicast routing. Thus, we expect the new multicast

scheme to have a good behavior under real traÆc. Although not shown, 2-D

torus and 3-D torus topologies achieve similar results when this traÆc pattern

is used.

6 Conclusions and Future Work

This paper presents a fast hardware-supported multicast mechanism for worm-

hole networks. The advantages of the new scheme are that multicast messages

do not need a pre-processing step that orders the destinations, messages reach

their destinations following minimal paths if the base routing algorithm is

minimal, it works for any topology, and it can reuse the routing algorithm for

unicast messages. We call the new scheme tree-based multicast with branch

pruning. The new scheme is deadlock-free and is particularly eÆcient for short

messages, like those used to transmit invalidations and updates in DSMs.

We have evaluated the new scheme by running simulations with synthetic mul-

ticast loads. Multicast messages routed with the new scheme have signi�cantly

lower latency than if they are routed with path-based schemes. Furthermore,

for high traÆc loads, the network reaches substantially higher throughput.
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We also show that tree-based multicast with branch pruning is better than

unicast. The exception is when the interconnection network is close to satu-

ration and the number of multicast destinations is very high. The reason for

the latter e�ect is likely to be an excessive pruning in the new scheme that

can be improved with a limited-pruning scheme.

We plan to analyze the performance of the new scheme by performing con-

trolled pruning when the interconnection network is close to saturation and

the number of multicast destinations is very high. In addition, we are in the

process of re�ning our evaluation. Indeed, we plan to use SPLASH2 applica-

tions with multicast invalidation messages and a detailed simulation model of

a DSM multiprocessor to evaluate the impact of the proposed scheme on over-

all execution time. We also plan to study eÆcient many-to-one communication

schemes in order to develop a better support for acknowledgment messages in

DSMs.
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