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Abstract|Networks of workstations (NOWs) are

becoming increasingly popular as a cost-e�ective al-

ternative to parallel computers. Typically, these

networks connect processors using irregular topolo-

gies, providing the wiring exibility, scalability, and

incremental expansion capability required in this en-

vironment. Research in NOWs is advancing rela-

tively fast because the research e�ort made on par-

allel computers is now being transferred to this envi-

ronment. As a result, recent network products like

Myrinet [1] and ServerNet [2] use this technology to

compete with other high-speed local area network

products.

In some of these networks, messages are delivered

using source routing. Due to the irregular topology,

the routing scheme is often non-minimal. In this pa-

per we analyze the routing scheme used in Myrinet

networks in order to improve its performance. We

propose a new routing mechanism to signi�cantly in-

crease the overall throughput using minimal paths.

We show through simulation that the current rou-

ting schemes used in Myrinet networks can be im-

proved by modifying only the routing software wi-

thout increasing the software overhead signi�cantly.

The overall throughput can be doubled without mo-

difying the network hardware. Instead, memory re-

sources are used in the network interface cards, allo-

wing network nodes to switch some packets by using

a special kind of multi-hop routing.

Keywords Networks of workstations, irregular

topologies, wormhole switching, minimal routing,

Myrinet.

I. Introduction

Due to the increasing computation power of mi-

croprocessors and the high cost of parallel com-

puters, networks of workstations (NOWs) are

currently being considered as a cost-e�ective alter-

native for small-scale parallel computing. Although

NOWs do not provide the computing power availa-

ble in multicomputers and multiprocessors, they

meet the needs of a great variety of parallel com-

puting problems at a lower cost.

Currently, the evolution of NOWs is closely rela-

ted to that of local area networks (LANs). LANs

are migrating from shared medium to dedicated

medium networks. As an example, consider the
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evolution of the Ethernet family up to recent Gi-

gabit Ethernet networks [7]. Although Ethernet

is very popular, other commercial LANs have ari-

sen in the high-speed networking arena, trying to

provide solutions for some of the Ethernet weak-

nesses such as quality of service, priority-based

traÆc, gigabit channels, and ow control mecha-

nisms (ATM, VG100AnyLan, Autonet, Myrinet).

Some of them were considered in the recent Giga-

bit Ethernet Standard IEEE 802.3z.

Among the current gigabit LAN technologies,

Myrinet [1] has one of the highest performance/cost

ratio. One of the reasons is that the research ef-

fort made on parallel computers has been applied

to the design of high-speed local area networks. We

will focus on this network because its design is very

simple and exible. In particular, it allows us to

change the network behavior through the Myrinet

Control Program (MCP) software. This software

is loaded on the network adapter program memory

at boot time. It initializes the network adapter,

performs the network con�guration automatically,

does the memory management, de�nes and applies

the routing algorithm, formats messages, transfers

messages from local processors to the network and

vice versa, etc.

One of the tasks managed by the MCP is the

selection of the route to reach the destination of

each message. As the Myrinet routing scheme uses

source routing, the network adapter has to build

network routes to each destination during the in-

itialization phase. Network adapters have mecha-

nisms to discover the current network con�guration,

being able to build routes between itself and the rest

of network nodes. Myrinet uses up*/down* routing

[5] to build these paths. Although the original dis-

tributed up*/down* routing scheme provides par-

tial adaptivity, in Myrinet only one of the routes is

selected to be included into the routing table, thus

resulting in a deterministic routing algorithm.

II. Motivation

In previous works [8], [9], we analyzed the beha-

vior of distributed routing algorithms in irregular

topologies, showing that adaptive routing schemes
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outperform up*/down* routing schemes by impro-

ving the routing exibility and providing minimal

paths. Therefore, it would be interesting to analyze

the feasibility of implementing minimal routing in

commercial networks and evaluate its behavior. In

the case of Myrinet this would be possible thanks

to the exibility of the MCP program. If we could

change the MCP program in order to improve the

network behavior without signi�cantly increasing

the software overhead, performance would consi-

derably improve.

In this paper, we take on such a challenge. We

propose a new approach to increase overall network

throughput using minimal routing1. To achieve mi-

nimal routing we will split a non-minimal route

into sub-routes making a special kind of virtual

cut-through in the network interface cards of the

in-transit nodes. However, splitting routes requi-

res the collaboration of network nodes to forward

messages from one sub-route to the next one. This

overhead must be taken into account in order to

make a fair comparison.

Our main goal is to improve network performance

without modifying the network design, by reusing

existing hardware and changing only the MCP pro-

gram in network adapters.

The rest of the paper is organized as follows. In

Section III, the current Myrinet routing scheme is

introduced, and several proposals are described in

order to improve routing exibility. In Section IV,

the performance of the proposed techniques are eva-

luated by simulation. Finally, in Section V some

conclusions are drawn.

III. Improving the Routing Flexibility in

Myrinet Networks

A. Myrinet Routing

Myrinet uses source routing to transmit messa-

ges between nodes. In this routing technique, the

message header stores the route that the message

has to follow to reach its destination. To simplify

switch operation, each message header consist of

an ordered list of output link identi�ers that are

used by each intermediate switch to properly route

the message. The �rst link identi�er corresponds

to the one that the �rst switch will use, the second

link identi�er will be used by the second switch,

an so on. Each link identi�er is discarded after

using it. Therefore, each network node must have

a representation of the current network topology,

in order to build and maintain the routes between

itself and each potential destination node. Myri-

net uses up*/down* routing [5] to build network

1Note that many paths provided by up*/down* routing
are not minimal on certain networks.

routes. Routes are built before sending any mes-

sage in the network adapter of each node during

its initialization phase. In addition, each network

adapter checks for changes in the network topology

(shutdown of network nodes, link/switch failures,

start-up of new network nodes, etc.), in order to

maintain its own routing table.

There may exist di�erent valid up*/down* paths

between the same source-destination pair. Howe-

ver, Myrinet routing software only uses one of the

shortest paths. This path will be used to send mes-

sages to the corresponding destination until a net-

work topology change is detected. In this case, the

routing tables will be updated according to the new

topology.

On the other hand, up*/down* routing is not al-

ways able to provide a minimal path between every

pair of nodes due to the restriction imposed by the

up*/down* rule. As network size increases, this ef-

fect becomes more important.

Finally, timeout mechanisms are implemented in

the switches in order to recover from possible dead-

lock situations due to transmission errors that re-

sult in header modi�cations or changes in topology

that have not been detected yet.

B. Improving Routing Flexibility

The basic idea consist of storing more than one

choice in the routing table for each destination.

This will allow to use simple routing selection al-

gorithms that improves the current scheme used in

Myrinet.

Also we will try to �nd minimal routes for all

destinations. If up*/down* routing does not pro-

vide a minimal route, we will break it in two or

more sub-routes, using a special kind of virtual cut-

through switching at intermediate nodes. We call

this mechanism Minimal Routing with In-Transit
Bu�ers. When a message is generated at a source

node, the routing selection procedure will try to

�nd a minimal route to the destination. If it is

an up*/down* minimal route, then it is selected.

Otherwise, a deadlock may appear. To avoid dead-

lock, the routing algorithm will split this route into

several valid up*/down* minimal routes2. The de-

pendencies between the routes will be broken by

absorbing the message at the intermediate nodes

and later re-injecting it into the network. Thus, in

this case, the routing algorithm will try to �nd an

intermediate network node that meets three condi-

tions: It is in the path from source to destination,

the path is minimal, and the path from source to

the intermediate node is a valid up*/down* route.

2Note that this is possible since every single link is a valid
up*/down* path.
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Then, the source node sends the message to the in-

termediate node, and this one will forward it to its

�nal destination3. Note that there may exist more

than one intermediate node along the path from

source to destination. Also, note that this routing

strategy requires that at least one host is connected

to every switch where there may exist down-to-up

transitions.

The critical part of this proposal is the overhead

introduced at the intermediate nodes. Some me-

mory to bu�er in-transit messages is needed and

the MCP program has to be modi�ed to detect in-

transit messages and process them accordingly. In

order to minimize the introduced overhead, a DMA

transfer to re-inject the in-transit message can be

programmed as soon as its header is processed and

the output channel is free. So, the delay to forward

this message will be the time required for processing

the header and initiating the DMA. As the MCP

allows this kind of DMA programming, it is possi-

ble to implement it without modifying the network

hardware. On the other hand, there is no problem

if the DMA transfer begins before the message has

been completely received, because it will arrive at

the same rate that it is transmitted4, assuming that

all the links in the network have the same band-

width5. Note that Myrinet does not implement vir-

tual channels. Therefore, once a message header re-

aches the network interface card, its will continue

arriving at a constant rate. The only additional re-

quirement is that the message is completely stored

in the network adapter memory at the source node

before starting transmission to avoid interference

with the host I/O bus.

To make this mechanism deadlock free, it must

be guaranteed that an in-transit message that is

being re-injected can be completely ejected from

the network if the re-injected part of the message

becomes blocked, thus removing potential channel

dependencies that may result in a deadlock. So,

when an in-transit message arrives at a given node,

care must be taken to ensure that there is enough

bu�er space to store it at the interface card before

starting the DMA transfer. Otherwise, the MCP

should store the message in the host memory, consi-

derably increasing the overhead. A �xed amount of

bu�er space will be allocated in the network inter-

face card for in-transit messages. The host memory

3The entire route is �xed at the source node. The in-transit
node only re-injects the message.
4Due to limited memory bandwidth in the network interfa-

ces, a source node may inject bubbles into the network, thus
lowering the e�ective reception rate at the in-transit node.
This problem has been addressed and can be easily avoided
when implementing the MCP code. Also, future implemen-
tations of Myrinet interfaces eliminate this problem.
5Myrinet supports mixing links with di�erent bandwidth.

will be used in case of bu�er overow.

With this scheme we will test di�erent routing

selection algorithms:

� OMIT (One Minimal In-Transit path): Always
considers only one minimal path from source to

destination.

� RMIT (Random Minimal In-Transit path):
Random choice among all possible minimal

paths.

� RRMIT (Round-Robin Minimal In-Transit
path): Round-robin selection among all mini-

mal paths.

� PIT (Probabilistic In-Transit path): 80% of se-

lected paths using RMIT, and 20% randomly

selected among paths that are one hop longer

than minimal paths.

� RRMIT-MIN (Round-Robin Minimal In-
Transit path Minimizing In-Transit Nodes):
In the previous algorithms the route lengths

are obtained by counting the number of

switches crossed to reach the destination.

In-transit bu�ering adds latency to messages

and forces them to cross a switch twice. Thus,

in this algorithm minimal paths are selected

taking into account the total number of times

switches are crossed. In other words, when

an in-transit node is visited, the adjacent

new switch is counted twice. This algorithm

restricts the use of in-transit nodes.

IV. Performance Evaluation

A. Network Model

The network is composed of a set of switches.

Network topology is completely irregular and has

been generated randomly6, taking into account

three restrictions. First, we assumed that there are

exactly 4 workstations connected to each switch.

Second, all the switches in the network have the

same size. We assumed that each switch has 8

ports. So, there are 4 ports available to connect to

other switches. Finally, two neighboring switches

are connected by a single link. These assumptions

are quite realistic and have already been considered

in other studies [8], [9].

In order to evaluate the inuence of the network

size on system performance, we varied the num-

ber of switches in the network keeping the number

of workstations connected to each switch constant

6Most Myrinet networks are based on regular topologies,
specially when they are used to build low-cost supercom-
puters by connecting many processors together. However,
other implementations may need an irregular topology. For
example, a department may have several computers sprea-
ding over several oÆces and/or oors. In this case it seems
that several distributed switches is the best solution. In
other words, the network topology is adapted to the buil-
ding constraints.
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and equal to 4. We have used network sizes of 16,

32, and 64 switches, so there are 64, 128, and 256

workstations in the system, respectively.

For each simulation run, we assume that the mes-

sage generation rate is constant and the same for all

the nodes. Once the network has reached a steady

state, the it generation rate is equal to the it re-

ception rate. We have evaluated the full range of

traÆc, from low load to saturation. The message

destination is randomly chosen among all the no-

des.

As Myrinet network allows any message size, we

will also analyze the inuence of di�erent message

sizes. We will show results using message sizes of

32, 128, 512, and 1K bytes.

B. Myrinet Links

We assume short LAN cables [3] to interconnect

switches and workstations. These cables are 10 me-

ters long, o�er a bandwidth of 160 MB/s, and have

a delay of 1.5 ns/ft. Flits are one byte wide. Phy-

sical links are also one it wide. Transmission of

data across channels is pipelined [6]. Hence, a new

it can be injected into the physical channel every

6.25 ns and there will be a maximum of 8 its on

the link in a given time.

C. Myrinet Switches

Each Myrinet switch has a simple routing con-

trol unit that removes the �rst it of the header

and uses it to select the output channel (when the

output channel becomes free). The �rst it latency

is 150 ns through the switch. After that, the switch

is able to transfer its at the link rate, that is one

it every 6.25 ns. Each output port can only pro-

cess one message header at a time. An output port

is assigned to waiting messages in a demand-slotted

round-robin fashion. When a message gets the rou-

ting control unit, but it cannot be routed because

the output channel is busy, it must wait in the in-

put bu�er until its next turn. A crossbar inside

the switch allows multiple messages to traverse it

simultaneously without interference.

We do not use virtual channels since the actual

Myrinet switches do not support them. A hard-

ware \stop and go" ow control protocol [1] is used

to prevent packet loss. In this protocol, the recei-

ving switch transmits a stop(go) control it when

its input bu�er �lls over (empties below) 56 bytes

(40 bytes) of its capacity. The slack bu�er size in

Myrinet is �xed at 80 bytes.

D. Myrinet Interfaces

Each workstation has a routing table with one

or more entries for every possible destination. The

way tables are �lled determines the routing scheme

that will be used. We will analyze the scheme pro-

posed in previous Section. Tables are �lled with

routes that follow minimal paths to destinations

(if the path follows the up*/down* rules), and/or

with minimal paths to in-transit nodes that are in

a minimal path to the destination (following the

up*/down* rules). This strategy is used to analyze

the performance of OMIT, RMIT, RRMIT, PIT,

and RRMIT-MIN routing selection algorithms.

Although tables can be �lled with all the possible

routes to every possible destination, to avoid using

a huge table that may result in a high look-up delay,

we imposed a limit of 10 alternative routes for each

source-destination pair.

When minimal routing with in-transit bu�ers is

used, the network DMA must be re-programmed

for each in-transit message. To do so, some special

registers must be loaded up. We have assumed a

delay of 275 ns 7(44 bytes received) to detect an

in-transit message, and 200 ns (32 bytes received

more) to program the DMA to re-inject the mes-

sage. Also, the total capacity of the in-transit buf-

fers has been set to 90KB at each Myrinet interface

card.

E. Simulation Results

In this section we show the results obtained

from the simulation of the Myrinet network. We

will compare the new selection algorithms (OMIT,

RMIT, RRMIT, PIT, and RRMIT-MIN) with the

current Myrinet routing algorithm that uses only

one up*/down* route from each source-destination

pair. We call this algorithm OSUD (One Shortest

Up*/Down* path). We vary network size from 16

switches to 64 switches and use message sizes of 32,

128, 512, and 1024 bytes.

Figures 1, 2, 3, and 4 show the results for a 16-

switch network using message sizes of 32, 128, 512,

and 1024 bytes, respectively. As we can see, all the

path selection algorithms that use minimal paths

(OMIT, RMIT, RRMIT, PIT, and RRMIT-MIN)

signi�cantly outperform the OSUD routing algo-

rithm that uses only up*/down* paths. In particu-

lar, RMIT and RRMIT algorithms almost double

the throughput achieved by OSUD algorithm (e.g.,

0.032 its/ns/switch versus 0.017 its/ns/switch

with 32-byte messages).

However, all these minimal algorithms (except

RRMIT-MIN), exhibit higher average latency for

low traÆc than the original OSUD algorithm (978

ns with RMIT versus 895 ns with OSUD for 0.01

its/ns/switch). This is due to the use of in-transit

bu�ers. Crossing one in-transit node adds 625 ns

7These timings have been obtained from a real Myrinet
network.
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(475 ns to detect the message and program the re-

injection and 150 ns to cross the switch again) to

the latency of the message. The RRMIT-MIN al-

gorithm avoids this problem by taking into account

that using in-transit nodes is equivalent to crossing

one more switch, so that less in-transit nodes will be

used. We can see that the RRMIT-MIN algorithm

achieves the same average latency for low traÆc as

OSUD and o�ers better throughput (reaching to

0.025 its/ns/switch, that is 1.47 times better than

OSUD). On the other hand, this algorithm o�ers

less throughput than the others algorithms do. As

message size and network size increase the latency

added by in-transit nodes becomes less signi�cant.

Also, new Myrinet interface implementations will

lead to a reduction in the detection and reprogram-

ming times.

The MCP software design at the interface cards

gives us the posibility of switching among di�erent

routing algorithms depending on the workload. So,

if low latency is needed (e.g., in a DSM system),

the MCP will switch to the RRMIT-MIN algo-

rithm, o�ering more throughput than up*/down*

routing while keeping latency. On the other hand,

if high throughput is needed for an intensive traÆc

workload, then the MCP will switch to RMIT or

RRMIT routing algorithms.
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Fig. 4. Average message latency vs. traÆc. Network size
is 16 switches. Message length is 1024 bytes

Let us consider only the path selection strategies

for minimal routing. RMIT and RRMIT are the

best choices due to their possibility of choosing any

of the available minimal paths versus the use of only

one path in OMIT. The OMIT routing algorithm

enters saturation at 0.03 its/ns/switch for 32-byte

messages while the RMIT and RRMIT routing al-

gorithms do it at 0.032 its/ns/switch. As was ex-

pected, the use of non-minimal paths (PIT) leads

to the worst performance. PIT path selection algo-

rithm saturates at 0.026 its/ns/cycle and achieves

a higher latency.

As network size increases, the up*/down* rou-

ting algorithm does not scale well [8]. Figure 5

shows the results for a 32-switch network. For the

sake of brevity, results are only shown for message

sizes of 1024 bytes. We can see that the new rou-

ting schemes double the performance achieved by

the basic up*/down* routing (OSUD) except for

RRMIT-MIN that is 0.66 times better. In particu-

lar, RMIT achieves more than twice the through-

put achieved by OSUD for 1024 byte messages. Fi-

gure 6 shows the results for a 64-switch network.

The enhancement achieved by the new approaches

is even higher. In this case, the best minimal rou-

ting scheme achieves three times better throughput

than the basic up*/down* scheme.
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Let us take a look at the in-transit bu�ers usage.

Figure 7 shows the average number of in-transit

bu�ers used per message with the di�erent routing

algorithms in a 16-switch network for 512-byte mes-

sages. From the Figure we can observe that on ave-

rage less that 0.4 in-transit bu�ers are used. So,

there is not an excessive use of in-transit bu�ers

that could lead to the appearing of hot-spots in the

network.

To conclude, the proposed software implementa-

tion of in-transit bu�ers in Myrinet interface card

allows the use of deadlock-free minimal routing,

drastically increasing the overall network through-

put, doubling it for small network sizes (16 swit-

ches), and more than tripling it for large network

sizes (64 switches).

V. Conclusions

In this paper, we proposed a deadlock avoidance-

based minimal routing scheme that forwards messa-

ges by splitting the path into several deadlock-free

sub-routes as well as several selection policies. This

mechanism can be easily implemented in current

Myrinet networks. The results show that through-

put can be doubled for small networks and tripled

for large networks (with respect to the original My-
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Fig. 7. Average number of in-transit bu�ers per message.
Network size is 16 switches. Message length is 512
bytes

rinet routing algorithm).

As for future work, we plan to implement the pro-

posed mechanism on an actual Myrinet network in

order to con�rm the excellent simulation results ob-

tained. Also, we are working on new route selection

algorithms that increase adaptivity by reducing the

resource sharing among alternative routes.
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