XVIT JORNADAS DE PARALELISMO

Hybrid Parallelization of an H.264/AVC Video
Encoder

A. Rodriguez, A. Gonzélez, and M.P. Malumbres

Absiraci- Last generation video encoding standards
increase computing demands in order to reach the limits
on compression efficiency. This is particularly the case of
H264/AVC specification that is gaining interest in
industry. We are interested in applying parallel processing
to H.264 encoders in order to fulfil the computation
requirements imposed by stressing applications like video
on demand, videoconference, live broadeast, etc. Given a
delivered video quality and bit rate, the main complexity
parameters are image resolution, frame rate and latency.
These parameters can still be pushed forward in such a
way that special purpose hardware solutions are not
available. Parallel processing based on ofi-the-shelf
components is a more flexible general purpose alternative.
In this work we propose a hierarchical parallelization of
H.264 encoders very well suited to low cost clusters. Our
proposal uses MPI message passing parallelization at two
levels: GOP and frame and an OpenMP optimization at
the lowest paralielization level. In previous work we found
that GOP parallelism alone gives good speed-up but
imposes very high latency, on the other side frame
parallelism gets less efficiency but low latency. Combining
both approaches we obtain a compromise between speed-
up and latency. Finally, we extend the hierarchical
parallelization by including OpenMP optimizations to the
most expensive coding functions.

Keywords—advanced video coding, parallel and distributed
programming, hierarchical parallelization, MP1, OpenMP,
performance evaluation

[. INTRODUCTION

THE bandwidth available nowadays in computer
networks and also in the Internet allows video
delivery applications to reach acceptable performance
levels. An important aspect that gives support to video
communications is video encoding and this will continue
10 be the case even with future bandwidth increments.
This is because raw video requires a huge amount of
data transmitted per second, particularly when high
resolution and frame rates are involved.

Video compression is based on removing sensitive
redundant information and in the high spatial and
temporal correlation. Last generation video encoding
techniques, particularly H.264/AVC [1], push the
capabilities of these techniques to their limits. The result
is a reduction on the bandwidth requirements in several
orders of magnitude.

Encoding efficiency has a price that is computation
power. H.264/AVC encoders have a very high CPU

A, Rodriguez and A.Gonzalez are with the Technical University of
Valencia (UPV). E-mail:abrodicof@doctor upy €5, agrfidisca upv.cs.

M F. Malumbres is with the Miguel Hemandez University (UMH). E-
mail; mels{@mumb.es.

demand, the most critical case is encoding with latency
and real time response requirements. When this is
combined with high quality video formats, the only
adequate platforms are those with supercomputing
capabilities (i.c. clusters, multiprocessors and special
purpose devices).

We are interested on cluster platforms because they are
becoming a commonly available resource in an
increasing number of companies and institutions that
require high-performance systems able to cope with
large-scale applications (1.e. high-performance web
server platforms). Parallel programming on clusters is
also very flexible and it allows the design of parallel
video encoders adapted to almost any requirement.

Resources available on clusters vary from single to
multiple CPU per node. and in every node we can have
multimedia extensions in the CPUs and powerful
graphic coprocessors. To make efficient use of all these
computation resources we can combine different
programming approaches:

e Message passing parallelism. Message passing
runtimes and libraries (1.e. MPI [2]) allow using
a cluster to develop distributed versions of a
video encoder.

o Multithread parallelism Multithreading (i.c.
OpenMP [3]) permits using SMP cluster nodes
to reduce response time of the local encoder
MPI process.

o Optimized libraries. Sequential code can be
optimized by using additional resources like
SIMD extensions and GPUs to perform
complex operations. This optimization
approach can be applied by hand or using
optimized libraries (1. Intel IPP [4]. AMD
ACML [5], OpenGL [6], etc).

These techniques can be combined hierarchically in
such a way that the three levels (message passing,
multithreading and optimization) are quite orthogonal.
Analysis and implementation of every level 1s
independently done and the individual improvements of
each level sum up to improve the overall application
performance.

A video sequence is a stream of frames generated at a
certain frequency or frame rate. H.264/AVC
specification allows the definition of 2 number of
consecutive frames as an independent unit (GOP) to be
encoded. H.264 also allows defining slices inside a
frame as frame portions that can also be independently
encoded. Then message passing level can be
decomposed in these two levels.

396

In previous work we have implemented and evaluated
GOP based and slice based parallel video encoders [7,8].
In this paper we present the results obtained with an
H.264/AVC parallel encoder that combines GOP and
slice parallelism using MP1 on clusters. The paper is
organized as follows: First we estimate the performance
that we can expect by means of analytical tools: Little
law [9] and PAMELA [10]. Next we discuss the design
and main issues related to the implementation. Then we
present the performance measurements obtained in two
clusters and, finally, some conclusions and future work
directions are drawn.

II. PERFORMANCE ANALYSIS

As we show in [8] an efficient parallel video encoder
can be implemented dividing the video stream in GOPs.
We defined a GOP as 15 consecutive frames following
the IBBPBBP... coding pattern. Considering the
availability of enough computation resources (cluster
nodes) then we can always achieve real time response
but with a high latency (GOP encoding sequential time).

On the other hand in [7] we got good performance
and latency in a slice based parallel encoder.
Unfortunately the scheme gives limited scalability and
then real time response is achievable only under limited
circumstances.

Both approaches can be combined in order to get the
better of every one: scalability and low latency.
Processing several GOPs in parallel will contribute to
increase throughput. When real time response 1is
achieved, that is throughput is equal to frame rate,
additional computational resources can be used to
parallelize GOP encoding in order to reduce latency.
This is done dividing frames in several slices and
processing slices in parallel,

Processes in GOP level parallelization interact
slightly with a master process to get GOP ids and at the
end of the GOP encoding process to compose the video
encoded bit stream. Slice level parallelization has a
greater level of interaction among processes because
after encoding one frame, we have to decode it in order
10 keep the DPB (Decoding Picture Buffer) updated with
reference frames used in motion estimation.

To describe more precisely the aggregated effect on
performance when GOP and slice parallelism are
combined we will use Little’s law: N = X*R. In order to
have a precise definition of the equation’s terms, we
have to define what a job is. We consider a job the
encoding of one GOP. Then the equation terms are:

e N: Number of GOPs processed in parallel.

e R: Elapsed time between a GOP enters the
system and the same GOP is completely
encoded.

e X: Number of GOPs encoded per second.

If we have np nodes in the cluster and every GOP is
decomposed in ng slices, then the number of GOPs
processed in parallel will be N = np / ns.

If slices are processed in parallel with efficiency Es
and if the sequential encoding time of one GOP is Rgzp
then GOP parallel encoding time is:

ALBACETE. SEPTIEMBRE 2006

R=Rsso/(ns *Ey))

Here we suppose that GOP parallelization gets and
efficiency close to 1, as experimentally found at [7.8].
Finally the GOP throughput of combined parallel
encoder 1s:

n,
n n
X=—pt-=—"E (2)
Rm} R.n.fo ’
ns‘E:

The effect on performance of combining GOP and
slice parallelism is to reduce response time (latency) but
throughput if affected negatively if the efficiency of
slice parallelization is significantly less than 1.

As an example let consider a | hour video sequence
in HDTV format at 1280x720 and 60 frames/sec. We
suppose that a H.264/AVC sequential encoder is able to
encode one GOP (15 frames) in 5 seconds. If only one
slice per frame is defined in a parallel encoder (no slice
parallelism is present) then:

",

Y=t
Reco

(3)

To get real time response, X has to be equal to 60
frames/sec or 4 GOPs/sec then

n, =4.5=20 nodes (4)

GOP parallelization gives real time response in a 20
nodes cluster but with 5 seconds latency. If the
maximum allowed latency in the application is fixed to |
second, then we can include slice parallelism to comply
with this requirement. Let suppose Eg as 0.8 then ;how
many slices do we have to define and how many cluster
nodes are required?

n, —4—§— = 25 nodes (3)
0.8
R

n, = ——= > = 6.25 slices (6)
R-E, 1408

The number of slices and the number of GOPs have
to be integers. Then, we set ns to 7 and N to 4, so the
number of required nodes is adjusted to 28. The
estimated performance indexes are:

X:-Zsﬂ-o.s:4.4s GOPs/sec %))
R

R=—2¢ = 3 = 0.89 sec (8)
n-E, 7+08

In this example, we have obtained that the combined
parallel encoder gives real time encoding with latency
less than | sec on a cluster with 28 nodes.

As shown before, the efficiency of the slice

parallelization scheme is very important because it has a

XVII JORNADAS DE PARALELISMO

direct effect in throughput and latency. We are going 1o
estimate Es by means of a PAMELA model

eterized with measurements taken on @
conventional cluster.

Slice parallelization consists of partitioning every
frame in 2 GOP in a fixed number of slices. Then every
slice is encoded in parallel. Before proceeding with the
next frame, the actual frame has to be composed and
decoded to update de DPB in every node [1]. We
implemented this synchronization by means of
MPI_Allgather 21

in our PAMELA model we Suppose that
MPI_Allgather is implemented efficiently using a binary
iree. The number of slices processed in parallel is ns and
the mean slice encoding time is fs. We call 7 the mean
wait time due 10 variations in fs and the global
synchronization forced by allgather MPI operation. The
communication parameters are 1, (start up time) and fc
(transmission time of one encoded slice). Then, the
PAMELA model to parallel encode one frame is:

1 = par (p=1..ns)
delay (tel/ delay (tx)
seq (i=0. .1log; (ns) =1}
par (3=1.. ns) _
delay(ty + te*2%)

The parallel ime obtained solving this model is:

TL)=t, +1,

_ 9
£, =log,(n) -1, + (1 =1)-t,
So, efficiency can be computed as:
Too gty
4, g
g, =L =it = : (10)
ﬂ! n’ ,u +r.¢l§
li

We have obtained experimental estimations of ts and
1 using a sequential H.264 encoder on the Foreman CIF
video sequence. Communications parameters t, and ¢
have been measured running IMB ping pong benchmark
[11] on a cluster with four dual Opteron nodes
interconnected by a Gigabit Ethemnel switch., The
measurements correspond 10 message sizes around the
size of one encoded shice. With 4 slices we got a mean
encoded slice size of 4056 bytes. The parameter values
obtained appear on table 1.

TaBLE!
MEASURED PARAMETERS VALUE (TIME VALUES ARE SHOWN IN
MICROSECONDS}

tw | tag
20586 | 421

rtl. te ts
_60 0.0133%4056 240000

Estimated efficiency for a slice based parallel
encoder running in a 4 nodes cluster is:

397

1
. S
20586+ 421
840000

ES = =0.976 (1 1)

A better estimation 1S obtained by running IMB
allgather benchmark (11] on the cluster configuration we
are going 10 wok on. The allgather time obtained
experimentally on the cluster with 4056 bytes messages
is 408 microseconds. Then, the estimated efficiency is:

=0.976 (12)

1
' = e RV T
Es 20586 + 408
840000

We notice that efficiency s not limited by allgather
communication overhead, but it is limited by
synchronization wait due to differences among slice
encoding time. The percentage of wait time related (@
encoding time increases when the slice size decreases.
This penalizes officiency when we increase the number
of slices. Another negative effect of increasing the
number of slices, and then decreasing their size, 1S 2
reduction on encoding performance. Both factors limit
the number of slices we can define and then the amount
of available paralielism.

SCALABILITY OF SLICE PARALLELISM

H264/AVC [12] encoders use 2 16x16 pixel
macroblock (MB) as data encoding unit. A slice s
composed by a specific number of MBs. So, we can
define several slices in 3 frame. Every slice is encoded
and transmitted independently,
propagation. In our context slices define slightly coupled
tasks that can be performed in parallel.

ML

L1 p -4
SlicawFrama

Fig. |. Birale overhead vs, number of slices/frame.

However, defining several slices in a frame reduces
encoding efficiency. The most adverse effect is 2
significant bit rate increment that is inversely
proportional to the number of MBs per slice. That means
that the feasible number of slices will depend on the
video resolution, as shown at figure 1.

398
s
v
21 ° * ' . e
w3
g s —
L $ - 720m00
a
»
5
= — ® =
o . ™
1] “ L] W n

SlicewFrame

Fig. 2. PSNR loss vs number of slices per frame.

We can see also that in CIF resolution with 8 slices
we have a bit rate increment close to 20% which is
clearly inadmissible. When we apply slice parallelism
we get good speedup with 8 processors then scalability
is not limited by the parallel algorithm but by the
increase on bit rate. Other encoder quality parameters
like PSNR do not behave so adversely. We can se in
figure 2 that PSNR has as small variation around 35.5
dB in CIF resolution and around 37 dB in 720x480.

Finally we have noticed that encoding time decreases
when the number of slice increases. In figure 3 we can
see a significant encoding time reduction in both CIF
(33%) and 720x480 (27%) video formats.

S8- = —_g. —

= .
'i.s =
£«
.E . ¢ CF

- T20miB0

Fx
3

b}

we * o '

10 L <

1 2 4] b A

SlicewFrama

Fig. 3. Encoding time vs number of slices per frame.

We conclude that bitrate is the encoding efficiency
parameter that limits the number of slices we can define.
Particularly, a number between 4 and 12 slices seems 10
be adequate depending on video resolution. Parallel
encoders based on slice parallelism give good speedups
up to 8 slices as we will show in experimental results
section.

IV. HIERARCHICAL H.264 PARALLEL ENCODER

As we mentioned in the introduction we are going to
combine two levels of parallelism in order to achieve
scalability and low latency. In the first level we divide
the input video sequence in blocks of 15 consecutive
frames (GOPs) following the popular IBBPBBP...
coding pattemn. Every GOP is assigned to a processor

ALBACETE, SEPTIEMBRE 2006

completely encoded, the processor group is ready to
encode the next video GOP.

Every processor group has a local manager (P0) that
communicates with the global manager (P0"). The local
manager asks for a new GOP to be encoded by its group
when the current one is completely encoded. The global
manager informs about the GOP assignment by sending
a message with the assigned GOP number to the
requesting local manager. The on demand GOP
assignment method is quite simple and gives a good load
balance behaviour.

Inside a processor group, the assigned GOP is
processed decomposing its frames in slices, in such a
way that every processor in the group processes a slice.
Once a processor has the next GOP number to encode, it
can read and encode its corresponding slice on the
frames belonging to that GOP.

Slices are defined getting MBs in scan order in such a
way that the number of MBs per slice is as much
balanced as possible. When all the slices belonging to a
frame are encoded they have to be integrated t0 build the
encoded frame. Next, all the encoded frames
corresponding to a GOP are put together to form the
output bit stream.

o
L
4] i . "
PO L] L1 e
prepgepeapege |
= =
] \ =
] \ \ .
{ylavtE b i ~—

Fig 4. Hierarchical H.264 parallel encoder.

V. MULTITHREADING WITH OPENMP

Clusters based on multiprocessor nodes are becoming
very common, Nowadays, the us¢ of multicore
processors permits (0 have two processor SMP nodes at
a very low price. In the near future the number of cores
will increase to 4 and 8 opening the field for applying
effective multithreading parallelization techmgues on
clusters in combination with message passing.

OpenMP is & multithread programming standard that
is designed to easily include thread level parallelism in
existing sequential code. The parallelization technique
consists of identifying the execution time bottlenecks in
sequential code by means of profile analysis and then to
parallelize the most time consuming loops using
OpenMP pragmas.

In our case we profiled H.264 sequential encoder
over the Foreman CIF video sequence. To generate the
profiling data we use —pg compiler option and gprof
tool. We got the results shown in table 11 over a total

The speedup achievable by OpenMP can be
estimated by means of the next equation:

T

group inside the cluster. Every group encodes its GOP encoding time of 1095 seconds:

independently of other groups. When one GOP is

£RUMILE RESULID FRUM FUREMAN CLE VILEU SEQUENCE SPSCUUY CHEIL CXPIOIL OWNETWISE WAsIed Processor

Function T (| ComT| Time [#calls] Tican | "YPeTihreading capabilities.
SetupFastFullPelSearch 46.6| 510.65[510.65| 14652| 3.49E-02
FastFullPelBlockMotionSearch | 6.23| 578.95| 68.30| 600732| 1. 14E-04
SetupLargerBlocks 3.83| 620.90| 41.95| 14652| 2.86E-03 VI EXPERIMENTAL RESULTS
SubPelBlockMationSearch 3.76| 662.18| 41.25} 600732] 6.87-05 In order to evaluate the proposed H.264 hierarchical
UnifiedOneForthPix 1.13] 674.40] 1234 s 06 Pamallel encoder we choose two different clusters of
ModeDecision_dxdlaraBlocks| 1 11| 686.64] 12.15] 198144] 6.13E-08 workstations named Mozart and Aldebaran. Mozart has
det_chroma 1.09l 698.61] 11.97] 116532] 1.03E-04 4 biprocessor nodes with AMD Opteron 246 at 2 GHz
interconnected by a switched Gigabit Ethemet. On the

software side it runs Linux SuSE 9.1, Intel C compiler
8.1 and MPI 2.0. Aldebaran is an SGI Altix 3700 with
44 nodes [Itanium Il interconnected by a high
performance propnietary network giving a NUMA
architecture. It runs Linux RedHat 9.0 with GNU tools

and AMADIMY Darfrarmoncs sraaciirarmante are Altainad

XVII JORNADAS DE PARALELISMO

TaLEl
PROFILE RESULTS FROM FOREMAN CIF VIDEO SEQUENCE

Function T (%) | CumT | Time | #Calls | T/Call
SetupFastFullPelSearch 46.6| 510.65/510.65] 14652 3 49E-02
FastFullPeiBlockMotionSearch | 6,23| 578.95| 68.30| 600732 1.14E-04
ScrupLargerBlocks 3.83] 620,90| 41.95] 14652| 2.36E-03
SubPelBlockMotionSearch 3.76| 662.15| 41.25| 600732 6.87E-05
UnifiedOneForthPix 1.13] 674.49] 1234 6 206
ModeDecision_dxdintmaBlocks| 1.11| 686.64 12.15| 198144 6. 13E-08
det_chroma 1.09] 698.61| 1197 116532/ 1.03E-04

The speedup achievable by OpenMP can be
estimated by means of the next equation:

T
Sp= e 7 (13)
TM+T0,—TM+—-;‘—'—

Where Ts.. is the sequential encoding time, Tp,, is the
time contribution of parallelized functions and To, is the
parallelization overhead. Considering two processors
nodes the condition to pay off the paralielization
overhead is Toy < Tps / 2. We have estimated To, in 50
microseconds then only functions with execution time
per call clearly above 100 microseconds are candidates
to OpenMP parallelization. The candidates with more
significant contribution to total encoding time will be
considered in first place.

From the profiling results, it is clear that the first
candidate is function SetupFastFullPelSearch which is
related with the setup of motion estimation process,
being in charge of performing the initial MV prediction,
and other time-consuming procedures. This function is
responsible of around 46% of total encoding time. Its
time per call is 34900 microseconds that clearly pays off
the parallelization overhead. To implement the OpenMP
parallelization there are some conditions to be satisfied:
few and controlled data dependencies and no inline
functions. The first function candidate is a long one with
data dependencies in 4 data structures. A parallel for
was implemented controlling the former mentioned
dependencies and suppressing internal inline functions.

The second function on the contribution to sequential
encoding time is FastFullPelBlockMotionSearch which
is the main function that performs the motion estimation
process for a particular MB, using the greedy Full
Search method. This function has an execution time per
call too much close to T, then it was dismissed.

The next candidate that complies with the selection
criteria is function SetupLargerBlocks which is related
with SAD computations for larger blocks than the basic
4x4 block size (it is composed of a lot of sequential
loops). The contribution of this function to global
execution time is only 4%. In this case parallelization
was implemented using OpenMP sections.

This first approach to OpenMP parallelization was
integrated with the hierarchical MPI implementation.
Only one MPI process was launched in every
biprocessor node and two OpenMP threads were created
in every parallel section. If multithreading contribution
to speedup is low, then this processor assignment s

399

clearly not adequate. However, the small gains in
speedup can exploit otherwise wasted processor
hyperthreading capabilities.

V1. EXPERIMENTAL RESULTS

In order to evaluate the proposed H.264 hierarchical
parallel encoder we choose two different clusters of
workstations named Mozart and Aldebaran. Mozart has
4 biprocessor nodes with AMD Opteron 246 at 2 GHz
interconnected by a switched Gigabit Ethernet. On the
software side it runs Linux SuSE 9.1, Intel C compiler
8.1 and MPI 2.0. Aldebaran is an SGI Altix 3700 with
44 nodes ltenium Il interconnected by a high
performance proprietary network giving a NUMA
architecture. It runs Linux RedHat 9.0 with GNU tools
and MPICH. Performance measurements are obtained
encoding the 720x480 standard sequence Ayersroc
composed by 16 GOPs. The combination of number of
active GOPS (or processor groups) and number of slices
per frame are described in table II1.

TasLelll
WORKING MODES AT BOTH CLUSTERS.

Configuration | Cluster | #Groups | #Slices
01Gr_08Si Mozart 1 8
02Gr_0451 Mozarnt 2 4
04Gr 025! Mozart 4 | 2
08Gr OISl | Mozan | | 8
01Gr 165 Ald:bam; 1| 16
02Gr 08S1 | Aldebaran | 2 | 8
04Gr 04S1 | Aldeburan | 4 | 4
08Gr_02S1 | Aldebaran 8 2
16Gr_01SI Aldctmanj 6 |
1]
' L
o
|
(] o
iu
L]
¢
L%)
58
fa —_— —_—
oG ok S (G S o O
Conliguration
L)
s ° *
m &
B
o <
iu
" u
ns
n‘b',
s
© —— — e
Ot B 30w _tats oh_pam Da0e_oEst w o
Cond iguration

Fig. 5. Speedup in Mozart (top) and Aldebaran (bottom).

In figure 5 we can see that increasing the number of
slices per frame has a significant adverse effect on
speedup that reduces GOP throughput. This effect 15 the
same in both clusters.

00 .
T .
iz
E wy |
20 |
f ol
g & |
80 4
£
0 4
ol _— i S %
0%r_0BSH 02Gr_04S4 04Ge_0281 08Gr_0'S)
Configuration

Fig. 6. Mean GOP encoding nme

However, we show in figure 6 that the mean GOP
encoding time is effectively (linearly) reduced when the
number of slices per frame increases. The speedup loss
is bigger than the one we have expected. After
performing some additional experiments, we discovered
that the speedup loss is mainly due to the
synchronization wait time associated to MPI-allgather
operation. This operation is performed at the end of each
frame (as mentioned before). Also, as the number of
slices per frame increase, the synchronization wait time
becomes larger, reducing the overall application
performance (as shown in figure 5). So, we have to
further analyze their causes, in order to improve the
overall performance of slice parallelism.

Performance obtained by the hybrid MPI-OpenMP
approach is shown in table IV,

TABLE |V
MPL-OPENMP IMPLEMENTATION RESULTS
MBx | TSec. | T.Par. | Avg. Tprox
Slice | 120 frm [120 frm| PSNR| Bits Gop |SpUp
4Gr-1SI| 1350] 1962.04] 443.13| 39.26|5033880| 2166 4.43
2Gr-281 675) 1917.12) 44832| 39.24| 5082008 10898 428
1Gr-48] 337| 1B78.96| 46006 39.22|5177752] 53.81| 4.08

As 1t can be seen, the use of OpenMP multithreading
capabilities slightly increase the overall speedup, taking
into account that only four MPI processes were launched
with different number of processor’s groups (Grs) and
number of slices per groups (S!1). The reducing speedup
performance (last column of table 111} as the number of
slices per group increases is due to the effect of slice
synchronization as explained before. Although these are
the initial OpenMP optimization steps, more work
should be done to fully exploit the benefits of

multithreading in those nodes with multithreading
hardware support.

VII. CONCLUSIONS AND FUTURE WORK
A hierarchical parallel video encoder based on
H.264/AVC specification was proposed. After
performing some analysis about the convenience of a

ALBACETE, SEPTIEMBRE 2006

hierarchical parallel approach and developing a
GOP/slice parallel version, experimental results confirm
the results from previous analysis, showing the ability of
getting a scalable and low latency H.264 encoder. This
is performed adjusting the cluster configuration by
setting up the number of processor groups (or parallel
encoded GOPs) and the number of processor in a group
(or number of slices in a frame). Depending on the
application requirements we can reach an adequate
balance between throughput and latency.

However, some issues remain open, as mentioned in
previous section. So, we are analyzing the causes that
lead to speedup loss when increasing the number of
slices per frame. If we find a solution, the number of
slices per frame will not be such limiting factor to obtain
acceptable speedups.

We also have included a first approach to multithread
parallelism using OpenMP. Our expernience shows that it
is difficult 1o develop OpenMP optimizations in the
H.264 reference coding software, since it has not been
designed having in mind multithread optimizations.
Particularly data dependencies are difficult to identify
and to resolve.

As future work, we plan to push on OpenMP
parallelization and SIMD optimizations in order to make
profit of the parallelism available in CPU resources.

VIII. ACKNOWLEDGMENTS

This work was funded by the Spanish Ministry of
Education and Science under grant TIC2003-00339.

IX. REFERENCES

[1] 1SONEC 14496-10.2003, “Coding of Audiovisual Objects—Part
0: Advanced Video Coding,” 2003, also ITU.T
Recommendation H.264 “Advanced video coding for generic
nudiovisual services ™

[2] Pacheco, PS: Parallel Programming with MPI, Morgan
Kaufman Publishers, Inc

[3] R. Chandra et al, “Parallel Programming in OpenMP", Morgan
kaufmann, 2000

[4] Intel Integroted Performance Primitives, httpiwww intel
conved/software/products/asmo-na/eng/perflib/ipp/index htm

[5] AMD Core Math Library (ACML), http:/ideveloper.
amd com/scmlaspx

[6] OpenGL Architecture Review Board et al, “"OpenGL{R)
Reference Manual ", 5th edition, Ed. Dave Shreiner, 2003,

[71 JC. Femindez and M. P. Malumbres, "4 Parallel
implementarion of H.26L video encoder”, in proc. of EuroPar
2002 conf. (LNCS 2400), pp. 830, 833, Padderborn, 2002

[8] A. Rodniguez, A. Gonzilez and M.P. Malumbres, “'Performance
evaluation of parallel MPEG-4 video coding algarithms on
clusters of workstations”, 1EEE Int. Conference on Parallel
Computing in Electrical Engineering, pp. 354, 357, Dresden,
2004

[9] E.D. Lazowska,). ZahomjanG.S. Gaham, K.C. Sevcik,
Quantitative System Performance, Prentice-Hall, 1984

[10] Aran LC. van Gemund, “Symbolic Performance Modeling of
Paraliel Systems”, |EEE Transactions on Parallel and Distnbuted
Systems, vol 14, no 2, February 2003.

[11] Intel MPI Benchmarks: Users Guide and Methodology
Description, Intel GmbH, Germany, 2004,

[12] H.264/AVC Reference Software:

http:/fiphome.hhi de!
suehring/tml/.

ol

e

