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Evaluating a Distributed Version of the H.26L
Video Encoder.

J.C. Fernandez and M.P. Malumbres

Resumen— Over the last decade a lot of research and
development efforts have gone into designing compet-
itive video coding standards for several kinds of ap-
plications. Some video encoders like MPEG-4 and
H.26L, exhibit a high computational cost, far from
real-time encoding, with medium to high quality video
sequences. So, for these kinds of video coding stan-
dards, it is very difficult to find software solutions
able to code video in real-time. In this paper, we de-
sign a parallel version of the ITU-T H.26L video cod-
ing standard, showing different implementation ap-
proaches and evaluate their performance. Several ex-
periments were carried out showing that parallel ver-
sions of H.26L significantly improve its coding speed
by running in a cluster of personal computers inter-
connected with Myrinet LAN.

Palabras clave— Parallel and distributed program-
ming, video coding, H.26L standard, performance
evaluation.

I. INTRODUCTION

HE storage, processing and delivery of multime-

dia data in their raw form is very expensive; for
example, a standard 35mm photograph could require
about 18 MBytes of storage and one second of NTSC-
quality colour video requires almost 23 MBytes of
storage. To make widespread use of digital imagery
practical, some form of data compression must be
used.

Digital images can be compressed by eliminating
redundant information. There are three types of re-
dundancy that can be exploited by image compres-
sion systems:

e Spatial Redundancy. In almost all natural
images, the values of neighbouring pixels are
strongly correlated.

o Spectral Redundancy. In images composed of
more than one spectral band, the spectral values
for the same pixel location are often correlated.

o Temporal Redundancy. Adjacent frames in a
video sequence often show very little change.

The removal of spatial and spectral redundancies
is often accomplished by transform coding, which
uses a reversible linear transform to decorrelate the
image data. Temporal redundancy is exploited by
techniques that only encode the differences between
adjacent frames in the image sequence, such as mo-
tion prediction and compensation.

In the last few years, many video compression al-
gorithms have been proposed. As a result, several
image and video compression standards have been
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approved [H.26X, MPEG-X, JPEG2000] and many
hardware/software solutions are now available. Fur-
thermore, clusters of workstations (COWSs) are cur-
rently being considered as a cost-effective alternative
for small-scale parallel computing. Although COWs
do not provide the computing power available in
multicomputers and multiprocessors, they meet the
needs of a great variety of parallel computing prob-
lems at a lower cost, in particular high quality video
coding applications for video on demand systems.

With respect to video parallel programming, sev-
eral MPEG parallel implementations have been de-
veloped. Perhaps, at software level, the most sig-
nificant works on MPEG parallelization have been
done at Berkeley [6], [18]. Load balancing studies
have been performed at Purdue, achieving signifi-
cant improvements on a Paragon machine [15]. Yu
and Anastassiou have evaluated parallel versions of
MPEG-2 encoder on an Ethernet-based COWs [16].
Other MPEG parallel implementations have been
proposed to run on high performance switched LAN
networks [10]. Also, several H.263 parallel implemen-
tations have been developed on multiprocessors [17]
and COWs [4].

In this paper, a parallel ITU-T H.26L video en-
coder is proposed. The computational cost of the
H.26L encoder is extremely high. We propose two
parallel versions: the first divides the overall video
sequence among the working nodes (GOP-level par-
allelism). The second divides one frame among the
working nodes (Frame-level parallelism). Both ap-
proaches were evaluated on a Myrinet-based COWs.

In section (2) we give a brief description of the
H.26L encoder. In section (3) the two parallel ver-
sions are explained. Section (4) shows some evalua-
tion results and, finally, in section (5) some conclu-
sions are drawn.

II. THE H.26L VIDEO ENCODER

H.26L [8] is the current project of the ITU-T Video
Coding Experts Group (VCEG), a group officially
chartered as ITU-T Study Group 16 Question 6. The
primary goals of the H.26L project are:

e Improved coding efficiency. The syntax of H.26L.
should permit an average reduction in bit rate
by 50% compared to H.263+ (version 2 of H.263
[9]) for a similar degree of encoder optimization.

o Improved Network Adaptation. Issues relating
to network adaptation that were examined seri-
ously for the first time in the H.263 and MPEG-
4 projects are being taken further in H.26L.

o Simple syntax specification. The design of
H.26L is strongly intended to lead to a sim-
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ple, clean solution avoiding any excessive quan-
tity of optional features or profile configura-
tions. A new feature of the design is its in-
troduction of a conceptual separation between
a Video Coding Layer (VCL), which provides
the core high-compression representation of the
video picture content, and a Network Adapta-
tion Layer (NAL), which packages that repre-
sentation for delivery over a particular type of
network.

Different from the previous MPEG and ITU-T
standards, some new techniques, such as spatial pre-
diction in intra coding, motion compensation with
adaptive block size, 4x4 integer DCT, UVLC (Uni-
versal Variable Length Coding), CABAC (Context-
based Adaptive Binary Arithmetic Coding) and loop
filter are adopted by H.26L. The intra predictions are
derived from the neighbouring pixels in left and top
blocks. The unit size of spatial prediction is either
4x4 or 16x16. There are 6 different modes for each
4x4 sub-block. The first mode is DC prediction and
other modes represent different directions of predic-
tions. 16x16 intra prediction is particularly suitable
for a flat region with little details. Vertical, hori-
zontal, DC and plane predictions are used at 16x16
size.

H.26L allows more than one previous frames for
inter frame prediction. Inter prediction is calculated
from one of these previous frames. In the MPEG-4
standard, only 8x8 and 16x16 blocks are the units
for motion estimation and compensation. However,
seven block sizes, i.e., 16x16, 16x8, 8x16, 8x8, 8x4,
4x8 and 4x4, are supported in H.26L. The spiral
search finds the minimum cost for each block size
in the given range. The cost includes signal SAD
and overhead bits for coding block size information
and motion vectors. The optimal block size is de-
cided based on these minimum costs. If 4x4 block
size is the winner, there are 8 motion vectors for
this macroblock. The precision of motion vectors is
at least quarter pixel. With higher complexity for
higher coding efficiency, H.26L allows 1/8 pixel ac-
curacy prediction. The residue after prediction is
transformed with 4x4 integer DCT. Basic scanning
order is still zigzag similar to that used in MPEG-
4. Two different entropy-coding techniques are used
in H.26L. to compress quantized coefficients: UVLC
and CABAC. UVLC provides a simple and robust
method to code all mode information and DCT co-
efficients. But the performance at moderate or high
bit rates is not good. Therefore, CABAC is proposed
as another option in H.26L.

The sum of the prediction and the current recon-
structed error image forms the reconstructed refer-
ence. H.26L uses the deblocking filter in the motion
compensation loop. The deblocking process directly
operates on the reconstructed reference first across
vertical edges and then across horizontal edges. Ob-
viously, different image regions and different bit rates
need different levels of smoothing. Therefore, the de-
blocking filter is automatically adjusted in H.26L de-

pending on activities of blocks and QP parameters.

ITII. PARALLEL ALGORITHMS

The amount of work associated with coding dif-
ferent pictures is variable and unpredictable. In this
section, we present two versions of an H.26L par-
allel video encoder: GOP (Group Of Pictures) di-
vision and frame division. The difference between
them consists of the degree of parallelism employed.
The first version, GOP division, divides the overall
video sequence among the available working nodes,
so each node is able to independently process a set
of contiguous frames. With GOP division there is
no explicit communication between working nodes
at encoding time. The only communication is per-
formed at the end of the encoding process when re-
sults have to be delivered to the final compressed
file. The second parallel version of the H.26L video
encoder, frame division, divides one frame among
working nodes (fine-grain parallelism). The consid-
ered task unit for frame division is the slice, a con-
secutive group of macroblocks. As expected, when
processing a frame two communications steps are
performed: (a) storing the compressed bitstream as-
sociated to this frame (gather operation) and, (b)
exchange state information required for coding the
next frame.

A. GOP division

As stated above, each processor computes a GOP
of the video sequence. Each GOP begins with an
I-Frame, the rest being P-Frames and, optionally, B-
Frames. So, if the first picture is an I-Frame, that
does not depend on previous pictures, then a GOP
is defined as a closed group of pictures that can be
decoded independently. Let us consider the follow-
ing values, N is the number of frames in the video
sequence, n is the number of frames in one GOP,
n_gops (the number of GOPs) is given by N/n and
p is the number of processors. The number of not
assigned GOPs is gops-not = mod(n_gops,p) and
the number of assigned GOPs to each processor is
gops_as = (n_gops — gops_not) /p. The total number
of GOPs assigned to the processor Py, k=0:p—1,
is given by:

n-gops-as + 1, k < gops_not
n-gops_p = (1)
n_gops_as, k > gops_not

To determine which frames will be assigned to each
processor, two parameters have been defined, ify,
the initial frame, and ff; the final frame belong-
ing to processor Pj. Then P calculates the frames
iftyifev1, -, ffe. The values of these parameters
are given by the following expressions:

kxn_gops_pxn, k < gops_not

ifk =
N — (p— k) xn_gops_p *n, k > gops_not

(2)
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(k+1)*n_gopspxn — 1,k < gops_not
ffie= (N—(p—k—1)xn_gopspxn) — 1,
k > gops_not
(3)
Thus, the parallel algorithm using the GOP divi-
sion method will be the following:

Compute_GOP:Parallel for k=0,---,p—1
In Processor P,

(*Compute frames *)

Compute ify and ff}

For i =ify to ff; do

Compute Frame i

EndFor

(*Obtain bitstream*)

Send bitstream to P,

If & =0 obtain final compressed file
End Compute_GOP

B. Frame division

In this case the task unit is the slice, a group of
consecutive macroblocks in a frame. Each frame is
divided in slices, and those are assigned to work-
ing nodes. Since most test sequences use only one
slice per row of macroblocks (the slice width is the
same as the frame width) , each frame usually con-
tains a small number of slices. For example, in CIF
video format the number of macroblocks that con-
forms a slice will be 22, with a total of 18 slices per
frame. With QCIF formats a slice will contain 11
macroblocks, so the total number of slices is limited
to 9.

Let us consider the following values, N is the
number of frames in the overall sequence, n_m_t
is the number of macroblocks in one frame, n_m_s
is the number of macroblocks in one slice, n_s =
n_m_t/n_m_s is the number of slices and p is the
number of processors. The number of not assigned
slices is n_s_-n = mod(n-s,p) and the number of as-
signed slices to each processor is n_s_as = (n-s —
n_s_n)/p. The total number of slices assigned to the
processor P, k=0:p—1, is given by:

nsas+1, k<n.sn
n_sp= (4)
n-s-as, k> n_sn

To determine the macroblocks assigned to each
processor, two parameters have been defined, imy,
the initial macroblock, and fm, the final macroblock
of processor P;. Then Py, calculates the macroblocks
imy, imyy1, -+, fmg. The values of these parame-
ters are given by the following expressions:

kx(n.sppxn-m.s), k<nsn

(5)

M= ot — (p—k) *n_s_p*mn_m_s,

k>n_sn

(k+1)*xnspxnom-s)—1, k<n_sn
fro = nmt—(p—k—1)*nspxnms—1,
k>n_smn

(6)

Thus, the parallel algorithm using the frame divi-
sion method will be the following:

Compute_frame:Parallel for £ =0,---,p—1
In Processor P,
(*Compute macroblocks *)
Compute imy, and fmy
Fori =0to N —1do
For j = imy to fmy do
Compute Macroblock j of Frame i
EndFor
Send bitstream to P,
If £ = 0 obtain partial bitstream
EndFor
If & =0 obtain final compressed file
End Compute_frame

IV. EXPERIMENTAL RESULTS

The sequential algorithm is evaluated using the
sequential execution time, T;. The parallel algo-
rithms are evaluated using parallel execution time 7},
(p processors), speed-up, S, = T1/T}, and efficiency,
E, = S,/p. The results have been obtained using
a Beowulf cluster of 32 nodes interconnected with
a Myrinet switch. Each node consists of an Intel
Pentium-II processor at 300MHz with 128 MBytes
RAM. Communication routines in MPI and C lan-
guage are used. Several numbers of working nodes
have been used for running both parallel versions
of H.26L. encoder, in particular we have run exper-
iments with 2, 3, 4, 9, 16 and 24 nodes. We have
used the public available sources of H.26L. TML 8.4
as the starting point for this study. During the exper-
iments several QCIF (176x144) video sequences (car-
phone, claire and Miss-America) of 315 frames were
used. The sequence of frame types used in all tests
is the following IBBPBBPI ---. In the GOP divi-
sion method n = 7 and n_gops = 45. Nine slices of 11
macroblocks have been considered. In the frame divi-
sion method n.m_t =99, n.m_s = 11 and n_s = 11.
The deblocking filter optional mode was not used.
We have employed the following coding options:

« Fractional 1/4 pixel precision is used.

o Seven different block sizes (16 x 16,16 x 8 8 x
16,8 x 8,8 x 4,4 x 8 and 4 x 4) are employed in
motion compensated prediction.

e One previous frame is used for inter motion
search.

The operations of reading from the source video
file and writing into the output compressed file are
included in the total encoding time. In order to ver-
ify the correctness of parallel implementations, the
resulting compressed video streams were checked in
terms of quality metrics and total number of bits
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TABLA 1T
EXPERIMENTAL RESULTS USING THE CARPHONE VIDEO SEQUENCE.

GOP division Frame division
D Ty Speed-up Efficiency | p Ty Speed-up Efficiency
1 9365.362 1 9365.362
2 4714.796 1.986 99.3% 2 5160.32 1.81 90.74%
3 3233.557 2.896 96.54% | 3  3369.01 2.77 92.66%
4 2468.485 3.794 94.84% | 4 3359.01 2.78 69.68%
9 1099.195 8.52 94.66% | 9 1324.061 7.07 78.59%
16  620.031 15.10 94.40%
24 425.395 22.01 91.73%
TABLA 11
EXPERIMENTAL RESULTS USING THE CLAIRE VIDEO SEQUENCE.
GOP division Frame division
D Ty Speed-up Efficiency | p Ty Speed-up Efficiency
1 9448.893 1 9448.893
2 4723.29 1.98 99.18% | 2 5231.495 1.80 90.30%
3 3129467 2.99 99.54% | 3 3347.598 2.82 94.08%
4 2486.894 3.799 94.98% | 4 3299.278 2.86 71.59%
9 1052.625 8.97 99.73% | 9 1296.904 7.28 80.95%
16  638.019 14.809 92.56%
24 426.059 22.17 92.40%
TABLA IIT
EXPERIMENTAL RESULTS USING THE MISS-AMERICA VIDEO SEQUENCE.
GOP division Frame division
D Ty Speed-up Efficiency | p Ty Speed-up Efficiency
1 11948.259 1 11948.259
2 6404.774 1.86 93.27% | 2  6669.15 1.79 89.57%
3 4367.796 2.73 91.18% | 3  4277.01 279 93.12%
4 3213.745 3.71 92.94% | 4 4145.189 2.88 72.06%
9  1463.771 8.162 90.69% |9 1622.632 7.36 81.81%
16 876.57 13.63 85.19%
24 585.900 20.39 84.97%

per frame, being exactly the same results as those
obtained with the sequential version.

Tables I, IT and III show the experimental results
in seconds for each video sequence.

As can be seen, the GOP division method efficien-
cies are very good. The distribution of GOPs be-
tween working nodes was the following;:

o 2 nodes: 23 GOPs for first node and 22 for the
second one.

e 3 nodes: 15 GOPs for each node.

e 4 nodes: 12 GOPs for the first node and 11 for
the remaining nodes.

e 9 nodes: 5 GOPs per node.

o 16 nodes: 3 GOPs for nodes Py, k = 0:12, and
2 GOPs for the remaining nodes.

e 24 nodes: 2 GOPs for nodes P, k = 0 : 20, and
1 GOP for the remaining nodes.

When using the frame division version of H.26L
video encoder, the best results, in terms of efficien-
cies, are obtained using three processors. This is
mainly due to good load balance, assigning three

slices (33 macroblocks) to each node. When other
numbers of nodes are employed, the frame division
will be:

e 2 nodes: 5 and 4 slices per node.

o 4 nodes: 3 slices for the first node and 2 for the
rest of nodes.

¢ 9 nodes: 1 slice per node. Here the load balanc-
ing is the same as that obtained with 3 nodes,
however, communication time significantly in-
creases, reducing the total encoding time to
80%.

To compare both parallel versions the following
figures are presented. Figure 1 shows the encoding
time for the carphone video sequence. In general
the behaviour of frame division, in terms of encoding
time, is worse than GOP division, because the former
requires more communications than the latter.

Figure 2 shows the efficiencies of both parallel ver-
sions encoding the carphone video sequence.

The best efficiencies are obtained with GOP di-
vision, which achieves a good load balance. In the
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Fig. 1. Encoding time of the carphone video sequence

frame division there is one communication per frame,
but in the GOP division there is only one communi-
cation during the total encoding time.

V. CONCLUSIONS

We have presented a preliminary study of two par-
allel implementations of a H.26L video encoder. The
first method distributes the whole video sequence be-
tween system nodes, dividing the original sequence
in Groups Of Pictures (GOPs). The second method
proposed, divides each video frame among the nodes.
The division was made at slice level, requiring a bar-
rier synchronization between working nodes in order
to exchange the necessary information to properly
code the next frame. We have used common test
sequences to evaluate the performance of both ap-
proaches, achieving better results with the GOP di-
vision method, because it requires only one commu-
nication step.

As future work, we are planning to make several
optimizations to the frame division method in order
to hide its communication overhead. Also, we will
test other data distribution strategies to minimize
communications in both methods.
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