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Abstract—Multimedia network systems require image and 
video compression schemes in order to efficiently take 
profit from the available bandwidth.  
In this paper, we present a wavelet still-image coder, called 
LTW (Lower-Tree Wavelet), based on the construction 
and codification of coefficient trees as other proposals do. 
This algorithm is fast and symmetric (except in extremely 
low bit rates), which makes it adequate for real-time 
interactive multimedia applications. We have compared 
our algorithm with several well-known coders in terms of 
rate/distortion performance using the standard Lena 
image. Results show that LTW, with lower temporal 
complexity, achieves better results than EZW (0.9 dB 
PSNR) and stack-run (0.25 dB). Also, we have tested the 
temporal complexity of LTW algorithm, resulting 3.5 times 
faster than an optimized EZW. On the other hand, 
compared to DCT-based standards, like JPEG, our 
algorithm outperforms them in 5 dB approx. (at similar bit 
rates) 
 
Key words—Still image coding; interactive multimedia 
network application; wavelet coding; tree oriented 
encoder. 

I. INTRODUCTION  
 ne of the main part within a multimedia network 
system is the efficient data encoder. Multimedia 

information naturally takes large amount of data to be 
represented and thus, a compression system is required 
in order to avoid wasting bandwidth.  

In order to encode image and video data, the most 
widely used technique is transform domain. During the 
last decade, some popular standards emerged using the 
Discrete Cosine Transform (DCT), but currently a new 
image transform strategy has shown better behavior than 
the DCT-based ones. This mathematical tool is known 
as wavelet transform. 

A wide variety of wavelet-based image compression 
schemes have been reported in the literature. The early 
wavelet image coders [1] were designed to exploit the 
ability of compacting energy on the wavelet 
decomposition. They used quantizers and variable-
length entropy coders, showing little improvements with 
respect to the popular DCT-based ones. 

However, the properties of wavelet coefficients can be 
exploited more efficiently. In that sense, Shapiro [3] 
developed a wavelet-based encoder that considerably 
improves the previous proposals. The encoder, called 
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Embedded Zero-tree Wavelet encoder (EZW), is mainly 
based on two questions (a) the similarity between the 
same kind of sub-band in a wavelet decomposition, and 
(b) a quantization based on a successive-approximation 
scheme that can be adjusted in order to get a specific bit 
rate. The encoder includes an entropy encoder (typically 
an adaptive arithmetic encoder) as its final stage. 

Said and Pearlman [2] proposed a variation of EZW, 
called SPIHT (Set Partitioning In Hierarchical Trees). It 
achieves better results than EZW, even without taking 
into account the final arithmetic encoding stage. The 
improvements are due to the way it groups the wavelet 
coefficients and how it stores the significant 
information. 

A different approach to the previous algorithms is the 
one proposed in [4], known as the stack-run algorithm. 
This algorithm has a similar structure than JPEG coders. 
That is, after wavelet decomposition, wavelet 
coefficients are quantized using a classic quantization 
scheme. Then, quantized coefficients are entropy coded 
using a run-length encoder (RLE) and, finally, an 
arithmetic encoder is used. 

In [5], a joint space-frequency quantization scheme 
was proposed. It uses a spatial quantization, like zero-
tree, in combination with a standard scalar quantizer. 
The idea is based in the fact that natural images are 
perfectly modeled by a linear combination of compacted 
energy in both frequency and space domains. 

One of the most widely used technique from the above 
presented ones is tree encoding. However, this kind of 
coder exhibit an important asymmetry, due to the way 
that construction of significance coefficient maps and 
refinement stages are performed in the encoding stage.  
So this kind of coder, by nature, are not able to work 
efficiently with interactive multimedia applications. 

In this paper, we propose a new wavelet still-image 
coder that it is simpler and faster than others previously 
published [3][2]. We have called it LTW (Lower-Tree 
Wavelet) coder. The main contribution of LTW is the 
way that it builds the coefficient map. It does not use an 
iterative loop in order to determine the significant 
coefficients and to assign them bits. It builds the 
significant map in only one step using two symbols for 
pruning tree branches, and then, depending on the 
required target bit rate, it codes the significant 
coefficients also in one step. This algorithm significantly 
reduces the complexity of the encoder stage in such 
manner that it is similar to the decoder stage. So, another 
important feature of LTW is its symmetric behavior at 
certain bit rates. 

In section 2 a description of the proposed algorithm is 
shown. In section 3, we show a performance evaluation 
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of our proposed scheme in terms of rate/distortion and 
computation complexity performance metrics. Section 4 
presents some design considerations. Finally, in section 
5 some conclusions and future work are drawn. 

II. THE LOWER-TREE WAVELET CODER 
For the most part, digital images are represented with a 

set of pixel values. The encoder proposed in this paper 
can be applied to a set of coefficients C resulting from a 
dyadic decomposition Ω(⋅), in order that C=Ω(P). The 
most commonly used dyadic decomposition in image 
compression is the hierarchical wavelet subband 
transform [1], so an element Cc ji ∈,  is called transform 
coefficient. 

Tree oriented wavelet image encoders are proved to 
efficiently transmit or store the set C, achieving great 
performance results.  In these algorithms, two stages can 
be established. The first one consists on encoding the 
significance map, i.e., the location and amount of bits 
required to represent those coefficients that will be 
encoded (significant coefficients).  In the second stage, 
significant transform coefficients are encoded, i.e. their 
sign and magnitude bits, depending on the desired target 
bit rate. 

One of the main drawbacks in previous tree oriented 
wavelet image encoders is their high temporal 
complexity. That is mainly due to the bit plane 
processing at the construction of the significance map, 
that is performed along different iterations, using a 
threshold that focuses on a different bit plane in each 
iteration. Moreover, the bits of the significant 
coefficients are also bit plane processed. 

Our proposed LTW algorithm is able to encode the 
significance map without performing one loop scan per 
bit plane. Instead of it, only one scan of the transform 
coefficients is needed. The LTW also can encode the 
bits of the significant transform coefficients in only one 
scan. 

Let us define some concepts before the LTW be 
explained.  Like in the rest of tree encoding techniques, 
coefficients from C can be logically arranged as a tree. 
In our algorithm, every coefficient bac ,  in the LL 
subband (the scaled version of the original image) is the 
root of a tree. For each root node placed at (a, b), its 
offspring will be formed by three coefficients placed at 
(a+width(LL), b), (a, b+height(LL)) and (a+width(LL), 
b+height(LL)). The offspring of the rest of nodes (c, d) 
are the four coefficients placed at (2c, 2d), (2c+1, 2d), 
(2c, 2d+1), (2c+1, 2d+1) (except for those nodes in the 
first level of decomposition subbands, LH0, HL0 and 
HH0, that represent the leaves of the trees). 

We also have to define the order to scan the subbands 
in the first stage, where the significance map is built. We 
use a zig-zag order, starting from the LL subband, so 
that all the subbands at a level n are always scanned 
before the n-1 subbands. Finally, coefficients in a 
subband are scanned in a Morton order. Notice that both 
the scan order and the trees are defined in a similar way 
that in Shapiro’s EZW algorithm. 

Now we are ready to define the algorithm. Let us start 
with the encoder part. The quantization process is 
performed by two strategies: one coarser and another 

finer. The finer one consists on applying a scalar 
uniform quantization to the coefficients, and it is 
performed before the LTW algorithm. On the other 
hand, the coarser one is based on removing bit planes 
from the least significant part of the coefficients, and it 
belongs to the LTW encoder. We define rplanes as the 
number of less significant bits that are going to be 
removed in the LTW. 

At the initialization of the encoder, it is calculated the 
maximum number of bits needed to represent the higher 
coefficient (maxplane) and it is output to the decoder. 
The rplanes parameter is also output. With these data, 
we initialize an adaptive arithmetic encoder that will be 
used to transmit the number of bits required to encode 
any coefficient. We will only transmit those coefficients 
that require more than rplanes bits to be coded, so only 
maxplane-rplanes symbols are needed to represent this 
information. We also use two extra symbols to 
efficiently represent the significance map. 

In the next stage the significance map is encoded as 
following. All the subbands are scanned in zig-zag order 
and for each subband all the coefficients are scanned in 
Morton order, as explained previously. Then, for each 
coefficient, if it is significant (i.e., it is different to zero 
if we discard the first rplanes bits) the number of bits 
required to represent that coefficient is encoded with an 
adaptive arithmetic encoder. As coefficients in the same 
subband have similar magnitude, and due to the order 
we have established to scan the coefficients, the adaptive 
arithmetic encoder is able to encode very efficiently the 
number of bits of the transform coefficients. On the 
other hand, if a coefficient is not significant and all its 
descendents are not significant (they form a lower-tree), 
the symbol LOWER is encoded and this coefficient and 
its descendents are marked as not active (initially all 
them are active). A not active coefficient is not 
processed any more, neither in the first stage nor in the 
second one. Finally, if the coefficient is insignificant but 
it has at least one significant descendent, the symbol 
ISOLATED_LOWER is encoded and only this 
coefficient is marked as not active. 

The second stage consists on encoding the significant 
coefficients discarding the first rplanes bits and their 
most significant bit (it can be inferred by the decoder). 
In order to speed up the execution time of the algorithm, 
we may not use an arithmetic encoder, what results in a 
very small lost in performance. The sign is transmitted 
in a similar way. 

The LTW encoder and decoder algorithms are defined 
as follows. 

 
Encoder Algorithm: 

(E1) INITIALIZATION 

output rplanes 
output ( )⎡ ⎤{ }jiCc

cplane
ji

,2logmaxmax
, ∈∀

=  

mark all Cc ji ∈,  as active 
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(E2) OUTPUT THE SIGNIFICANCE MAP. 
Scan the subbands (zig-zag order). For each jic ,  in a 
subband  

if active( jic , ) 

( )⎡ ⎤jiji cnbits ,2, log=  
if rplanesnbits ji >,  

arithmetic_output jinbits ,  
else 

mark jic ,  as not active 
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if  rplanesnmaxdesc >  
arithmetic_output ISOLATED_LOWER 

else 
mark all jiyx Dc ,, ∈  as not active 
arithmetic_output LOWER 

 
E3) OUTPUT THE SIGNIFICANT 

TRANSFORM COEFFICIENTS. Scan C in an 
established order. For each Cc ji ∈,  

if active( jic , ) 
output 

( ) ( )jirplanejinbits cc
ji ,1,1 bitbit
),( +− K  

output sign( jic , ) 
Note: ( )cnbit  is a function that returns the nth bit of c. 
 

Decoder Algorithm: 
 
D1) INITIALIZATION 

input rplanes, maxplane 
mark all Cc ji ∈,  as active 
 

D2) INPUT THE SIGNIFICANCE MAP. Scan 
the subbands in the same order as in E2). For each 

jic ,  in a subband 

if active( jic , ) 

arithmetic_input jinbits ,  
if jinbits , =ISOLATED_LOWER 

mark jic ,  as not active 
if jinbits , = LOWER 

( ){ }jiji cD ,, descendant=  
mark jic ,  and all jiyx Dc ,, ∈  as not active 

 
D3) INPUT THE SIGNIFICANT 

TRANSFORM COEFFICIENTS. Scan C in the 
same order as in E3). For each Cji ∈,c  

if active( jic , ) 

( )jinbits c
ji ,),(

setbit  

input ( ) ( )jirplanejinbits cc
ji ,1,1 bitbit
),( +− K  

( )jic ,rplanesetbit  
input sign( jic , ) 

Note: ( )cnbit  is a function that writes the nth bit of c, 
and ( )cnsetbit  set one the nth bit of c. 

 
Notice that, in the decoder at D3), the rplaneth bit of 

each significant coefficient is set to one in order to 
reduce the error interval of the recovered coefficients. 

 
A. Comparison with other tree-based wavelet 

encoders 
 
Like in other tree-based wavelet encoders, in the LTW 

algorithm there are two stages, in the first one the 
significance map is encoded (it is called dominant pass 
in EZW and sorting pass in SPIHT) and in the second 
one the significant coefficients are encoded (called 
subordinate pass in EZW and refinement pass in 
SPIHT). Unlike them, in the LTW the significance map 
and the significant coefficients are encoded in only one 
iteration, without the need of an iterative loop scanning 
the same trees once per bit plane. Moreover, several lists 
must be handled in both the EZW and the SPIHT 
algorithms, while the LTW does not need the 
construction of lists. In fact, implementing this 
algorithm is simpler and it has lower temporal 
complexity (as shown in section 3). 

One disadvantage of the LTW algorithm is that it is 
not naturally embedded (unlike EZW and SPIHT). 
Instead of it the bit rate is adjusted using two 
quantization parameters in the same way as in the 
widely used JPEG and MPEG standard. 

III. SIMULATION RESULTS 
We have implemented the LTW encoder and decoder 

algorithm in order to test its performance. It has been 
implemented using standard C language, and all the 
simulation tests have been performed on a regular 
Personal Computer, with an AMD K7 Processor. The 
selected image has been the standard Lena 
(monochrome, 8 bpp, 512x512). This allows us to 
compare the LTW performance with other codecs. 

A six-level dyadic wavelet transform has been used, 
with biorthogonal 10/18 filter [4], although other filters 
like 9/7 [1] have shown similar behaviour, as we will see 
in the next section.  

Table 1 presents a performance comparison, in terms 
of image quality (PSNR) at different bit rates (bpp). It 
shows that the proposed codec outperforms the EZW in 
approx. 0.8 dB at low bit rates, and others not tree-
oriented codecs, like the stack-run, are also improved. 
SPIHT uses a more complex algorithm to group the 
coefficients and therefore achieves slightly higher 
performance (0.2 dB). 

On the other hand, the DCT-based standard JPEG is 
widely outperformed by all the wavelet-based 
algorithms, what shows the better performance of 
wavelet transform compared to discrete cosine transform 
used in image compression. In particular, at all bit rates, 
LTW is approximately 5 dB higher than JPEG, in terms 
of PSNR. This comparison is shown in a subjective way 
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                                          a)                                                                                          b) 
 

      
                                          c)                                                                                          d) 
                       

Fig. 1. Lena image compressed using JPEG a) and b), and using wavelets (LTW) c) and d) 
(left column at very low bit rates (0.125 bpp approx.) and right column at low bit rates (0.25 bpp)) 

in figure 1, that clearly states what objective measures 
have revealed. 

 
TABLE I  

PSNR (DB) WITH DIFFERENT BIT RATES AND CODECS 

codec\bpp JPEG EZW Stack-
run 

SPIHT Preliminary 
LTW 

1 35.70 39.55 n/a 40.41 40.12 
0.5 32.87 36.28 36.89 37.21 37.01 

0.25 29.12 33.17 33.80 34.11 33.93 
0.125 - 30.23 n/a 31.10 31.04 

 

 
One of the main advantages of the LTW algorithm is 

its lower temporal complexity. In order to perform a 
practical comparison between LTW and EZW, we have 

implemented a version of the EZW. This program runs 
the EZW in an efficient way. For instance, in the 
initialization section of the algorithm, the highest 
descendent of every coefficient is efficiently calculated 
(cost O(n2) for a nxn image), therefore there is no need 
to explore the trees in the dominant pass to know if a 
coefficient is encoded as zero-tree root or as isolated 
zero (see [3]). Figure 2 shows as our algorithm greatly 
outperforms the EZW in terms of execution time (the 
encoder is over 3.5 times faster and the decoder about 
2.5). On the other hand, the LTW encoder and decoder 
are much more symmetric than the EZW. Notice that, 
except at very low bit rates, the execution time for the 
LTW encoder is very similar to the execution time for 
the decoder. The exploration of the trees (i.e., looking 
for significant descendents) is only performed on the 
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encoder side, and its temporal complexity is the same at 
any rate, that is what makes the LTW really asymmetric 
at very low bit rates (lower than 0.25 bpp). 
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Fig. 2. Execution time comparison (EZW and LTW) 

 

IV. SOME DESIGN CONSIDERATIONS IN LTW 
During the development of a wavelet image encoder, 

many design options appear. Some of them involve the 
wavelet transform process (filter used, number of 
wavelet decomposition) and others the encoding 
process.  

A. Basic options 
Choosing a good filter set is crucial in order to achieve  

good compactness of the image in the LL band, in this 
way, the amount of nonzero coefficients and its 
magnitude are reduced, and therefore the image entropy. 
Shapiro’s EZW uses an Adelson 9-tap QMF bank filter, 
however, it has been proved that biorthogonal filters, 
like B9/7 and Villasenor 10/18, provide better results. 
These filters make better energy compaction and are 
symmetric, what results in lower magnitude of the 
coefficients on the border of the image on the condition 
that a symmetric extension of the image is applied. 
Therefore, biorthogonal Villasenor 10/18 filter [4] will 
be used, although other biorthogonal filters like B9/7 
have shown similar behavior. 

Another important aspect in wavelet processing is the 
number of decomposition levels performed. It mainly 
depends on the image size and the number of filter taps. 
With our image, which is 512x512, a six level dyadic 
decomposition is suitable, resulting in a final 8x8 LL 
subband. 

Let us focus on the quantization process. In section 2 it 
has been explained how the bit rate and its 
corresponding distortion factor can be modified by 
means of two quantization parameters, one finer and 
another coarser (rplanes). LTW is not naturally 
embedded, it is the price that we have to pay for the 
lower temporal complexity. Instead of it, the bit rate is 
adjusted using two quantization parameters in a similar 
way as in the widely used JPEG standard.  

In fact, the finer quantization parameter is used to 
adjust the bit rate in an extremely accurately way. This 
parameter is actually a scaling factor, rather than a 
quantization factor. So, if q is any real number 
representing the finer quantization (typically within the 

interval [0, 1]), it is easy to see that the quantization 
process involving the algorithm is equivalent to multiply 
all the wavelet transform coefficients by q and then 
perform an integer division by rplanes2 . In this sense, 
two different rplanes values may represent the same 
global quantization whenever we choose the suitable q 
value, i.e. if rplanes is decreased in one q should be 
divided by two whereas if rplanes is increased in one q 
should be doubled. 

Figure 3 shows the relation between the quantization 
parameters and the final bit rate achieved. In these 
curves it can be easily seen the equivalence previously 
mentioned. The bit rate corresponding to q=0.2 and 
rplanes=6 is roughly 0.5 bpp. If we decrease rplanes in 
one, the same bit rate is achieved with q=0.4, and if we 
decrease it again it is achieved with q=0.8. 

The same effect can be observed in figure 4, where the 
image quality (PSNR) is evaluated in function of the 
quantization parameters. 

 

Fig. 3: Relation between quantization parameters and bit rate 

Fig. 4: Relation between quantization parameters and PSNR 

B. Analyzing the adaptive arithmetic encoder 
As coefficients in the same subband have similar 

magnitude, and due to the order we have established to 
scan the coefficients, an adaptive arithmetic encoder [6] 
is able to encode very efficiently the number of bits of 
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the transform coefficients (i.e. the significance map used 
by the LTW algorithm). That is why this mechanism is 
essential in the R/D performance of the encoder. 

A regular adaptive arithmetic encoder uses one 
dynamic histogram in order to estimate the current 
probability of a symbol. To improve this estimation we 
can use a different histogram depending on the 
decomposition level of the wavelet subband. It makes 
sense because coefficients in different subbands tend to 
have different magnitude, whereas those in the same 
decomposition level have similar magnitude.  

Table II, column a) shows the performance of the 
preliminary LTW in terms of image quality (PSNR) for 
different bit rates (bpp).  In column b) we can see the 
results of using a different histogram on every 
decomposition level. It results clearly beneficial with no 
penalty in temporal complexity. 

In section 2 we have defined maxplane as the 
maximum number of bits needed to represent the higher 
coefficient in the wavelet decomposition, and it is the 
value used to initialize the arithmetic encoder. At this 
point, we can define maxplaneL as the maximum 
number of bits needed to represent the higher coefficient 
in the level L. So these values can be used to adjust the 
initialization of every arithmetic encoder, provided all 
maxplaneL symbols are output to the decoder. The 
drawback introduced by the needed of encoding these 
symbols is manifestly compensated by the 
improvements achieved, just as column c) in table II 
shows. 

Last column in this table presents the very little 
advantage attained by removing the possibility of 
appearance of a ISOLATED_LOWER symbol in the last 
level of the wavelet transform. 

Several other actions can be tackled directly on the 
adaptive arithmetic encoder. On the one hand, the 
maximum frequency count (see more details in [6]) 
proposed by the authors is 16384 (when using 16 bits for 
coding). Practical experiences led Shapiro to reduce this 
value to 1024, and in LTW a value of 512 has been 
shown more adequate. On the other hand, another 
parameter that can be adjusted is how many the 
histogram is increased with every symbol. If this value 
is greater than one, the adaptive arithmetic encoder may 
converge faster to local image features, but increasing it 
too high may turn the model (pdf estimation) 
inappropriate, leading to poorer performance. 

TABLE II 

PSNR(DB) WITH DIFFERENT OPTIONS IN THE ARITH. ENCODER 

opt/bpp a) b) c) d) 
1 40.12 40.19 40.25 40.26 

0.5 37.01 37.06 37.11 37.12 
0.25 33.93 34.00 34.07 34.07 
0.125 31.04 31.10 31.17 31.17 

 

TABLE III 

PSNR (DB) WITH DIFFERENT BIT RATES AND THE FINAL LTW CODEC 

codec\bpp JPEG EZW Stack-run SPIHT Final LTW 
1 35.70 39.55 n/a 40.41 40.26 

0.5 32.87 36.28 36.89 37.21 37.12 
0.25 29.12 33.17 33.80 34.11 34.07 
0.125 - 30.23 n/a 31.10 31.17 

V. CONCLUSIONS 
In this paper, we have presented the LTW encoder, a 

wavelet still-image encoder based on the construction 
and efficient coding of wavelet coefficient trees. Due to 
its higher symmetry and lower temporal complexity, we 
think that the LTW is a good candidate for real-time 
interactive multimedia communications. 

We have evaluated our proposal, comparing its 
performance in terms of rate/distortion with the JPEG, 
EZW, SPIHT and stack-run algorithms. According to 
table III, results show that LTW improves EZW and 
stack-run in 0.9 and 0.25 dB respectively, and show 
similar performance to SPIHT algorithm. However, we 
have shown that the main contribution of this algorithm 
is its lower temporal complexity. In particular, LTW is 
able to code the standard Lena image up to 3.5 times 
faster than EZW. 

As future work, we are planning to optimize the LTW 
encoder and include it in a Motion Wavelet video 
encoder, testing its performance using common video 
sequences. 

VI. REFERENCES 
[1] M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies. 
“Image coding using wavelet transform,” IEEE Trans Image 
Processing, vol 1. nº 2. pp. 205-220, 1992 
 
[2] A. Said, A. Pearlman. “A new, fast, and efficient image 
codec based on set partitioning in hierarchical trees,” IEEE 
Transactions on circuits and systems for video technology, vol. 
6, nº 3, June 1996 
 
[3] J.M. Shapiro, “Embedded Image Coding Using Zerotrees 
of Wavelet Coefficients,” IEEE Transactions on Signal 
Processing, vol. 41, pp. 3445-3462, December 1993. 
 
[4] M.J. Tsai, J. Villasenor, F. Chen. “Stack-run image 
coding,” IEEE Trans. on Circuits and Systems for Video 
Technology, vol 6, nº 10, pp. 519-521, Oct. 1996 
 
[5] Z. Xiong, K. Ramchandran, M.T. Orchard. “Space-
frequency quantization for wavelet image coding,” IEEE 
Trans. on image processing, vol.6, nº5, pp.677-693, May 1997 

 
[6] I.H. Witten, R.M. Neal, J.G. Cleary, “Arithmetic coding for 
compression,” Commun. ACM, vol 30. pp. 520-540, 1986. 
 


