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Abstract— Rate/Distortion performance is
enhanced with perceptual coding and quantization
techniques, as luminance and contrast masking, or
with the use of frequency weighting matrices
obtained from the Contrast Sensitivity Function
(CSF). These techniques reduce the rate of images
or videos while preserving the perceived visual
quality. Encoders that use some of these techniques
should be compared with perceptual R/D curves
i.e., where the distortion metric is an objective
quality assessment metric. In this paper we
introduce a method used to obtain image adaptive
dead zone size estimators that provides a dead zone
value that maximizes the perceptual R/D
performance. We use a wavelet based encoder that
is perceptually enhanced with a frequency weighting
matrix directly obtained from a model of the CSF to
test our proposal. Results show that when using the
best performing estimator, at the same perceptual
quality, mean rate savings up to 9.98% can be
achieved.

Keywords— Perceptual coding, perceptual
quantization, R/D performance, optimum dead zone
quantizer.

I. Introduction

THE S-LTW encoder was presented in [1]. It
is a wavelet based encoder with lower resource

demanding than other encoders in the literature.
The basic idea of this encoder is very simple: after
computing a dyadic wavelet transform of an image,
the wavelet coefficients are first quantized and then
encoded with an arithmetic coding. In S-LTW, the
quantization process is performed by means of two
strategies: one coarser and another finer. The finer
one consists on applying a scalar uniform
quantization (Q) to wavelet coefficients. The
coarser one is based on removing the least
significant bit planes (rplanes) from wavelet
coefficients.

Although having a good R/D performance this
encoder was not enhanced with any perceptual
coding technique. Perceptual coding techniques are
those that include some of the properties of the
Human Visual System (HVS) in their design, using
the knowledge of how the HVS process natural
scenes along the visual pathway, to encode images
and video sequences in a perceptually inspired way.

Using these techniques, the so named
”peceptually enhanced” encoders, are able to
reduce the bit rate needed to encode natural images
by discarding irrelevant information to our HVS
that is present in the transformed coefficients. The
most commonly used perceptual coding techniques
are the inclusion of the CSF, luminance masking
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and/or contrast masking into the encoder, what can
be achieved in different ways as explained in [2].
The base sensitivity thresholds, obtained via
perceptual subjective tests or derived from a CSF
model, are typically used to fully quantize, i.e.,
remove, the transformed coefficients that are below
threshold, and that are supposed to correspond to
perceptually redundant information.

Therefore a motion version of the S-LTW
encoder, was enhanced in [3], with the inclusion of
the CSF in the quantization stage of the encoder .
The reader is refered to [3] for details of how the
inclusion of the CSF was made and which model of
CSF was used. The proposed encoder achieved up
to 19.42% of bit rate saving for HD resolution
sequences with respect the X.264 video encoder at
the same perceptual quality. As the new proposed
encoder used perceptual coding techniques the
results should be compared using a perceptual
objective Quality Assessment Metric (QAM) ([4],
[5]). Results were measured by means of the VIF
quality assessment metric that was the one that
best performance obtained in previous metric
comparison tests [6].

The performance of encoders using dead zone
quantizers can be further increased by tuning the
dead zone size. In [7], Ström made an experiment
with one image to determine how large the dead
zone should be in that image for optimal
performance, and how much quality could be
gained when the Uniform Scalar Quantizer (USQ)
is substituted with a Uniform Scalar Dead Zone
Quantizer (USDZQ) in a DWT encoder. Their
study was done also in terms of R/D performance
with the PSNR as quality metric. As mentioned,
they used only one image resulting an optimal dead
zone size of 1.9∆ , which finally provides a quality
increase of 0.5 dBs for that image.

As in the Ström experiment, we will also use a
DWT based encoder, but in this case our PETW
proposal [8] that implements a Uniform Variable
Dead Zone Quantizer (UVDZQ). We use the VIF
metric because the optimum dead zone should be
calculated taking into account the perceptual
elevation produced by the Perceptual Weighting
Matrix (PWM) that sets the CSF into the
quantization stage in the encoder. With a
maximization algorithm an optimum dead zone size
could be reached for each individual image at a
fixed Qstep, but from a practical use this is a very
high time consuming task. More over, the R/D
curve is obtained varying the Qstep and this
process should be repeated for each Qstep.
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In this paper we present how we obtain three dead
zone size estimators that produces a near optimum
dead zone size, for all the bit rate range used in the
R/D curves, being in addition image adaptive and
with very low computational cost. The dead zone
estimator uses the ξ parameter of the UVDZQ that
produces the best perceptual R/D curve.

The rest of the paper is structured as follows. In
Section II, a short introduction to the PETW
encoder is presented, in Section III a brief review of
the related quantization schemes is presented. The
dead zone size estimators are presented in Section
IV, while some results are presented in Section V.
Finally Section VI concludes the paper.

II. Perceptually Enhanced Tree Wavelet
Encoder - PETW

The LTW and the S-LTW encoders employ a
quantization mechanism based on two parameters
[9], one finer (Q) and another coarser (rplanes).
Thus, the quantized image is the result of jointly
applying two quantization methods. The first
parameter performs a scalar quantization with a
step-size of 2Q, and the second one consists on
removing the rplanes least significant bits of all
coefficients, being a simple bit-plane quantization
process. The two quantization stages of the S-LTW
act jointly as a Uniform Dead Zone Quantizer
(UDZQ), and therefore the use of both quantization
processes may seem a bit strange, but it reveals
more natural when the LTW is studied in depth, as
some coding optimizations can be included as a
result [9].

The new encoder proposal called Perceptually
Enhanced Tree Wavelet (PETW) [8] is based also
on the S-LTW encoder, that besides having the
perceptual weighting stage (by the use of the
PWM), it has a new quantization strategy based on
a UVDZQ, so reducing to one the parameters
needed by the encoder to control the quantization
stage. Setting in the UVDZQ the equivalent dead
zone size that the S-LTW uses, allow us to use only
the step-size parameter Q to control the amount of
quantization, providing the same results as when no
perceptual enhancement is applied. The quantizer
change also enables us to obtain encoded images
with higher rates than with the S-LTW encoder, as
we do not have the restriction imposed by the
coarse quantizer that is always applied with a
minimum value of rplanes = 2. Reaching higher
rate ranges is appropriate when working in the
sub-threshold or visually lossless area, where
distortions are supposed not to be detected in static
images by humans.

The motivation for changing the S-LTW
quantization stage is based on the work of [10],
where authors made several performance
comparisons between a USQ, a USDZQ, and a
Universal Trellis Coded Quantizer (UTCQ), using
the same step size, and applied to DWT and DCT
transformed coefficients. Their performance

comparisons show that the UTCQ can quantize
data more precisely and provide better PSNR
results than the other two quantizers when using
the same step size. But, when they are combined
with zero or higher order entropy coders, the dead
zone quantizer (the USDZQ) is the best instead. In
these comparisons, authors show that if the dead
zone is designed carefully, the USDZQ can
effectively reduce the output hits of the entropy
coder, and although it reduces quantization
precision by discarding some data around zero, the
obtained rate reduction is worthwhile. Moreover,
the USDZQ is only a USQ with a dead zone, and its
computational complexity is lower than the UTCQ.

Our studies are oriented to optimize the R/D
behavior in terms of the VIF QAM, and hence to
determine which is the influence of the dead zone
size over the perceptual quality, and not over the
PSNR as in previous studies. The variable dead
zone schema that we use in the PETW encoder is
the one proposed in the JPEG2000 encoder [11],
[12].

III. Quantization

In this section we shortly review the S-LTW
2-stage quantizer in contrast to the UVDZQ in
order to determine the parameters that equals both
quantization strategies from a PSNR point of view.
In the next section (Section IV), we will see how the
dead zone variability allowed by the UVDZQ can
be used to enhance the visual perception of images
by setting the optimal dead zone size in each case.

In order to change the S-LTW quantizers with a
UVDZQ, the first step is to find the correspondence
with UVDZQ. To do so, we use the next
formulation, (see [9] for detailed formulation of the
2-stage quantization of the S-LTW). The overall
step size ∆ applied to S-LTW can be viewed as the
multiplication of two deltas, ∆1 corresponding to
the finer quantizer and ∆2 corresponding to the
coarser one, as shown in Equation 1.

∆ = ∆1 · ∆2

∆1 = 2Q

∆2 = 2rplanes

(1)

In order to replace these two quantizers with a
UVDZQ, we must know the relationship between the
dead zone size, and the overall ∆ applied in S-LTW,
i.e., to obtain the equivalent dead zone size in the
UVDZQ that is used in S-LTW.

Equation 2 is the forward quantizer expression
for a UVDZQ that sets the value cQ of the
quantized coefficient [12]. The parameter ξ, so that
ξ < 1, determines the size of the dead zone in such
a quantizer. Depending on the value of this
parameter, the dead zone size is set as follows:

• ξ < 0 increases the dead zone size above the size
of 2∆

• ξ = 0 produces a dead zone with double the size
as the quantization step, i.e., 2∆ and then the
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Fig. 1. Equivalence of the R/D behavior between S-LTW
joint quantization and the PETW dead zone quantization
for Mandrill.

upper bound of the positive part of the dead
zone is ∆

• 0 < ξ < 1 reduces the dead zone so that its size
is lower than 2∆. A typical value is ξ = 0.500,
which produces a dead zone size of ∆

cQ =

{
sign(c)

⌊
|c|+ξ∆

∆ + ρ
⌋

if |c|
∆ + ξ + ρ > 0

0 Otherwise
(2)

cR = sign(c) (|cQ| − ξ + δ − ρ) ∆ (3)

The DZ size of S-LTW related with the overall
step size ∆ is DZ = 1.25∆, so we must set the
correct parameters in the UVDZQ formulation, so
that its dead zone size is also DZ = 1.25∆. Then,
we can check if the results obtained with the
PETW encoder without perceptual enhancements
but with the UVDZQ are the same as those
obtained with S-LTW. Finally, we will proceed with
the performance analysis.

The ρ parameter in Equation 2 determines if we
will finally use a truncation operation or a rounding
one in the quantizer, see Equation 4, and also the
0 ≤ δ < 1 parameter sets the recovering point inside
the quantization interval.

ρ =

{
0 for truncating

0.5 for rounding

}
(4)

So, if for S-LTW we have dead zone size of 1.25∆
??, we must use a ξ value so that 0 < ξ < 1. To use a
UVDZQ that equals the behavior of both quantizers
of the S-LTW acting together we must fix ξ = 0.375
and ρ = 0. With Equation 3, we can finally obtain
the reconstructed coefficient cR.

In figure 1 we can see that the PSNR R/D
behavior of the equivalent PETW, with a dead zone
size of DZ = 1.25∆ obtained with a ξ = 0.375, is
almost the same as the one obtained with the
original joint quantization of S-LTW. For some
images with high frequency content, as those shown

in Figure 1, the obtained PSNR is slightly better
with the new quantization schema of PETW. This
is because in S-LTW, the rate control is enabled
and the rplanes parameter changes depending on
the desired rate. This is an expected result as
stated by the S-LTW authors because fixing the
rplanes = 2 and then increasing the finer quantizer
up to the desired rate produces slightly better
results.

IV. Dead Zone Estimation

Our objective in this section is focused into the
impact of the dead zone size on the R/D coding
performance. So, we will analyze how different dead
zone sizes affect to the VIF R/D performance, and
then we will propose a way to estimate the dead
zone size that maximizes the VIF R/D performance
and therefore, the perceptual quality.

In order to determine the optimum ξ value for a
specific image, we performed an experiment to
obtain this ξ parameter from a R/D point of view.
We choose five step sizes, i.e., five values for the Q
parameter of the PETW that produce five rates
evenly spaced in the bit rate range. For each Q
value we encode and decode the image and obtain
the real VIF value at the corresponding rate. With
the real VIF/rate values we use Equation 5 to
estimate the VIF R/D curve for those points. We
propose Equation 5 as one approximation to the
R/D curve when the employed distortion metric is
VIF, see [8] for more details. Using this
approximation, we produce 101 estimated curves
for each image, one curve for each ξ value in the
range −0.500 <= ξ <= 1 chosen in increments of
0.010 units. We call these curves Xi Curves. Doing
so, the only parameter that changes in the PETW
encoder is the ξ one, as the step sizes for each of
the curves are the same.

V IF (r) =
p1 · r2 + p2 · r + p3

r + q1
(5)

Then, for each of the Xi Curves, we obtain the
bit rate gain or loss using the same method as in
Bjontegaard [13], [14]. We compare the gain or loss of
each curve with the one obtained with the reference
curve. The reference curve is the one obtained with
ξ = 0.375 that equals the 1.25∆ dead zone size of
the S-LTW. We used the whole image Kodak set to
obtain the optimum ξ value for each image, we call
it best xi value, i.e., the value that maximizes the bit
rate gain with respect to the reference R/D curve in
the VIF range from 0.30 to 1.0 VIF units.

Table I shows the best xi values for the Kodak
set images. The objective is not to perform these
calculations for each image but to find an adaptive
method or equation. First, we search for one value
that could be calculated on the fly or used as a well-
working global value.

One way to avoid the task of calculating the best
xi for every image is to obtain a unique value that
is sub-optimum for the image. One candidate value

452 JP 2015



TABLE I

Best xi values for the Kodak set images.

Image Best Xi Median Err. Mean Err.
1 0.340 0.220 0.263
2 -0.360 0.480 0.437
3 -0.190 0.310 0.267
4 -0.130 0.250 0.207
5 0.320 0.200 0.243
6 0.270 0.150 0.193
7 0.120 0.000 0.043
8 0.250 0.130 0.173
9 -0.030 0.150 0.107
10 -0.070 0.190 0.147
11 0.160 0.040 0.083
12 -0.220 0.340 0.297
13 0.410 0.290 0.333
14 0.220 0.100 0.143
15 -0.100 0.220 0.177
16 0.050 0.070 0.027
17 0.080 0.040 0.003
18 0.260 0.140 0.183
19 0.170 0.050 0.093
20 0.080 0.040 0.003
21 0.270 0.150 0.193
22 0.130 0.010 0.053
23 -0.250 0.370 0.327

Avg. 0.171 0.174
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Fig. 2. Dispersion plot for the best xi vs. LL std for images
in the Kodak set.

to use is the mean or median ξ value of column best
xi in Table I. The mean value is 0.077 and the
median value is 0.120. In Table I, the Median Err.
and Mean Err. columns show the estimation error
between these values and the optimum xi value
from the best xi column. The last row shows the
mean error for each of these estimated values.
Although for some images these estimated xi values
produce practically the same VIF R/D curve than
the one obtained with the best xi value, none of
them is a good approximation because for other
images the R/D curve is below the reference one.

So the objective is to find another estimated xi
value that is able to minimize this averaged error.
We then searched for a correlation between the best
xi values and some statistical value or metric
obtained directly from the image, or from the
wavelet coefficients before the quantization is
performed, as the ξ parameter must be known at
this point.

A first option is to use the Standard Deviation
(SD) of the wavelet coefficients, but as shown in
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Fig. 3. Scatter plot for the Best Xis vs. Ebpp obtained with
the Coefficient Entropy estimator for images in the Kodak
set. Logarithmic fitting equation is also shown.

Figure 2, where the SD of the LL subband is used,
there is no appreciable correlation between the best
xi values from Table I and the SD for each image,
shown on the horizontal axis. So we proceeded to
search for some entropy measures, which we call
estimators, that are able to estimate the bpp used
for each image, producing an estimation of the bpp
value, Ebpp. These estimators were implemented in
the PETW before the quantization stage, and
therefore before the encoding stage. We
implemented three estimators:

• Coefficient Entropy : This is the zero order
entropy obtained directly from the wavelet
coefficients after transform. This is a generic
measure that does not depend on the encoder.

• Symbols Entropy : This is the zero order entropy
of the PETW symbol map used in the encoding
process. This measure depends strictly on the
PETW encoder as the symbols will be used by
the encoding algorithm.

• PETW Bpp: This is an entropy estimation that
uses the Ebpp produced by Symbols Entropy plus
the real amount of bpp used for the raw bits of
each of the coefficients. In order to determine
the real bits needed for each coefficient, a dead
zone size and a step size must be fixed. We use a
dead zone size equivalent to the one used by the
rate control stage in the S-LTW, which uses a
rplanes = 2 with no further quantization. This
estimator is also dependent on the PETW.

Once we have the Ebpp from each estimator, we
use a scatter plot to see if there is some correlation
between the Ebpp and the optimum xi for each image
in the Kodak set. In figures 3 to 5, we see these
scatter plots, where a correlation is shown.

Figures 3 and 4 also show the best fitting equation
(logarithmic in both cases), that is used to estimate
the best xi values for a desired bit rate. In Figure 5,
a polynomial fitting is shown instead.

Table II shows the results for the Coefficient
Entropy (C.) and the Symbols Entropy (S.) and the
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PETW Bpp (P.) estimators. Columns are the
Kodak set image number, the previously obtained
best ξ and the errors with respect to the optimum ξ
using the fitting equation for each estimator. In the
last row, the average error is also shown for each
fitting equation.

The worst results are obtained with the
Coefficient Entropy, which is the only
encoder-independent estimator. However, this is a
much better estimator than using the Mean or the
Median of the optimum xis. Therefore, this
estimator could be used in any wavelet based
encoder that uses a dead zone quantizer, like for
example JPEG2000, although some adaptations
and more experiments must be done.

In the case of the PETW-dependent estimators,
the best results are obtained with the PETW Bpp,
which is also the better of the three estimators that
we have implemented. It obtains an average error
of 0.069ξ. The polynomial fitting equation used in
PETW Bpp is also shown in Equation 6, where Eξ
stands for estimated Xi, and Ebpp is the estimated
bpp obtained with it.

Eξ = −0.06146E2
bpp + 0.5109Ebpp − 0.6682 (6)

TABLE II

Image and average error for the fitting equation.

Image Best Xi
C. Entropy S. Entropy P. Bpp

Err. Err. Err.
01 0.340 0.007 0.024 0.000
02 -0.360 0.336 0.340 0.338
03 -0.190 0.028 0.011 0.030
04 -0.130 0.130 0.139 0.136
05 0.320 0.015 0.015 0.000
06 0.270 0.075 0.065 0.049
07 0.120 0.210 0.219 0.208
08 0.250 0.104 0.099 0.105
09 -0.030 0.037 0.041 0.042
10 -0.070 0.029 0.030 0.027
11 0.160 0.024 0.008 0.000
12 -0.220 0.162 0.162 0.159
13 0.410 0.011 0.039 0.025
14 0.220 0.003 0.004 0.024
15 -0.100 0.065 0.074 0.070
16 0.050 0.016 0.003 0.003
17 0.080 0.076 0.068 0.072
18 0.260 0.029 0.021 0.001
19 0.170 0.044 0.026 0.021
20 0.080 0.198 0.168 0.162
21 0.270 0.134 0.117 0.110
22 0.130 0.012 0.002 0.010
23 -0.250 0.013 0.047 0.000

Avg.Err. 0.076 0.075 0.069
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V. Results

Once we have an equation to estimate the best ξ
for a specific image, we will test it with other
well-known 512x512 size images, Lena, Barbara and
Zelda.

As an example of the estimation performance oft
the PETW Bpp via Equation 6, Figure 6 shows how
the Estimated Xi R/D curve has the same behavior
than the R/D curve obtained for the Optimum Xi
value whereas Equivalent Xi value obtains a lower
R/D curve.

A segmentation of the VIF scale is performed in
order to be able to measure the average bit rate
savings for each quality segment using the methods
proposed in some refinements of the Bjotegaard
model [14]. The segmentation is defined for the
next quality ranges:

• Visually Lossless (VL): V IF >= 0.83
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TABLE III

Additional % of bit rate gain/loss due to the use of

the PETW Bpp estimator for the VL and E quality

ranges.

Images
Visually Lossless Excellent
% Add. % Tot. % Add. % Tot.

Lena 3.80% 18.08% 1.89% 14.59%
Barbara 1.18% 12.35% 0.84% 14.32%
Zelda 6.50% 23.50% 3.54% 16.70%

TABLE IV

Additional % of bit rate gains/lossess due to the use

of the PETW Bpp estimator for the G and A quality

ranges.

Images
Good All

% Add. % Tot. % Add. % Tot.
Lena -0.95% 7.74% 0.98% 12.46%

Barbara 0.37% 18.42% 0.68% 15.81%
Zelda -0.23% 4.97% 2.40% 13.36%

• Excellent (E): 0.60 <= V IF <= 0.83
• Good (G): 0.30 <= V IF < 0.60

In Tables III and IV, we show in the column
labeled as %Add. the percentage of additional gain
or loss that could be obtained using the estimator
in the PETW with respect the PETW without the
estimator. In the column labeled as %Tot. the
percentage of bit rate saving that is obtained with
respect to the S-LTW encoder, i.e., values in the
%Tot. are the bit rate savings when for PETW, the
proposed dead zone estimator and the PWM are
jointly used.

Table III shows the values corresponding to the
Visually Lossless and Excellent quality ranges,
whereas Table IV shows the values corresponding to
the Good and All quality ranges, covering with the
All range the union of the three considered quality
ranges.

VI. Conclusions

In this paper we present how in a wavelet based
encoder, a change of an Uniform Scalar
Quantization stage with a Uniform Variable Dead
Zone Quantizer, can increase the perceptual
performance when choosing the right dead zone
size. Here, the original encoder was the S-LTW
encoder where the 2-stage quantization stage has
been changed with an equivalent variable dead zone
quantizer. In the new encoder, the PETW, the
dead zone size was initially set to produce the same
quantization as the original uniform quantizer.
Then, by running a comprehensive experiment an
optimum dead zone size could be found for each
individual image so that the perceptual R/D
performance is maximized. In order to avoid the
need to search this optimum dead zone size for each
individual image, three dead zone size estimators
are presented. The use of the best performing one
into the encoder, includes image adaptivity when
determining the dead zone size.

Results confirm the importance of using an

optimum dead zone size for each image to obtain a
better quality of the reconstructed image. The
image adaptive dead zone size estimator is
developed in order to obtain the best R/D
performance when the distortion metric is the VIF
metric. The methods used in this proposal can be
extrapolated for use any other distortion metric
instead. Several estimators were tested and the best
performing one is a PETW encoder dependent.
One of the proposed dead zone size estimators is,
however encoder independent, so with some
adaptations it could be used in other wavelet and
DCT-based encoders.

The use of the image adaptive dead zone size
estimator in the PETW produces additional bit
rate savings, and, depending on the image, up to
9.98%, 6.48%, 0.97%, and 4.73% in the Visually
Lossless, Excellent, Good, and All quality ranges,
respectively.

The PETW with the image adaptive dead zone
estimator, is very competitive in terms of perceptual
quality, measured with the VIF QAM, being able to
obtain important bit rate savings regardless of the
bit rate, when compared with S-LTW.

These savings highlight the benefits that an
appropriate selection of the dead zone size
introduces in the perceptual performance of the
decoded images.
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