
 
Abstract—Propagation conditions in an underwater 

acoustic channel are known to vary in time, causing the 
received signal strength to deviate from the nominal value 
predicted by a deterministic propagation model. To 
facilitate large-scale system design in such conditions (e.g. 
power allocation), we develop a statistical propagation 
model in which the transmission loss is treated as a random 
variable. By repetitive computation of acoustic field using 
ray tracing for a set of varying environmental conditions 
(surface height, wave activity, small displacements of 
transmitter and receiver around nominal locations), an 
ensemble of transmission losses is compiled which is then 
used to infer the statistical model parameters. A reasonable 
agreement is found with log-normal  distribution whose 
mean is taken as the nominal transmission loss, and whose 
variance appears to be constant for a certain range of 
inter-node distances in a given deployment location. The 
statistical model is deemed useful for higher-level system 
planning, where simulation is needed to assess the 
performance of candidate network protocols under various  
resource allocation policies, i.e. to determine the transmit 
power and bandwidth allocation necessary to achieve  a 
desire. 
 

Keywords—Underwater acoustics, Acoustic channel 
model, Wireless sensor networks, Network simulation. 
 

I. INTRODUCTION 

HE growing need for ocean observation and remote 
sensing has recently motivated a surge in research 

publications as well as several experimental efforts (e.g. 
[1]) in the area of underwater acoustic networks. Crucial 
to these developments is the understanding of 
propagation conditions that define the time-varying and 
location-sensitive acoustic environment, not only from 
the viewpoint of small-scale, rapid signal fluctuations 
that affect the performance of the physical layer 
techniques,  but also from the viewpoint of large-scale, 
slow fluctuations of the  received signal power that 
affect the performance of higher network layers. This 
fact has been gaining recognition in the research 
community, leading to an increased awareness about the 
need for network simulators that take into account the 
physics of acoustic propagation [1]-[4]. As a result, the 
first publicly available acoustic network simulators have 
emerged [2], and more are likely to come.  

One of the challenges in the design of underwater 
acoustic networks is the allocation of power across 
different network nodes. This task is exacerbated by the 
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spatial and temporal variation of the large-scale 
transmission loss, and the lack of statistical models that 
capture these apparently random phenomena.        

While it is well known from field experiments that the 
received power varies in time around the nominal value 
predicted by a deterministic propagation model, little is 
known about the statistical nature of these variations. 
Literature on this topic is scarce; however, several recent 
references indicate that the received signal strength 
obeys a log-normal distribution (e.g. [5][6]). A good 
system design has to budget for signal strength 
variations in order to ensure a desired level of network 
performance (e.g. connectivity), and the budgeting task 
can be made much easier if the statistics of the 
underlying process are known.  

In this paper, we analyze those random variations in 
the large-scale transmission loss that are mainly 
governed by the environmental factors such as surface 
activity (waves) for a particular network scenario. We 
begin by employing a prediction model based on the 
Bellhop ray tracing tool [7]. Such a deterministic model 
provides accurate results for a specific geometry of the 
system, but does not reflect the changes that occur as the 
geometry changes slightly due to either surface motion 
or transmitter/receiver motion. Fig.1 illustrates this 
situation for a point-to-point link. It shows an ensemble 
of transmission losses calculated by the Bellhop model 
for a set of varying surface conditions, each slightly 
different from the nominal.   

While it is possible in principle to run a deterministic 
propagation model for a large number of different 
surface conditions, the underlying computational 
demands are high. In a large network, it is ineffective, 
and possibly not even feasible, to run a complex 
prediction model for each packet transmission. A 
statistical prediction model then becomes necessary.   

The goal of our work is to employ an existing 
deterministic prediction model (DPM) such as the ray 
tracer [7] to generate an ensemble of channel responses 
corresponding to varying propagation conditions in a 
given network. Using the so-obtained values, we then 
conduct a statistical analysis to obtain the probability 
density function (pdf) of the large-scale transmission 
loss.  The result is a statistical prediction model (SPM) 
that is easy to employ for network design and analysis.  
The rest of this paper is organized as follows. In Sec.II 
we outline a specific system example, and discuss the 
computational demands of deterministic propagation 
modeling. In Sec.III, we present the results of 
deterministic modeling and develop an underlying 
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statistical model. In Sec.IV we discuss the implications 
that statistical modeling can have on network 
simulation, and we conclude in Sec.V. 

 
Fig. 1. An ensemble of transmission losses obtained from Bellhop 

model. Solid line indicates the average over the total run time. 
Dashed lines indicate the values of one standard deviation σ. 

II. SYSTEM SET-UP  

The network of interest is located in coastal waters 
near Valencia, Spain, at coordinates 39°48'13.14"N and 
0°4'34.53"W. It consists of eight nodes arranged in a 
linear topology, as illustrated in Fig.2. 

In general, an arbitrary network location can be 
considered, for which the bathymetry, floor sediment 
and sound speed profile can be found in the online 
databases [8], [9], [10].  In our example, the source is 
assumed to be at one end, and the rest of the nodes are 
placed at different distances ranging from 500m to 
3,700m. The nodes are at a depth of 10 meters, while the 
water depth varies from 25m to 35m within the coverage 
area. Table I summarizes the system parameters.  

We assume a fixed network topology, and vary the 
parameters that are related to the wave activity (wave 
height and wave length). The surface parameters are 
taken from historical and prediction values from 
National Geophysical Data Center databases [11], [12]. 
We also account for the fact that an acoustic 
communication signal does not consist of a single 
frequency, but occupies a (possibly wide) bandwidth. 
The overall transmission loss is thus computed over the 
entire frequency range, which is taken here to be 5 kHz 
– 15 kHz.  

Each execution of the Bellhop tool [7] takes about 5 
minutes on an Intel Core™ 2 Duo CPU 2.10 GHz 
processor running on a standard laptop computer with 3 
GB of RAM memory. Considering 14 different wave 
heights and 14 different wave lengths, i.e. 196 different 
scenarios, the complete analysis lasts about 16 hours for 
a single source location and a single frequency within 
the signal bandwidth. 

Each simulation run produces the acoustic field values 
in a 5km x 5km x 30m volume, with a resolution of 
0.33m3. The values corresponding to selected receiving 
node locations are then extracted, and a statistical 
analysis is performed for each location. 

 
Fig. 2. Network deployment in Valencia, Spain. 

 

TABLE I 
SYSTEM PARAMETERS 

Transmission range 500 m to 3700 m  (in steps of ~500 m) 

Area 5000 m  x 5000 m 

Sediment floor Gravel 

Frequency  5-15 kHz 

Month August 

Wave height 1 m to 3 m (in steps of  0.15 m) 

Wave length  100 m 150 m (in steps of 3.5 m)  

Water depth  25 m to 35 m 

III. STATISTICAL PROPAGATION MODEL 

The statistical propagation model is built by 
compiling the transmission loss values obtained from the 
deterministic model. The values of transmission loss, 
expressed in dB (logarithmic scale) are treated as 
random variables, and it is implicitly assumed that all 
surface conditions are equally likely.  

Fig. 3 shows the histogram of the values obtained for 
Node 2, which is 500 m away from the source, and Fig. 
4 shows the histogram obtained for Node 3, which is 
1100 m away from the source. Shown also in these 
figures is a normal distribution with mean and variance 
equal to the ensemble averages of the transmission loss 
(solid curves). 

 
Fig. 3. Histogram of the transmission loss calculated for Node 2 using 

the deterministic propagation model for varying surface 
conditions. 
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Fig. 4. Histogram of the transmission loss calculated for Node 3 using 
the deterministic propagation model for varying surface 
conditions. 

 

 

Fig. 5. Transmission loss mean value and standard deviation (boxed) 
versus distance. 

The mean and variance obtained for different ranges 
from the source (different locations of the receiving 
node) are shown in Fig.5. We note that the mean value 
of transmission loss increases with distance, as dictated 
by the energy spreading, assumed here to be cylindrical. 
The variance, however, does not change much with the 
distance. This fact motivates us to assume the same 
variance for all the distances considered. Namely, we 
take the standard deviation to be the average of all 
observed values, 5.91 dB (a negligibly different result is 
obtained if the variances are averaged).  

A statistical model is now assumed, which generates 
the transmission loss as a normally distributed random 
variable on a logarithmic scale (or equivalently, log-
normally distributed on a linear scale). The mean value 
for this model can be taken as the ensemble average 
obtained from the deterministic model for a given 
distance, but another approach is possible as well. 

 Namely, we take the mean transmission loss for the 
statistical model to be the value obtained from a single 
realization of the deterministic model for nominal 
system geometry with no waves. The goal in doing so is 
to further reduce the computational demands involved in 
building the statistical model for a given deployment 
geometry. 

 

TABLE II  
TRANSMISSION LOSS PARAMETERS OBTAINED FROM THE 

DETERMINISTIC PROPAGATION MODEL AND STATISTICAL 

PROPAGATION MODEL 

 
Node

Distance 
[m] 

DPM SPM 

mean [dB] σ [dB] mean [dB] σ [dB] 

2 500 41.78 6.14 41.65 

5.91 

3 1,100 47.82 5.91 48.01

4 1,600 50.83 5.60 50.79 

5 2,100 53.81 6.12 53.80 

6 2,600 56.52 5.74 56.32 

7 3,200 59.01 5.88 58.98 

8 3,700 60.50 5.96 60.41 

TABLE III  
KULLBACK-LEIBLER DISTANCE.  

Node Distance [m] KL distance 

2 500 0.030 

3 1,100 0.021 

4 1,600 0.018 

5 2,100 0.017 

6 2,600 0.015 

7 3,200 0.014 

8 3,700 0.013 

In Table II, we can see that nominal transmission loss 
(mean value listed for SPM) differs very little from the 
value calculated by ensemble averaging of the 
deterministic model’s outputs (mean value listed for 
DPM). The pdf resulting from the statistical model is 
shown in Figs.3 and 4 as a dashed curve. 

We note that the distributions resulting from the two 
models are quite similar. In order to quantitatively judge 
the validity of the hypothesized statistical model, we 
have calculated the Kullback-Leibler (KL) distance [13] 
between the pdf estimated from the deterministic model 
(histogram of Fig.3 and 4) and the Gaussian pdf used for 
the statistical model. This distance is zero when the two 
distributions are identical.  In Table III, we list the KL 
distance for every source-destination pair considered. 

IV. IMPLICATIONS FOR NETWORK PLANNING 

The apparent match between the results of 
deterministic and statistical models motivates the use of 
SPM for network design and analysis via simulation. 
Consider, for example, network simulation over a 
prolonged interval of time that spans varying 
propagation conditions and involves transmission of a 
large number of data packets over multiple hops. If 
deterministic modeling is used, each packet transmission 
requires one execution of the Bellhop ray tracer, which 
soon becomes excessively long for a growing number of 
data packets (assuming 5 minutes for each Bellhop run 
and a single frequency, 100,000 packets would take 
about a year). Although the DPM offers an exact 
solution for the particular geometry observed at any 
given moment in time, its execution makes the 
simulation times unaffordable for benchmarking and 
testing of the upper layer protocols.  

In contrast, a statistical model can take several hours 
to compute (16 hours in the example we presented) the 
path loss statistical model for the entire network 
scenario, but once computed, each realization (packet 
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transmission) requires only a single call to a Gaussian 
random number generator. Moreover, if the network 
topology changes slightly, or if a new node is added, the 
statistical model needs to be augmented only by the 
corresponding set of nominal transmission losses, each 
of which requires a single Bellhop run.   

Most importantly, the statistical model can easily be 
used to assess transmit power allocation that will 
guarantee successful data packet reception with a 
desired level of performance (e.g. link reliability). 
Namely, the SPM can easily be used to calculate the 
transmission loss values that are not exceeded with a 
given probability (i.e cumulative distribution function). 
For example, a 90% transmission loss is that value 
which is not exceeded for 90% of time, i.e. in 90% of 
channel realizations. Fig.6 shows the 50%, 75% and 
90% transmission loss for our system example. We 
observe a good match between the values predicted by 
the deterministic model, and those of the statistical 
model. Note that the X% values of the SPM are 
computed analytically, based only on the knowledge of 
the mean and standard deviation.  

The availability of X% values is significant for 
determining the transmit power necessary to achieve a 
certain level of performance. Typically, network 
planning is based on the nominal ray trace, i.e. on the 
50% transmission loss to which some margin may be 
added. If transmit power allocation is based on a 
different value, say  90% transmission loss instead of the 
nominal 50%, data packets will be more likely to reach 
their destinations. More power will be needed at the 
same time, but the overall network performance may 
improve. We say may improve, because a higher 
transmit power also implies higher levels of 
interference. The resulting performance trade-offs are 
generally hard to address analytically, and are instead 
assessed via simulation. A statistical propagation model 
that directly links the transmit power to the X% 
transmission loss then becomes a meaningful and useful 
tool for system design. 
 

 
Fig. 6. Transmission loss value that is not exceeded with a given 

probability (50 %, 70%, 90%) is shown versus distance. The solid 
and dashed curves show the results obtained from the 
deterministic and the statistical propagation models, respectively. 

 

V. CONCLUSIONS 

Large-scale design of an underwater acoustic network 
requires a judicious allocation of the transmit power 
across different links to ensure a desired level of system 
performance (connectivity, throughput, reliability, etc.). 
Because of the inherent system complexity, simulation 
analyses are normally conducted to assess the 
performance of candidate protocols under different 
resource allocation policies. These analyses are often 
restricted to using deterministic propagation models, 
which, although accurate, do not reflect the randomly 
time-varying nature of the channel.  

While it is possible in principle to examine the 
network performance for a large set of perturbed 
propagation conditions, the computational complexity 
involved in doing so is extremely high. To facilitate 
network simulation in the presence of channel fading, 
we investigated a statistical modeling approach. Our 
approach is based on establishing the nominal system 
parameters for a desired deployment location (water 
depth, sediment composition, operational frequency 
range) and using ray tracing to compute an ensemble of 
transmission losses for typical inter-node distances. An 
ensemble is generated by considering a set of perturbed 
surface conditions, defined by varying wave activity 
(height, period). The so-obtained ensemble is then used 
to determine the statistical parameters of a hypothesized 
log-normal distribution of the transmission loss. For a 
representative example of a small network operating in  
a 5 km x 5 km area with inter-node distances ranging 
between 500 m and 3.5 km, it was found that the mean 
can be well  approximated by the value obtained using 
nominal system parameters, while the variance can be 
modeled as distance-independent.  Models that are more 
elaborated and more accurate than the log-normal one 
can also be developed using this approach. 
This kind of statistical modeling allows 
computationally-efficient inclusion of fading effects into 
a network simulator. Namely, to assess the average 
system performance, network operation has to be 
simulated over a large set of channel realizations (e.g. 
varying surface conditions). Whereas repeated 
computation of the ray trace for different hops that each 
of the data packets traverses in a given network may be 
computationally prohibitive, statistical modeling 
requires only a single call to the Gaussian random 
generator for each packet transmission. The overall 
simulation time is thus considerably reduced, allowing a 
system designer to freely experiment with varying 
protocols and resource allocation strategies in an 
efficient manner. The ultimate goal of such experiments 
is to choose the best upper-layer protocol suite and to 
relate the necessary system resources (power, 
bandwidth) to the propagation conditions, i.e. to the 
statistical parameters of the transmission loss (e.g. X% 
value), which can in turn be easily generated using the 
proposed method of statistical modeling 
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