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Abstract 
In order to fulfill the computation requirements 
imposed by stressing applications, like high 
resolution high quality video encoding, we can 
apply hierarchical parallel processing techniques 
since actual systems support different levels of 
hardware parallel processing resources (clustering, 
multi-processor, multi-core, SIMD instruction 
sets, etc.). Given a delivered video quality and 
bitrate, the main complexity parameters are. 
Scalability  parameters (image resolution, frame 
rate and latency in case of video encoding) can be 
pushed forward in such a way that special purpose 
hardware solutions may become quickly obsolete 
or not available. Parallel processing based on off-
the-shelf components like multicore clusters is a 
more flexible general purpose alternative. In this 
work, we analyse a hierarchical parallelization of 
an H.264/AVC reference encoder on low cost 
clusters made of multicore nodes. The resulting 
hierarchical parallel video encoder may be 
configured in order to obtain a compromise 
between encoding throughput and latency in a 
specific hardware platform. We believe that our 
analitical procedure can be applied to other 
applications of similar characteristics. 
 

1. Introduction 

We are interested in cluster platforms because 
they are becoming a commonly available resource 
in an increasing number of companies and 
institutions that require high-performance systems 
able to cope with large-scale applications (i.e. 
high-performance web server platforms). Parallel 
programming on clusters is also very flexible and 
it allows the design of parallel video encoders 
adapted to almost any requirement. 

 Resources available on clusters vary from 
single to multiple CPU per node, and in every 
node we can have multimedia extensions in the 
CPUs and powerful graphic coprocessors. To 
make efficient use of all these computation 
resources we can combine different programming 
approaches. 
• Message passing parallelism. Message 

passing runtimes and libraries (i.e. MPI [2]) 
allow the use of a cluster to develop parallel 
versions of a video encoder by inter-node and 
intra-node processors communication. 

• Multithread parallelism. Multithreading (i.e. 
OpenMP [3]) permits to use SMP cluster 
nodes and multicore CPUs to reduce response 
time of local encoder MPI processes by 
parallelizing sequential code bottlenecks. 

• Optimized libraries. Sequential code can be 
also optimized by using additional resources 
like SIMD extensions and GPUs to perform 
complex operations. This optimization 
approach can be applied by hand or using 
optimized libraries (i.e. Intel IPP [4], AMD 
ACML [5], OpenGL [6], etc). 

 In the literature a lot of work has been done 
focused on using these techniques to optimize the 
video encoding performance. In [17][18][16][19] 
authors apply the message passing parallelism to 
well-known standard video encoders in high-
performance computing platforms 
(multicomputers, clusters, etc.). 
 More recently, an increasing interest was also 
centered on exploiting the available underutilized 
hardware present in personal computers like 
graphic processors [27][26] and SIMD units 
[14][22][4][21] in order to speedup computing 
intensive applications at low cost. Other works 
have analyzed the impact of multithreading 
techniques in computing platforms with certain 



  
 
hardware support like Intel Hyper-threading [23] 
and multi-core architectures [14][25]. 
 All of these techniques can be combined 
hierarchically on clusters in a top-down approach, 
in such a way that different parallelization levels 
can be orthogonal. At the highest level message 
passing is the technique of choice and at the 
lowest level we can employ SIMD optimization. 
At intermediate levels, message passing and 
multithreading are competing candidates.  

 In this paper we analyse a hierarchical 
parallelization for the H.264/AVC reference 
encoder. We follow a top-down approach with 
three levels of parallelism: GOP, slice and low 
level optimizations (OpenMP Multithreading, 
manual SIMD and automatic source code 
optimizations). This proposal is intended to be 
applied on clusters of multi-core nodes, where 
hundreds of CPUs may be available for parallel 
processing. We analyze how the available 
computing resources can be organized in order to 
achieve the maximum encoding throughput 
(speedup) with an encoding latency constraint. 
This is done by adjusting a machine parameter 
(group size) according to an algorithm parameter 
(number of slices).  
 The paper is organized as follows: First, in 
section 2, we present a hierarchical parallel video 
encoder, in which we combine the three levels of 
parallelism described in previous work [7][8]. In 
section 3 we estimate the performance of our 
hierarchical approach by means of analytical 
tools, particularly Little’s law [28] and PAMELA 
[10]. In section 4 we present experimental 
performance results. Finally, in section 5, some 
conclusions and future work are drawn. 

2. Hierarchical H.264/AVC parallel 
encoder 

The main goal of the design is to get the 
maximum encoding throughput (or speedup) 
considering an encoding latency constraint.  GOP-
based parallelism gives almost perfect speedup 
with good scalability [8] due to the very low 
interaction among GOP encoding tasks. In this 
approach a GOP is sequentially encoded and then 
the time to deliver an encoded GOP, or latency, 
can be too long. Slice-based parallelism is 
intended to encode a GOP in parallel then it will 
reduce latency but the efficiency and scalability of 

the slice approach is much poorer than in the GOP 
approach [7]. Then computing resources dedicated 
to slice parallelism will improve latency but will 
worsen throughput. The problem to be solved is to 
obtain the minimum number of processor that we 
have to dedicate to slice parallelism, in order to 
comply with the latency constraint, with a 
minimum penalty over encoding throughput.  

2.1. HPVC implementation 

The HPVC is intended to run on clusters made up 
from multicore low cost processing nodes and 
interconnection networks. Parallelism can be 
local, using SMP and multicore technologies 
available inside a cluster node, or distributed over 
the cluster nodes. 
 We consider the cluster processors organized 
in groups. A group can be a subset of local 
processors, all the processor in a node or a set of 
nodes. At the first level every GOP is assigned to 
a processor group. Every processor group encodes 
its GOP independently of the other groups. When 
one GOP is completely encoded, the processor 
group is ready to encode the next available GOP 
in the video sequence. 
 Every processor group has a local manager, 
P0, which communicates with the global manager, 
P0’ (see figure 1). The local manager asks for a 
new GOP to be encoded by its group when the 
current one is completely encoded. The global 
manager informs about the GOP assignment by 
sending a message with the assigned GOP number 
to the requesting local manager. The on demand 
GOP assignment method is quite simple and it 
gives good load balance.  
 Inside a processor group, the assigned GOP is 
processed decomposing its frames in slices 
(second level of parallelism), in such a way that 
every processor in the group processes one slice 
of every frame in the GOP. Once a processor has 
the next GOP number to encode, it can read and 
encode its corresponding slice on the frames 
belonging to that GOP.  
 Although there are other strategies for 
defining the slices, we have used the simplest one: 
slices are defined getting MBs in scan order in 
such a way that the number of MBs per slice is as 
much balanced as possible. When all the slices 
belonging to a frame are encoded they have to be 
integrated to build the encoded frame. Next, all 
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the encoded frames of actual GOP are put together 
to form the output bit stream. 

 

Figura 1. Hierarchical Parallelization. 

 
Slice encoding time is optimized by code 

optimization performed with SIMD applied to 
code bottlenecks. OpenMP can also be applied if 
there are spare cores. 

3. Performance analysis 

GOP and SLICE parallel approaches can be 
combined in order to get the best of every one: 
scalability and low latency. Processing several 
GOPs in parallel will contribute to increase 
throughput. In case of live video encoding when 
real time response is reached, that is throughput is 
equal to frame rate, additional computational 
resources can be used to parallelize GOP encoding 
in order to reduce latency. This is achieved in 
HPVC by means of SLICE-based parallelism. To 
analyze the aggregated effect on performance 
when GOP and SLICE parallelism are combined 
we will use Little’s law [28]: N = X*R. In order to 
have a precise definition of the equation’s terms, 
we have to define what a job is. We consider a job 
as the encoding of one GOP. Then the equation 
terms are: 
• N: Number of GOPs processed in parallel. 
• R: Elapsed time between a GOP entering the 

system and the same GOP completely 
encoded. 

• X: Number of GOPs encoded per second. 
 If we have nP processors in the cluster and 
every GOP is decomposed in nS slices, then the 
number of GOPs processed in parallel is N = nP / 
nS. 

 If slices are processed in parallel with 
efficiency ES and if the sequential encoding time 
of one GOP is RSEQ then GOP parallel encoding 
time is: 

 
R = RSEQ /( nS * ES)   (1) 

 
 Here we assume that GOP parallelization gets 
an efficiency close to one, as experimentally 
found at [8]. Finally the GOP throughput of the 
combined GOP-SLICE parallel encoder obtained 
applying Little’s law is:  
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 The effect on performance of combining GOP 
and SLICE parallelism is to reduce response time 
(latency) but throughput if affected negatively if 
the efficiency of slice parallelization (ES) is 
significantly less than one. 
 As an example, let us consider a source HD 
video sequence at 30 fps (frames per second). We 
suppose that a H.264/AVC sequential encoder is 
able to encode one GOP (15 frames) in 30 
seconds. If only one slice per frame is defined in a 
parallel encoder (no slice parallelism is present) 
then: 

SEQ

P

R
nX =    (3) 

 
 To get real time response, X has to be equal to 
30 fps or 2 GOPs/sec, then: 

 
nodes  60302 =⋅=Pn   (4) 

 
 GOP parallelization gives real time response 
in a 60-processor cluster but with 30 seconds 
latency. If the maximum allowed latency in the 
application is set to one second, then we can 
include slice parallelism to comply with this 
requirement. Let suppose ES as 0.8. Then, How 
many slices do we have to define? and How many 
cluster processors are required? 

 

 

  

  

  

1st level   GOP # 1  

  

Thread # 1 
SIMD+Opt.   

 

  

… 
  

…  

 
 

…   

SLICE # 1 SLICE # S 

Thread # T 
SIMD+Opt. 

GOP # G 

Video 
Source

2nd level 

3rd level 

Evaluación de prestaciones   453



  
 

 
 

nodes
E
RX

n
S

SEQ
P 75

8.0
302 =⋅=

⋅
=      (5) 

slices  5.37
8.01

30 =
∗

=
⋅

=
S

SEQ
S ER

R
n  (6) 

 
 The number of slices per frame and the 
number of GOPs processed in parallel have to be 
integers. Then, we set nS to 38 and N to 2, so the 
number of required processors is adjusted to 76. 
The estimated performance indexes are: 
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 From this analysis, the combined GOP-SLICE 
parallel encoder is able to real-time encode a 30 
fps high definition video sequence on a cluster 
with 76 processors, observing a encoding latency 
less than 1 second. A key parameter is GOP 
encoding time RSEQ, set to 30 seconds in the 
example. As nS and nP are directly proportional to 
RSEQ any sequential code optimization will give a 
proportional reduction of the number of required 
processors and slices, improving the system cost 
and the encoder performance. 
 The other key parameter is the efficiency of 
the slice parallelization scheme ES. As it is shown 
in the previous analysis it has as well a direct 
effect on nS and nP. In order to estimate the value 
of ES we are going to apply a PAMELA model 
parameterized with measurements taken on a 
conventional cluster. 
 As explained in section 2, slice parallelization 
consists of partitioning every frame in a GOP in a 
fixed number of slices. Then every slice is 
encoded in parallel. Before proceeding with the 
next frame, the actual frame has to be composed 
and decoded to update the DPB in every 
processor[1]. As explained before, we 
implemented this synchronization by means of the 

MPI function Allgather [2]. Composing and 
decoding the encoded frame takes a noticeable 
amount of time (tCD). 
 In our PAMELA model we suppose that 
MPI_Allgather is implemented efficiently using a 
binary tree, we call time taken by Allgather tAG.. 
The number of slices processed in parallel is nS 
and the mean slice encoding time is tS. We call tW 
the mean wait time due to variations in tS and the 
global synchronization forced by Allgather MPI 
operation. The communication parameters are tL 
(start up time) and tC (transmission time of one 
encoded slice). Then, to encode one GOP of nF 
frames by means of SLICE parallelism, we define 
the following PAMELA model: 

 
L = seq (f=1..nF) 
      par (p=1..nS) 
        delay(tS); delay(tW) 
      seq (i=0..log2(nS)-1) 
        par (j=1.. nS) 
          delay(tL + tC*2

i) 
      par (p=1..ns) delay(tCD) 

 
 The parallel time obtained solving this model 
is: 
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 So, efficiency can be computed as: 
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 In equation (11), Wt , AGt  and CDt  represent 
the average values along one or several GOPs. We 
have obtained experimental estimations of tS, tW 
and tCD using JM7.6 sequential H.264/AVC 
encoder with the Riverbed 1280x720 video 
sequence at 4, 8, 16 and 32 slices (see table 
Measured parameters value (time in 
microseconds)). 
 Communication parameters tL, tC and tAG have 
been measured running IMB benchmark [11] on a 
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cluster with biprocessor dual-core Opteron nodes 
interconnected by a Gigabit Ethernet network 
(Picolo cluster). Considering message sizes about 
the size of one encoded slice we obtain the tAG 
values that appear on table Measured parameters 
value (time in microseconds). Column ES shows 
the estimated values of the SLICE-based parallel 
encoder applying equation  11. 

 
Tabla 1. Measured parameters value (time in 

microseconds). 

nS tS tW tAG tCD ES 
4 6243 3,5 0,28 300 0.96 

8 3584 16,5 1,2 325 0.92 

16 1652 17,5 2,3 330 0.83 

32 787 31,8 1,9 335 0.68 

 
 Considering equation 11 and the values in 
table Measured parameters value (time in 
microseconds), we notice that efficiency is not 
limited either by Allgather communication 
overhead (tAG) or by synchronization wait due to 
differences among slice encoding time. The 
bottleneck is the time for composing and decoding 
the frame to update the DPB. This time is quite 
constant and then as the number of slices 
decreases it becomes more and more significant.  
As we have shown before, another limiting factor 
on increasing the number of slices is the encoding 
performance reduction when the number of slices 
increases. Both factors limit the number of slices 
we can define and then the amount of available 
parallelism on the slice approach. 

4. Experimental results 

To evaluate the proposed H.264/AVC hierarchical 
parallel encoder we use two different clusters of 
workstations named Aldebaran and Picolo. 
Aldebaran is an SGI Altix 3700 cluster with 44 
Itanium II nodes interconnected by a high 
performance proprietary network resulting in a 
NUMA architecture. It runs Linux RedHat 9.0 
with GNU tools and MPICH 
(http://www.sgi.com/products/remarketed/altix30
00/).  Picolo is a custom-made cluster composed 
of 24 nodes where each node includes 2 AMD 

DualCore Opteron CPUs, being available a total 
of 96 cores. The nodes are interconnected with a 
Gigabit Ethernet network and a high performance 
Promise RAID system. Picolo runs a Rocks HPC 
Linux distribution. Performance measurements are 
obtained encoding the standard video sequence 
Ayersroc at SD format.  

Figura 2. Speedups in Aldebaran and 
Picolo.  

  
 We will focus our optimization efforts on this 
issue and we expect a noticeable speedup 
improvement in the range of 8 to 32 slices. 
 Another effect that can be observed in figure 
2, is the super speedup achieved with the cluster 
Picolo at certain configurations. This is due to the 
low level optimizations we have included only in 
the HPVC encoder. The sequential encoder 
(1Gr1Sl), used as reference for speedup 
computation, has not been optimized. 
 We have also oberved a proportional 
reduction of GOP encoding latency related to the 
node group size, as expected. 
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5. Conclusions and future work 

After performing an analysis about the 
convenience of a hierarchical parallel design, we 
developed a three-level hierarchical parallel 
encoder (HPVC) based on the H.264/AVC 
reference source code. For each hierarchical level 
of parallelism, we have analyzed the parameters 
that define the performance behavior in terms of 
speedup and coding performance. Also, we have 
shown the potential interactions among different 
low level optimization techniques. Experimental 
results confirm the performance predictions, 
showing the ability to get a high-scalable and low 
latency H.264/AVC encoder. This is performed by 
adjusting the cluster configuration by means of 
setting up the number of processor groups (or 
parallel encoded GOPs) and the number of 
processor in a group (or number of slices in a 
frame). 
 The proposed hierarchical parallelization 
framework is very well suited for H.264/AVC 
video encoding applications, allowing the 
programmer to define the different hierarchical 
levels for a specific hardware platform and 
application requirements. 
 As future work, the identified bottleneck on 
the slice parallelization will be removed by further 
analytical and experimental work. Also, a full 
optimization can be performed by combining low 
level optimization techniques and proposing 
alternative source code for certain tasks of the 
H.264/AVC encoder that significantly reduce its 
computational cost.  
 Finally, we will try to apply the hierarchical 
approach to other applications with similar 
scalability features. 
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