
A Case of Performance Analysis of Hierarchical Parallelism on
Multicore Clusters

Abelardo Rodríguez León
Instituto Tecnológico de Veracruz

Veracruz, Mexico
arleonver@yahoo.com.mx

Alberto González Téllez
Dept. de Informática de Sistemas y

Computadores
Universidad Politécnica de Valencia

46022 Valencia
agt@disca.upv.es

Manuel Pérez Malumbres
Dept. de Física y Arquitectura de

Computadores
Universidad Miguel Hernández

Elche
mels@umh.es

Abstract
In order to fulfill the computation requirements
imposed by stressing applications, like high
resolution high quality video encoding, we can
apply hierarchical parallel processing techniques
since actual systems support different levels of
hardware parallel processing resources (clustering,
multi-processor, multi-core, SIMD instruction
sets, etc.). Given a delivered video quality and
bitrate, the main complexity parameters are.
Scalability parameters (image resolution, frame
rate and latency in case of video encoding) can be
pushed forward in such a way that special purpose
hardware solutions may become quickly obsolete
or not available. Parallel processing based on off-
the-shelf components like multicore clusters is a
more flexible general purpose alternative. In this
work, we analyse a hierarchical parallelization of
an H.264/AVC reference encoder on low cost
clusters made of multicore nodes. The resulting
hierarchical parallel video encoder may be
configured in order to obtain a compromise
between encoding throughput and latency in a
specific hardware platform. We believe that our
analitical procedure can be applied to other
applications of similar characteristics.

1. Introduction

We are interested in cluster platforms because
they are becoming a commonly available resource
in an increasing number of companies and
institutions that require high-performance systems
able to cope with large-scale applications (i.e.
high-performance web server platforms). Parallel
programming on clusters is also very flexible and
it allows the design of parallel video encoders
adapted to almost any requirement.

 Resources available on clusters vary from
single to multiple CPU per node, and in every
node we can have multimedia extensions in the
CPUs and powerful graphic coprocessors. To
make efficient use of all these computation
resources we can combine different programming
approaches.
• Message passing parallelism. Message

passing runtimes and libraries (i.e. MPI [2])
allow the use of a cluster to develop parallel
versions of a video encoder by inter-node and
intra-node processors communication.

• Multithread parallelism. Multithreading (i.e.
OpenMP [3]) permits to use SMP cluster
nodes and multicore CPUs to reduce response
time of local encoder MPI processes by
parallelizing sequential code bottlenecks.

• Optimized libraries. Sequential code can be
also optimized by using additional resources
like SIMD extensions and GPUs to perform
complex operations. This optimization
approach can be applied by hand or using
optimized libraries (i.e. Intel IPP [4], AMD
ACML [5], OpenGL [6], etc).

 In the literature a lot of work has been done
focused on using these techniques to optimize the
video encoding performance. In [17][18][16][19]
authors apply the message passing parallelism to
well-known standard video encoders in high-
performance computing platforms
(multicomputers, clusters, etc.).
 More recently, an increasing interest was also
centered on exploiting the available underutilized
hardware present in personal computers like
graphic processors [27][26] and SIMD units
[14][22][4][21] in order to speedup computing
intensive applications at low cost. Other works
have analyzed the impact of multithreading
techniques in computing platforms with certain

hardware support like Intel Hyper-threading [23]
and multi-core architectures [14][25].
 All of these techniques can be combined
hierarchically on clusters in a top-down approach,
in such a way that different parallelization levels
can be orthogonal. At the highest level message
passing is the technique of choice and at the
lowest level we can employ SIMD optimization.
At intermediate levels, message passing and
multithreading are competing candidates.

 In this paper we analyse a hierarchical
parallelization for the H.264/AVC reference
encoder. We follow a top-down approach with
three levels of parallelism: GOP, slice and low
level optimizations (OpenMP Multithreading,
manual SIMD and automatic source code
optimizations). This proposal is intended to be
applied on clusters of multi-core nodes, where
hundreds of CPUs may be available for parallel
processing. We analyze how the available
computing resources can be organized in order to
achieve the maximum encoding throughput
(speedup) with an encoding latency constraint.
This is done by adjusting a machine parameter
(group size) according to an algorithm parameter
(number of slices).
 The paper is organized as follows: First, in
section 2, we present a hierarchical parallel video
encoder, in which we combine the three levels of
parallelism described in previous work [7][8]. In
section 3 we estimate the performance of our
hierarchical approach by means of analytical
tools, particularly Little’s law [28] and PAMELA
[10]. In section 4 we present experimental
performance results. Finally, in section 5, some
conclusions and future work are drawn.

2. Hierarchical H.264/AVC parallel
encoder

The main goal of the design is to get the
maximum encoding throughput (or speedup)
considering an encoding latency constraint. GOP-
based parallelism gives almost perfect speedup
with good scalability [8] due to the very low
interaction among GOP encoding tasks. In this
approach a GOP is sequentially encoded and then
the time to deliver an encoded GOP, or latency,
can be too long. Slice-based parallelism is
intended to encode a GOP in parallel then it will
reduce latency but the efficiency and scalability of

the slice approach is much poorer than in the GOP
approach [7]. Then computing resources dedicated
to slice parallelism will improve latency but will
worsen throughput. The problem to be solved is to
obtain the minimum number of processor that we
have to dedicate to slice parallelism, in order to
comply with the latency constraint, with a
minimum penalty over encoding throughput.

2.1. HPVC implementation

The HPVC is intended to run on clusters made up
from multicore low cost processing nodes and
interconnection networks. Parallelism can be
local, using SMP and multicore technologies
available inside a cluster node, or distributed over
the cluster nodes.
 We consider the cluster processors organized
in groups. A group can be a subset of local
processors, all the processor in a node or a set of
nodes. At the first level every GOP is assigned to
a processor group. Every processor group encodes
its GOP independently of the other groups. When
one GOP is completely encoded, the processor
group is ready to encode the next available GOP
in the video sequence.
 Every processor group has a local manager,
P0, which communicates with the global manager,
P0’ (see figure 1). The local manager asks for a
new GOP to be encoded by its group when the
current one is completely encoded. The global
manager informs about the GOP assignment by
sending a message with the assigned GOP number
to the requesting local manager. The on demand
GOP assignment method is quite simple and it
gives good load balance.
 Inside a processor group, the assigned GOP is
processed decomposing its frames in slices
(second level of parallelism), in such a way that
every processor in the group processes one slice
of every frame in the GOP. Once a processor has
the next GOP number to encode, it can read and
encode its corresponding slice on the frames
belonging to that GOP.
 Although there are other strategies for
defining the slices, we have used the simplest one:
slices are defined getting MBs in scan order in
such a way that the number of MBs per slice is as
much balanced as possible. When all the slices
belonging to a frame are encoded they have to be
integrated to build the encoded frame. Next, all

452 XXI Jornadas de Paralelismo

the encoded frames of actual GOP are put together
to form the output bit stream.

Figura 1. Hierarchical Parallelization.

Slice encoding time is optimized by code

optimization performed with SIMD applied to
code bottlenecks. OpenMP can also be applied if
there are spare cores.

3. Performance analysis

GOP and SLICE parallel approaches can be
combined in order to get the best of every one:
scalability and low latency. Processing several
GOPs in parallel will contribute to increase
throughput. In case of live video encoding when
real time response is reached, that is throughput is
equal to frame rate, additional computational
resources can be used to parallelize GOP encoding
in order to reduce latency. This is achieved in
HPVC by means of SLICE-based parallelism. To
analyze the aggregated effect on performance
when GOP and SLICE parallelism are combined
we will use Little’s law [28]: N = X*R. In order to
have a precise definition of the equation’s terms,
we have to define what a job is. We consider a job
as the encoding of one GOP. Then the equation
terms are:
• N: Number of GOPs processed in parallel.
• R: Elapsed time between a GOP entering the

system and the same GOP completely
encoded.

• X: Number of GOPs encoded per second.
 If we have nP processors in the cluster and
every GOP is decomposed in nS slices, then the
number of GOPs processed in parallel is N = nP /
nS.

 If slices are processed in parallel with
efficiency ES and if the sequential encoding time
of one GOP is RSEQ then GOP parallel encoding
time is:

R = RSEQ /(nS * ES) (1)

 Here we assume that GOP parallelization gets
an efficiency close to one, as experimentally
found at [8]. Finally the GOP throughput of the
combined GOP-SLICE parallel encoder obtained
applying Little’s law is:

S
SEQ

P

SS

SEQ

S

P

E
R
n

En
R
n
n

X ⋅=

⋅

= (2)

 The effect on performance of combining GOP
and SLICE parallelism is to reduce response time
(latency) but throughput if affected negatively if
the efficiency of slice parallelization (ES) is
significantly less than one.
 As an example, let us consider a source HD
video sequence at 30 fps (frames per second). We
suppose that a H.264/AVC sequential encoder is
able to encode one GOP (15 frames) in 30
seconds. If only one slice per frame is defined in a
parallel encoder (no slice parallelism is present)
then:

SEQ

P

R
nX = (3)

 To get real time response, X has to be equal to
30 fps or 2 GOPs/sec, then:

nodes 60302 =⋅=Pn (4)

 GOP parallelization gives real time response
in a 60-processor cluster but with 30 seconds
latency. If the maximum allowed latency in the
application is set to one second, then we can
include slice parallelism to comply with this
requirement. Let suppose ES as 0.8. Then, How
many slices do we have to define? and How many
cluster processors are required?

1st level GOP # 1

Thread # 1
SIMD+Opt.

…

…

…

SLICE # 1 SLICE # S

Thread # T
SIMD+Opt.

GOP # G

Video
Source

2nd level

3rd level

Evaluación de prestaciones 453

nodes
E
RX

n
S

SEQ
P 75

8.0
302 =⋅=

⋅
= (5)

slices 5.37
8.01

30 =
∗

=
⋅

=
S

SEQ
S ER

R
n (6)

 The number of slices per frame and the
number of GOPs processed in parallel have to be
integers. Then, we set nS to 38 and N to 2, so the
number of required processors is adjusted to 76.
The estimated performance indexes are:

GOP/sec03.28.0
30
76 =⋅=⋅= S

SEQ

P E
R
n

X

(7)

sec 99.0
8.038

30 =
∗

=
⋅

=
SS

SEQ

En
R

R

(8)

 From this analysis, the combined GOP-SLICE
parallel encoder is able to real-time encode a 30
fps high definition video sequence on a cluster
with 76 processors, observing a encoding latency
less than 1 second. A key parameter is GOP
encoding time RSEQ, set to 30 seconds in the
example. As nS and nP are directly proportional to
RSEQ any sequential code optimization will give a
proportional reduction of the number of required
processors and slices, improving the system cost
and the encoder performance.
 The other key parameter is the efficiency of
the slice parallelization scheme ES. As it is shown
in the previous analysis it has as well a direct
effect on nS and nP. In order to estimate the value
of ES we are going to apply a PAMELA model
parameterized with measurements taken on a
conventional cluster.
 As explained in section 2, slice parallelization
consists of partitioning every frame in a GOP in a
fixed number of slices. Then every slice is
encoded in parallel. Before proceeding with the
next frame, the actual frame has to be composed
and decoded to update the DPB in every
processor[1]. As explained before, we
implemented this synchronization by means of the

MPI function Allgather [2]. Composing and
decoding the encoded frame takes a noticeable
amount of time (tCD).
 In our PAMELA model we suppose that
MPI_Allgather is implemented efficiently using a
binary tree, we call time taken by Allgather tAG..
The number of slices processed in parallel is nS
and the mean slice encoding time is tS. We call tW
the mean wait time due to variations in tS and the
global synchronization forced by Allgather MPI
operation. The communication parameters are tL
(start up time) and tC (transmission time of one
encoded slice). Then, to encode one GOP of nF
frames by means of SLICE parallelism, we define
the following PAMELA model:

L = seq (f=1..nF)
 par (p=1..nS)
 delay(tS); delay(tW)
 seq (i=0..log2(nS)-1)
 par (j=1.. nS)
 delay(tL + tC*2

i)
 par (p=1..ns) delay(tCD)

 The parallel time obtained solving this model
is:

()
iCSLsiAG

fn

i
iCDiAGiWiS

tntnt

ttttLT

⋅−+⋅=

+++= �
=

)1()(log

)(

2

1 (9)

 So, efficiency can be computed as:

S

CDAGWS

SEQ

S

t
tttn

T
T

E
+++

==
1

1
 (10)

 In equation (11), Wt , AGt and CDt represent
the average values along one or several GOPs. We
have obtained experimental estimations of tS, tW
and tCD using JM7.6 sequential H.264/AVC
encoder with the Riverbed 1280x720 video
sequence at 4, 8, 16 and 32 slices (see table
Measured parameters value (time in
microseconds)).
 Communication parameters tL, tC and tAG have
been measured running IMB benchmark [11] on a

454 XXI Jornadas de Paralelismo

cluster with biprocessor dual-core Opteron nodes
interconnected by a Gigabit Ethernet network
(Picolo cluster). Considering message sizes about
the size of one encoded slice we obtain the tAG
values that appear on table Measured parameters
value (time in microseconds). Column ES shows
the estimated values of the SLICE-based parallel
encoder applying equation 11.

Tabla 1. Measured parameters value (time in

microseconds).

nS tS tW tAG tCD ES
4 6243 3,5 0,28 300 0.96

8 3584 16,5 1,2 325 0.92

16 1652 17,5 2,3 330 0.83

32 787 31,8 1,9 335 0.68

 Considering equation 11 and the values in
table Measured parameters value (time in
microseconds), we notice that efficiency is not
limited either by Allgather communication
overhead (tAG) or by synchronization wait due to
differences among slice encoding time. The
bottleneck is the time for composing and decoding
the frame to update the DPB. This time is quite
constant and then as the number of slices
decreases it becomes more and more significant.
As we have shown before, another limiting factor
on increasing the number of slices is the encoding
performance reduction when the number of slices
increases. Both factors limit the number of slices
we can define and then the amount of available
parallelism on the slice approach.

4. Experimental results

To evaluate the proposed H.264/AVC hierarchical
parallel encoder we use two different clusters of
workstations named Aldebaran and Picolo.
Aldebaran is an SGI Altix 3700 cluster with 44
Itanium II nodes interconnected by a high
performance proprietary network resulting in a
NUMA architecture. It runs Linux RedHat 9.0
with GNU tools and MPICH
(http://www.sgi.com/products/remarketed/altix30
00/). Picolo is a custom-made cluster composed
of 24 nodes where each node includes 2 AMD

DualCore Opteron CPUs, being available a total
of 96 cores. The nodes are interconnected with a
Gigabit Ethernet network and a high performance
Promise RAID system. Picolo runs a Rocks HPC
Linux distribution. Performance measurements are
obtained encoding the standard video sequence
Ayersroc at SD format.

Figura 2. Speedups in Aldebaran and
Picolo.

 We will focus our optimization efforts on this
issue and we expect a noticeable speedup
improvement in the range of 8 to 32 slices.
 Another effect that can be observed in figure
2, is the super speedup achieved with the cluster
Picolo at certain configurations. This is due to the
low level optimizations we have included only in
the HPVC encoder. The sequential encoder
(1Gr1Sl), used as reference for speedup
computation, has not been optimized.
 We have also oberved a proportional
reduction of GOP encoding latency related to the
node group size, as expected.

10

10,5

11

11,5

12

12,5

13

13,5

14

14,5

15

1Gr_16Sl 2Gr_08Sl 4Gr_04Sl 8Gr_02Sl 16G_01Sl

Aldebaran Configurations

Sp
ee

dU
p

20

25

30

35

40

45

50

55

60

65

70

1Gr_64Sl 2Gr_32Sl 4Gr_16Sl 8Gr_8Sl 16Gr_4Sl 32Gr_2Sl 64Gr_1Sl

Picolo Configurations

Sp
ee

dU
p

Evaluación de prestaciones 455

5. Conclusions and future work

After performing an analysis about the
convenience of a hierarchical parallel design, we
developed a three-level hierarchical parallel
encoder (HPVC) based on the H.264/AVC
reference source code. For each hierarchical level
of parallelism, we have analyzed the parameters
that define the performance behavior in terms of
speedup and coding performance. Also, we have
shown the potential interactions among different
low level optimization techniques. Experimental
results confirm the performance predictions,
showing the ability to get a high-scalable and low
latency H.264/AVC encoder. This is performed by
adjusting the cluster configuration by means of
setting up the number of processor groups (or
parallel encoded GOPs) and the number of
processor in a group (or number of slices in a
frame).
 The proposed hierarchical parallelization
framework is very well suited for H.264/AVC
video encoding applications, allowing the
programmer to define the different hierarchical
levels for a specific hardware platform and
application requirements.
 As future work, the identified bottleneck on
the slice parallelization will be removed by further
analytical and experimental work. Also, a full
optimization can be performed by combining low
level optimization techniques and proposing
alternative source code for certain tasks of the
H.264/AVC encoder that significantly reduce its
computational cost.
 Finally, we will try to apply the hierarchical
approach to other applications with similar
scalability features.

Referencias

[1] ISO/IEC 14496–10:2003, “Coding of Audiovisual
Objects—Part 10: Advanced Video Coding,” 2003,
also ITU-T Recommendation H.264 “Advanced
video coding for generic audiovisual services.”

[2] P.S. Pacheco, “Parallel Programming with MPI”,
Morgan Kauf-man Publishers, Inc

[3] R. Chandra et al., “Parallel Programming in
OpenMP”, Morgan Kaufmann, 2000.

[4] Intel Integrated Performance Primitives,
http://www.intel.com /cd/software/products/asmo-
na/eng/perflib/ipp/index.htm

[5] AMD Core Math Library,
http://developer.amd.com /acml.aspx

[6] OpenGL Architecture Review Board et al.,
”OpenGL(R) Refer-ence Manual ”, 5th edition,
Ed. Dave Shreiner, 2005.

[7] J.C. Fernández and M. P. Malumbres, “A Parallel
implementation of H.26L video encoder”, in proc.
of EuroPar 2002 conf. (LNCS 2400), pp. 830, 833,
Padderborn, 2002.

[8] A. Rodriguez, A. González and M.P. Malumbres,
“Performance evaluation of parallel MPEG-4
video coding algorithms on clusters of
workstations”, IEEE Int. Conference on Parallel
Computing in Electrical Engineering, pp. 354, 357,
Dresden, 2004

[9] E.D. Lazowska, J. Zahorjan, G.S. Gaham, K.C.
Sevcik, “Quantitative system Performance”,
Prentice-Hall, 1984

[10] Arjan J.C. van Gemund, “Symbolic Performance
Modeling of Pa-rallel Systems”, IEEE TPDS, vol
14, no 2, February 2003.

[11] Intel MPI Benchmarks: Users Guide and
Methodology Descripti-on, Intel GmbH, Germany,
2004.

[12] H.264/AVC Ref. Software http://iphome.hhi.de/
suehring/tml/

[13] Intel Co. “Intel C++ Compiler for Linux
Systems,User's Guide”. Cap. Intel C++ Intrinsics
Reference.2003

[14] Y.K. Chen, E.Q. Li, X. Zhou, S. Ge,
"Implementation of H.264 encoder and decoder on
personal computers", Journal of Visual
Communication and Image Representation, Vol.
17, No. 2., pp. 509-532, April 2006.

[15] W. Effelsberg, R. Steinmetz. “Video Compression
Techniques”. Ed. Dpunkt-Verl. 1998.

[16] A. Hamosfakidis,Y. Paker, "Concurrency Analysis
for Real Time MPEG4 Video Encoding",ICMCS,
Vol. 2, p:862-866,1999.

[17] S. M. Akramullah, I. Ahmad and M. L. Liou,
“Performance of a Software-Based MPEG-2 Video
Encoder on Parallel and Distributed Systems”,
IEEE Transactions on Circuits and Systems for
Video Technology, Vol.7, No.4, August 1997, pp.
687-695.

[18] D. Farin, N. Mache, Peter H.N. “SAMPEG, a
Scene Adaptive Parallel MPEG-2 Software
Encoder”, SPIE Visual Communications and
Image Processing, pp. 272-283, 2001.

[19] T. Olivares, F. J. Quiles, P. Cuenca, L. Orozco-
Barbosa, I. Ahmad “Study of data distribution
techniques for the implementation of an MPEG-2
video encoder”, Parallell and Distributed
Computing Systems'99. pp.537-542. MIT,
Massachusetts (USA). 1999.

[20] K. Shen, L. Rowe, and E. Delp, “A Parallel
Implementation of an MPEG-1 Encoder: Faster

456 XXI Jornadas de Paralelismo

than Real-Time,” SPIE Conf. on Digital Video
Compression: Algorithms and Techniques, 1995.

[21] X. Zhou, E.Q. Li, and Y.K. Chen, “Implementation
of H.264 Decoder on General-Purpose Processors
with Media Instructions,” SPIE Conf. on Image
and Video Communications and Processing, vol.
5022, pp. 224-235, Jan. 2003.

[22] V. Lappalainen, "Performance Analysis of Intel
MMX technology for an H.263 Video Encoder,"
ACM Multimedia, pp.309-314, 1998.

[23] E.Q. Li and Y.K. Chen, “Implementation of H.264
Encoder on General-Purpose Processors with
Hyper-Threading Technology,” SPIE Conf. on
Visual Communications and Image Processing,
vol. 5308, pp. 384-395, Jan. 2004.

[24] V. Iverson, J. McVeigh, B. Reese, “Real-Time
H.264/AVC Codec on Intel Architectures,” Int’l
Conf. on Image Processing, pp. 1541-1544, Oct.
2004.

[25] M. Roitzsch, “Slice-balancing H.264 video
encoding for improved scalability of multicore
decoding”, ACM&IEEE international conference
on Embedded software, pp. 269-278, 2007.

[26] J.Y. Hong, M.D. Wang, “High speed processing
of biomedical images using programmable GPU”,
International Conference on Image Processing, pp.
2455-2458, Oct. 2004.

[27] F.D. Igual, R. Mayo, E.S. Quintana-Orti,
“Attaining High Performance in General-Purpose
Computations on Current Graphics Processors”,
VECPAR, pp. 406-419, 2008.

[28] J. Little, “A proof of the queueing formula L=ÇW”,
Operations Research 9:383-387, 1961.

[29] Intel Co. “Intel C++ Compiler Optimizing
Applications”, 2006.Lamport, L. LaTeX, a
document preparation system. Addison-Wesley,
1994.

Evaluación de prestaciones 457

