

Abstract— Future Vehicular Adhoc Networks (VANETs)
will have to face up with different problems like signal
attenuation, packet losses, rapidly varying topology, etc.
These will be caused by the inherent characteristics of
VANETs, mainly, wireless communications and high
velocity of the nodes. On the other hand, video
transmission is highly resource demanding both in time
constraints and bandwidth. So, transmitting video through
VANETs is a challenging task. In this work we present a
set of software tools that will allow us to do simulations in
order to evaluate video transmission over VANETs in
future works.
Keywords— Simulations, vehicular adhoc networks, video
transmission.

I. INTRODUCCIÓN
In the future, vehicular networks will be as common as
smartphones are today. Vehicles will be equipped with
different kinds of sensors, a certain degree of computing
capability and the ability of communicating with other
vehicles and with the available infrastructure, if any.
They will be able to gather information, elaborate it, and
distribute it. This will make Intelligent Transport
Systems (ITS) possible. One of the fields of application
of VANETs (Vehicular Adhoc NETworks) is video
streaming. Video streaming is linked to a deep variety of
applications like digital entertainment, video on demand,
tourist information, contextual advertising and other
regarding security issues like emergency video call, etc.
VANETs are inhospitable networks because of two main
characteristics: wireless transmission and a relative high
speed between nodes. Problems like attenuation,
Doppler Effect, packet losses, rapidly varying network
topology and others arise. Furthermore, video streaming
is highly resource demanding. With these two premises
it is clear that video streaming over VANETs is a hard-
to-manage task. Research needs to be done about which
are the limits of video streaming over VANETs and
which error resilience strategies need to be adopted so as
to guarantee a minimum Quality of Experience (QoE).
Nowadays it is not feasible to do real tests with
hundreds of vehicles emulating future real urban
scenarios. So for this type of research, modeling is
mandatory. In this paper, we have used several available
modeling tools for VANETs. We have also developed a
new module that allows the injection of video streaming
traffic in a VANET providing different statistics. This
tool will allow us to measure the limits of video
streaming over VANETs and the performance of

1 Dpto. de Física y Arquitectura de Computadores,
Universidad Miguel Hernández de Elche, e-mail:
{pablop,mmrach,otoniel,mels}@umh.es
2 Dpto. de Informática de Sistemas y Computadores,
Universidad Politécnica de Valencia, e-mail:
joliver@disca.upv.es

different error resilience strategies for video transmitting
and receiving.
For video streaming modeling of VANETs we have
used three main blocks (see Figure 1). First of all an
open-source vehicular traffic simulator: SUMO
(Simulation of Urban MObility) [17]. This simulator
models the behavior of vehicles in routes, interacting
with other vehicles, junctions, multi-lane roads, traffic
lights, etc. Secondly, for the simulation of VANET
network protocols, particularly IEEE 802.11p [23] and
IEEE 1609 Family of Standards for Wireless Access in
Vehicular Environments (WAVE) [7] we have used
OMNeT++ [12]. OMNeT++ is a Network Simulation
Framework which allows the development of specific
network simulators. There are lots of simulators based in
OMNeT++. In this particular case we have used the
latest Veins (VEhicles In Network Simulation)
implementation [19] [16] based in MiXiM (MIXed
sIMulator) project [11], which implements wireless and
mobile networks. OMNeT++ and its libraries are also
open-source. The third block of the construction is video
streaming injection. For this purpose we have created a
new module in OMNeT++ and used preprocessed video
traces like those in the Video Trace Library [20] [14].
This module provides a video sender with video packets
so it can send them through the VANET scenario. The
video receivers get video packets and try to reconstruct
the video stream. In order to evaluate the quality of the
received video streams we have generated compressed
sequences and their corresponding trace files so as to be
able to compare the reconstructed versions with the
original ones. This will allow us to measure the received
video quality by means of PSNR (Peak Signal-to-Noise
Ratio) and other video quality metrics that take into
account the Human Visual System, like VIF (Visual
Information Fidelity), MSSIM (Mean Structural
SIMilarity index) and others.

Figure 1. Three main blocks for building integrated
simulations.

Video Transmission Simulations
in Vehicular Adhoc Networks

Pablo Piñol1, Miguel Martínez-Rach1, Otoniel López1, José Oliver2 y Manuel P. Malumbres1

Actas de las XXIII Jornadas de Paralelismo, Elche (Alicante), 19-21 Septiembre 2012

JP2012 - 304

The vehicular simulator and the network simulator
blocks will be joined together by TraCI (TRAffic
Control Interface) [22]. TraCI creates a TCP connection
to allow the communication between the two simulators.
SUMO acts as a server (TraCI-Server) and OMNeT++
as a client (TraCI-Client). The client can send
commands to the server to change the behavior of the
vehicles. It also periodically requests data from the
vehicular simulator to know the status of the simulation
and of every single vehicle. This interaction, in both
directions, can be useful to model the vehicles behavior
when receiving certain type of messages. For instance,
vehicles receiving warnings about a congested road
could change their route. In our scenarios we could, for
example, model accidents by giving a vehicle the order
to stop at a certain moment. This could trigger the
recording and sending of video images so that
emergency services can have a preview of the accident
environment.
In the rest of the paper we will show a complete
example drawn from scratch to illustrate the use of all
this software tools together. In section 2, we explain the
creation of the main scenario by importing a real map
into the traffic simulator and defining the vehicles and
the routes that they will follow. Then, in section 3, we
present Veins software tool and how it models the
wireless vehicular network, taking into account the
physical obstacles which introduce signal fading effects.
In section 4, we explain how we have defined video
trace files and the statistics that our module provides. At
last we will present our conclusions and will outline the
next steps in our research.

II. CREATING THE VEHICULAR ENVIRONMENT
As we have mentioned before, the vehicular traffic
simulator used herein is SUMO. In SUMO, road
networks are XML files. These files can be generated by
hand (by defining nodes and edges that connect them) or
by importing data with different formats. We have
chosen OpenStreetMap (OSM) [13] data because you
can get free maps of all around the world.
OpenStreetMap is a collaborative project whose aim is
to provide a free map of the whole world. As the
OpenStreetMap project grows, more and more data are
available. As it is maintained by users (in such a way as
Wikipedia is) not all regions are described in a similar
level of detail. But the main cities of the world are
usually well documented. OpenStreetMap does not only
gather road information but it also collects data of other
kinds like buildings, rivers, parks, bus stops, schools,
etc. Some pieces of this information will help us to
define obstacles for wireless signals. From
OpenStreetMap webpage you can download XML data
in OSM format and also bitmap images of the desired
zone. For the example in this paper we have selected a
part of the city of Kiev (Ukraine). In Figure 2 you can
see the OpenStreetMap webpage, and specially the
interface for exporting map data and map images. To
select a certain region and export it to an OSM file you
can manually draw a rectangle over the displayed map
or else you can introduce the coordinates of the region.

Figure 2. OpenStreetMap webpage. Selecting a region
and exporting XML data and bitmap images.

In Figure 3 you can see the picked area (as a bitmap
image). At the bottom of the picture you can clearly see
the Olympic National Sports Complex (

 " ").

Figure 3. City of Kiev (PNG image) exported from
OpenStreetMap.

SUMO includes several tools which help us to convert
map data. For converting OSM data (kiev.osm) into
SUMO road networks (kiev.net.xml) we will use
netconvert tool. This tool has different options like
importing data from many formats (openDrive, VISUM,
VISSIM, RoboCup, MATsim) and several choices for
building traffic lights. For extracting buildings
(kiev.poly.xml) from OSM data we will use
polyconvert tool. Once OSM data is converted into
SUMO format, it can be opened with SUMO-GUI
(SUMO-Graphical User Interface), as shown in Figure
4.
Now we have to define vehicles and the routes they will
trace. For this purpose we will use DUAROUTER tool,
which is also a component part of SUMO simulator.
First we define trips or flows. A trip consists of an
origin, a destination and the moment in which one
vehicle will part from the initial edge. We can create a

Actas de las XXIII Jornadas de Paralelismo, Elche (Alicante), 19-21 Septiembre 2012

JP2012 - 305

file including several trips and DUAROUTER tool will
calculate the route for each trip and will generate a
routes file (kiev.rou.xml). Also we can create a file
with several flows. A flow is similar to a trip but the
difference is that it will be used by several vehicles
departing periodically. From flows file, DUAROUTER
will generate the different routes for the vehicles. Also,
SUMO includes another tool called randomTrips
which generates a file with multiple random trips.
Alternatively, third party tools like C4R (Citymob for
Roadmaps) [5] [2] may be used to properly define
vehicles and routes. C4R implements a wizard that
imports data directly from OSM, generates vehicles and
routes for SUMO and also provides with trace files for
ns-2 simulator with the position of each vehicle
throughout the simulation. With these trace files, it is
possible to launch tests offline without the needing of
connecting SUMO with ns-2.

Figure 4. City of Kiev. Data converted from
OpenStreetMap format to SUMO format and opened

with SUMO-GUI.

By opening all these generated files (network, buildings,
vehicles/routes) with SUMO-GUI and running the
simulation, we are able to see the behavior of the
vehicles through this scenario: braking at junctions,
stopping when traffic lights are red, accelerating when
traffic lights change to green, etc.
If the OSM data of a city does not have information
about buildings (because users that collaborate in
OpenStreetMap project have not introduced it yet) or
some of the city buildings have been drawn and some
other have not, obstacles will not be modeled in the
network simulator and attenuation caused by non-
represented buildings will not be taken into account. To
avoid this we can use JOSM (Java OpenStreetMap
editor) [9] and create the missing buildings. JOSM is the
main tool used to edit OpenStreetMap maps by
contributors. There are two plugins that will help us with
the addition of buildings: BuildingsTools [1] allows us
to draw complete buildings with only two or three clicks
of the mouse; Terracer [18] helps drawing terraced
houses. Both plugins can be used in conjunction with
orthophotos. JOSM can import orthophotos directly

from different servers like Bing, Landsat or Open
Aerial.

Figure 5. Java OpenStreetMap editor (JOSM). Kiev city

loaded. Detail of Olympic Stadium mixed with an
orthophoto.

In Figure 5 it can be seen the JOSM editor with Kiev
city OSM data loaded and mixed with a Bing no-so-
recent orthophoto (where the Olympic Stadium is still
under construction).

III. ADDING NETWORK SIMULATION
Network behavior of wireless communication between
vehicles has been implemented by using OMNeT++ and
two of the projects developed for it. Let’s describe
briefly these three components.

A. OMNeT++
As the definition extracted from its own webpage
explains: “OMNeT++ is an extensible, modular,
component-based C++ simulation library and
framework, primarily for building network simulators”.
It provides the structure and libraries for developing
your own network simulator and, afterwards, creating
network topologies for performing tests. It has a lot of
contributors who have developed many projects (INET,
Castalia, ReaSE, OverSim, INETMANET, MiXiM,
Veins, etc.). Two of them will help us in creating
VANET simulations: MiXiM and Veins. OMNeT++ has
some characteristics that make it interesting for our
work: it is an open source tool so it is free and
customizable; it has an easy to use GUI which is based
in Eclipse (a well-known programming environment); it
works under Linux/Unix, Windows and Mac OS X so
you can use it in almost every computer; the two
projects that offer VANET support (MiXiM, Veins) are
open and in continuous development, so it is probable
that they will keep on adopting VANET standards
progressively [3] [4].
On the other hand, the main drawback is that the
learning curve is not negligible. But this seems to be
shared by most of the network simulators (OPNET, ns-
2, ns-3, etc.). Performance has not been measured
against other simulators by us. It is not the aim of this
paper to make a comparison between network simulators

Actas de las XXIII Jornadas de Paralelismo, Elche (Alicante), 19-21 Septiembre 2012

JP2012 - 306

or vehicular simulators. The reader can further learn on
simulators and VANETs in [10].

B. MiXiM
MiXiM is a modeling framework for OMNeT++ created
to simulate mobile and fixed wireless networks. It offers
detailed models of radio propagation, interference
estimation and wireless MAC protocols. This project
allows us to model at a certain degree of detail the
characteristics of wireless devices. It defines several
analogue models which add the effects of the channel to
the transmitted signal, by adding an attenuation mapping
(which defines the attenuation factors) to the signal. It
also implements different physical and MAC layers
models (CSMA, 802.11, etc.) and a special module
whose aim is to decide if the incoming signal is received
correctly or is perceived as noise. Diverse mobility
patterns and a module to simulate battery consumption
are also parts of MiXiM project. MiXiM is the right
framework over which Veins project can be built.

C. Veins
Veins is a tool developed by Christoph Sommer that has
evolved through time. At the beginning it was developed
under INET Framework package for OMNeT++ [8].
Recent versions are based on MiXiM, where wireless
communications are more detailed. Veins incorporates
IEEE protocols approved for its use in VANETs
(namely IEEE 802.11p and IEEE 1609 WAVE) and an
obstacle model [15] that adds the attenuation caused to
the wireless signal by buildings. For the communication
between nodes you have two channels available, the
Control Channel (CCH) and a Service Channel (SCH).
The standard IEEE 1609.4 (WAVE – Multi-Channel
Operation) [7] defines more service channels but this is
a first approximation to the implementation of the
standard and it is more realistic than using one only
channel for all transmissions.

Figure 6. City of Kiev in OMNeT++/Veins. Red
polygons represent obstacles (buildings). Blue arrows
denote vehicles. Big circles surround vehicles
transmitting or receiving video. Small circles surround
vehicles receiving other kind of data.

D. Visual representation and enhancement
In Figure 6 it can be seen the map zone that we have
selected for our example (Kiev city), loaded in
OMNeT++/Veins. Red drawings represent the buildings
that we have imported from OpenStreetMap in the first
stages of the example. Veins uses the file with polygons
(kiev.poly.xml) to sketch the obstacles and to calculate
the visibility between two wireless network interface
cards.
Veins represents vehicles with a small rectangle and a
blue arrow (which is the approximate motion direction
of the vehicle). In order to make data transmission in the
simulation “visible” to our eyes we draw circles of two
different sizes surrounding the vehicles that transmit or
receive data. A small circle around a car indicates that
this car has received some data (but not video data).
These small circles will cycle through 7 different colors
for making reception of data clearly noticeable. Big
circles will surround vehicles transmitting or receiving
video data. The circle around a video transmitter will
alternate between 2 colors (red/pink) each time it sends a
video packet. The circle around a video receiver will
alternate between 2 colors (blue/green) each time it
receives a video packet. This graphical representation
allows us to check visually what is really happening in
the simulation and to detect possible errors in the design
of the experiments. Also we can see how obstacles
hinder the transmissions and contribute to packet losses.
In the example that we have drawn, all the cars in the
simulation keep sending a beacon every 1 second
through the control channel. These beacons are not
graphically represented for clarity reasons.
In this simple example we have modelled a static
wireless device (which is implemented by a car that
remains stopped for the whole simulation). This static
point transmits continuously and cyclically a short
sequence of video. In real life this could be a contextual
advertising application, where a certain establishment
sends a video sequence to the vehicles driving near it,
showing the content of its bargains, the inside of the
premises, and the way to get to their car park. It could
also be a crashed car transmitting a few seconds of video
with the images around the vehicle previous to and later
than the accident. This could help identify victims
outside the car and possible dangers like combustible
spills. It could also be an emergency video-call that
would allow the emergency services to see the exact
condition of the people inside the car in order to plan the
rescue and medical treatments. In all these cases the
video stream should be sent through the service channel,
leaving the control channel (a critical resource) available
for normal network operation and also for broadcasting
beacons with critical information about the accident
(short bandwidth required).

IV. INJECTING VIDEO STREAMS
Up till now we have defined a generic simulation
environment which could be useful for any researcher in
VANETs at any field, from hardware prototyping to
protocol developing and network performance
evaluation. Now we will explain the operation of the
module that we have developed to do our research in

Actas de las XXIII Jornadas de Paralelismo, Elche (Alicante), 19-21 Septiembre 2012

JP2012 - 307

video transmission over VANETs. Also we will
complete our illustrating example.

A. The developed module
The information that OMNeT++/MiXiM needs for
simulating network transmissions is the packet size:
header plus payload data sizes It does not need to know
the exact contents of the packet to drive the simulations.
So we have prepared pre-compressed sequences of video
and produced trace files with the information needed for
the simulation, that is, the size of every video packet.
We have also included the packet sequence number in
order to be able to compare the received and
decompressed videos with the original sequences. Our
module lets the video transmitter read a trace file and
send video packets. On the other hand, video receivers
will write a similar trace file with the packets they
receive correctly. Another file is written by every video
receiver where the number of the first video packet
received, the number of the last video packet received,
the total number of received video packets and the
formula to calculate the percentage of video packets lost
(in the time window where the receiver can “see” the
transmitter) are stored. The received and decompressed
video can be compared (by computing PSNR or other
video quality metrics) with the use of some tools that at
the moment we have not integrated with OMNeT++. We
use them offline. To be able to compute the PSNR of a
sequence, frame by frame we need the same number of
frames in the original sequence and the received one
(which may have missing frames). So here what we do
is to reproduce the behavior of a vehicle when it misses
some frames: it freezes the last received frame on the
screen. So we have to replicate the last received frame
until a new frame is received. This will allow us to
compute correctly quality metrics. (This is not strictly
necessary with no-reference video quality metrics but
further details on this are out of the scope of this paper).

Figure 7. Static vehicle (asterisk) and flows of moving
vehicles (colored lines).

B. Parameters of our example
As we have said before, our example will have one static
video transmitter and several moving video receivers. In
Figure 7 you can see the static vehicle marked with a
black asterisk. We have designed 5 vehicle flows. Three
of them (1, 3, 5) pass near the black asterisk and the
other two do not. Flows 1 to 4 are composed of 50
vehicles each. Flow 5 introduces 250 vehicles into the
scenario. 49 out of these 450 moving cars “want” to
receive the video stream. Each car will send a beacon
through the control channel every 1 second (as stated
before). Video will be sent through the service channel.
Our example uses the following video parameters. The
video injected into the network is the well-known test
video sequence called Foreman. It has a frame size of
176x144 pixels (QCIF format) and a length of 300
frames with a frame rate of 30 frames/second. In order
to send sequences longer than 300 frames we
concatenate the original video with a reversed version
(frame by frame), and then with the original one and so
on. This is a normal procedure stated in common
conditions [21] for testing video compressors so that the
sequence keeps smooth at the edges of concatenation
and does not have abrupt discontinuities. We have
compressed the sequence with H.264/AVC JM 18.2
reference software [6]. We have chosen to code every
frame as an IDR frame (which means they are
individually decodable and do not need other frames to
be decoded). We have selected a QP value of 35 for
compression.

C. Observations and measurements
Now we will outline the measurements and behaviors
observed in our test.
For two of the three flows that pass nearby the video
transmitter (flows 1 and 5) there is no interfering
obstacle during the time window when they can receive
video and they do not lose any packet. From the
statistics files compiled we can infere that, for these two
flows, all the cars belonging to the same flow have a
similar time window which is around 21 seconds for
flow 1 and around 16 seconds for flow 5. Vehicles in
flow 3 approximate to the point of transmission through
an open space so they receive a big amount of packets
correctly. Then these vehicles arrive at a corner where
the buildings shadow the wireless signal and they begin
losing packets. In that corner there is a traffic light and
its cycle affects directly to the amount of packets lost by
each vehicle. Vehicles that arrive at the corner when the
traffic light has just gone red, will lose lots of packets.
Vehicles that arrive on a green light or that have to wait
little time, will lose less packets. Once cars have
surpassed those buildings they continue to receive the
video sequence because there are no obstacles in
between. For this flow, time windows from the first
received packet to the last received packet, vary from 45
seconds to 97 seconds.
In Figure 8 we have represented the percentage of
packet losses for each of the vehicles in flow 3 receiving
video. By looking at it you can clearly see which
vehicles have suffered a long red light. These cars have
loss rates around and over 60%.

Actas de las XXIII Jornadas de Paralelismo, Elche (Alicante), 19-21 Septiembre 2012

JP2012 - 308

Percentage of Packet Losses

64,06
60,51

56,21

50,72

32,46
34,55

24,59 24,59

64,06
60,55

56,21

24,61

64,57
59,76

65,65

10

20

30

40

50

60

70

80

8 13 18 23 28 33 38 43 48 53 58 118 128 138 148

Vehicle Identifier

%
 o

f P
ac

ke
t L

os
se

s

Figure 8. Percentage of packet losses for some vehicles

following the route of flow 3.

In Figure 9 we show an analysis of the video quality
(PSNR) of the reconstructed video sequences received
by three cars belonging to flow 3. They are vehicles
numbered 23, 33 and 38 which have corresponding loss
rates of 50.72%, 34.55% and 24.59%, respectively. Line
tagged as “Original” acts as a reference value and
represents the quality of compressed video without
packet losses. You can see that quality is inside a range
of 30-35 dB. When vehicles are near the corner, quality
drops to values near 10 dB. This is caused by keeping on
the screen the last received frame which produces the
“freezing” effect. This happens because burst losses
appear (instead of isolated losses). You could guess
packet loss rates for each vehicle by looking at Figure 9.
This simple example allows us to observe the behavior
and the conditions that affect video streaming in
vehicular environments.

PSNR Comparison

0

5

10

15

20

25

30

35

40

1 101 201 301 401 501 601 701 801 901 1001 1101 1201
Number of Frame

PS
N

R
 (d

B
)

Vehicle 38
Vehicle 33
Vehicle 23
Original

Figure 9. Comparative of PSNR values for three
vehicles video reception.

V. CONCLUSIONS AND FUTURE WORK
In this work we have presented current (open source)
available software tools that allow the simulation of
communications in VANETs. We have introduced the
development of a new module that allows the simulation
and evaluation of video streaming over these networks
by using trace files characterizing compressed video
sequences. An example has been drawn from scratch
(importing real maps) that illustrates the use of all these
software tools. These simulation tools will help us in
defining the limits of video streaming over VANETs,
and the most relevant factors that affect the feasibility of
these transmissions. We will evaluate different error
resilience strategies in order to guarantee a certain

quality of experience in this inhospitable environment.
These items form our present and future work.

VI. ACKNOWLEDGEMENTS
This work was supported by Spanish Ministerio de
Ciencia e Innovación under projects TIN2011-27543-
C03-03 and TEC2010-11776-E.

VII. REFERENCES
[1] BuildingsTools plugin for JOSM,
http://wiki.openstreetmap.org/wiki/JOSM/Plugins/BuildingsTools
[2] C4R: Citymob for Roadmaps,
http://www.grc.upv.es/Software/c4r.html
[3] Eckhoff, D., and Sommer, C., 2012. A Multi-Channel IEEE
1609.4 and 802.11p EDCA Model for the Veins Framework. In
Proceedings of 5th ACM/ICST International Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems: 5th ACM/ICST International Workshop on OMNeT++.
(Desenzano, Italy, 19-23 March, 2012). OMNeT++ 2012.
[4] Eckhoff, D., Sommer, C., and Dressler, F., 2012. On the Necessity
of Accurate IEEE 802.11p Models for IVC Protocol Simulation. In
Proceedings of 75th IEEE Vehicular Technology Conference
(Yokohama, Japan, May 2012). VTC2012-Spring.
[5] Fogue, M., Garrido. P., Martínez, F. J., Cano, J. C., Calafate, C.
T., and Manzoni P., 2012. A Realistic Simulation Framework for
Vehicular Networks. In Proceedings of 5th International ICST
Conference on Simulation Tools and Techniques (Desenzano, Italy,
19-23 March, 2012). SIMUTools’12.
[6] H.264/AVC reference software, version JM 18.2,
http://iphome.hhi.de/suehring/tml
[7] IEEE Standard for Wireless Access in Vehicular Environments
(WAVE) -- Multi-channel Operation, 2011. IEEE Std 1609.4-2010, 1-
89. (Feb. 2011). DOI= 10.1109/IEEESTD.2011.5712769
[8] INET Framework package, http://inet.omnetpp.org
[9] JOSM – Java OpenStreetMap editor, http://josm.openstreetmap.de
[10] [10] Martínez, F. J., Toh, C. K., Cano, J. C., Calafate, C. T., and
Manzoni, P., 2011. A Survey & Comparative Study of Simulators for
Vehicular Ad Hoc Networks (VANETs). Wireless Communications and
Mobile Computing Journal. 11, 7 (Jul, 2011), 813-828.
[11] MiXiM project – Mixed Simulator, http://mixim.sourceforge.net
[12] OMNeT++ Network Simulation Framework,
http://www.omnetpp.org
[13] OpenStreetMap, http://www.openstreetmap.org
[14] Seeling, P., Reisslein, M., 2011. Video Transport Evaluation With
H.264 Video Traces. IEEE Communications Surveys & Tutorials, 99
(Sept. 2011), 1-24. DOI= 10.1109/SURV.2011.082911.00067
[15] Sommer, C., Eckhoff, D., German, R., Dressler, F., 2011. A
Computationally Inexpensive Empirical Model of IEEE 802.11p Radio
Shadowing in Urban Environments. In Proceedings of 8th
International Conference on Wireless On-Demand Network Systems
and Services (Bardonecchia, Italy, 26-28 January, 2011). WONS 2011.
[16] Sommer, C., German, R., and Dressler, F., 2011. Bidirectionally
Coupled Network and Road Traffic Simulation for Improved IVC
Analysis. IEEE Transactions on Mobile Computing. 10, 1 (Jan. 2011),
3-15. DOI= 10.1109/TMC.2010.133
[17] SUMO – Simulation of Urban MObility,
http://sumo.sourceforge.net
[18] Terracer plugin for JOSM,
http://wiki.openstreetmap.org/wiki/JOSM/Plugins/Terracer
[19] Veins – Vehicles in Network Simulation, http://veins.car2x.org
[20] Video Trace Library, http://trace.eas.asu.edu
[21] Wang, Y. K., Wenger, S., and Hannuksela, M. M., 2005. Common
Conditions for SVC Error Resilience Testing. JVT-P206d0, In 16th
Meeting of Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T
VCEG. (Poznan, Poland, 24-29 July, 2005).
[22] Wegener, A., Piórkowski, M., Raya, M., Hellbrück, H., Fischer,
S., and Hubaux, J. P., 2008. TraCI: An Interface for Coupling Road
Traffic and Network Simulators. In Proceedings of 11th
Communications and Networking Simulation Symposium (Ottawa,
Canada, April 14-17, 2008). CNS’08.
[23] Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications Amendment 6: Wireless Access in Vehicular
Environments, 2010. IEEE Std 802.11p-2010, 1-51. (Jul. 2012). DOI=
10.1109/IEEESTD.2010.5514475.

Actas de las XXIII Jornadas de Paralelismo, Elche (Alicante), 19-21 Septiembre 2012

JP2012 - 309

