
XI JORNADAS DE PARALELISMO|GRANADA, SEPTIEMBRE 2000 1

In-Transit Bu�ers: A Mechanism to Improve

Performance of Networks with Source Routing
J. Flich, P. L�opez, M. P. Malumbres y J. Duato

Resumen| Clusters Of Workstations (COWs) are

becoming increasingly popular as a cost-e�ective al-

ternative to parallel computers. Typically, these net-

works connect processors using irregular topologies,

providing the wiring 
exibility, scalability, and incre-

mental expansion capability required in this environ-

ment. To guarantee deadlock freedom, messages are

usually delivered using a routing algorithm with an

acyclic channel dependence graph. However, the rou-

ting scheme is often non-minimal and network traÆc

tends to saturate some network areas, resulting in an

unbalanced use of network links. Also, some networks

use source routing [1], so the paths to reach every po-

tential destination have to be known in advance.

In [3], [4] we have presented a new mecha-

nism (ITB) that improves the performance of the

up*/down* routing algorithm in irregular networks

with source routing. In this paper, we show that the

ITB mechanism may be used in any source routing

scheme in the COWs environment. In particular, we

apply ITBs to DFS [6] and smart-routing [2]. DFS

and smart-routing use better routes than up*/down*.

So, our challenge will be to determine if ITBs can im-

prove the performance achieved by these routing al-

gorithms. Results show that ITB improves DFS and

smart-routing by a 63% and a 23%, respectively.

Palabras clave| Networks of workstations, irregu-

lar topologies, wormhole switching, minimal routing,

source routing.

I. Introduction

C
LUSTERS of workstations (COWs) are

currently being considered as a cost-e�ective

alternative for small-scale parallel computing. In

these networks, topology is usually �xed by the

physical location constraints of the computers,

making it irregular. On the other hand, source

routing is often used as an alternative to distributed

routing, because switches are simpler and faster.

In this routing technique, the path to destination

is built at the source host and it is written into

the packet header before delivering. Switches route

packets through the �xed path found at the packet

header. Myrinet network [1] uses source routing.

Up*/down* [7] is one of the best known routing al-

gorithms for irregular networks. It is used in Myrinet

networks. It is based on an assignment of direction

labels to links. To do so, a breadth-�rst spanning

tree is computed and the \up" end of each link is

de�ned as: (1) the end whose switch is closer to the

root in the spanning tree; (2) the end whose switch

has the lower ID, if both ends are at switches at the

same tree level (see Figure 1). To eliminate dead-

locks a legal route must traverse zero or more links

DISCA, Universidad Polit�ecnica de Valencia, 46071 Valen-
cia. Correo electr�onico: jflich@gap.upv.es.
This work was supported by the Spanish CICYT under Grant
TIC97{0897{C04{01 and by Generalitat Valenciana under
Grant GV98-15-50

in the \up" direction followed by zero or more links

in the \down" direction. While up*/down* routing

is simple, it concentrates traÆc near the root switch

and uses a large number of non-minimal paths.

Smart-routing [2] �rst computes all possible paths

for every source-destination pair, building also the

channel dependence graph (CDG). Then it searches

through the CDG for cycles. An iterative process

breaks cycles by removing dependences taking into

account a heuristic cost function. This process �nis-

hes when the CDG has no cycles. Although smart-

routing distributes traÆc better than other approa-

ches, it has the drawback of its high computation

overhead, since it uses a linear programming solver

to balance the traÆc while it tries to break cycles.

The DFS routing algorithm [6] computes a depth-

�rst spanning tree with no cycles. Then, it adds

the remaining channels to provide minimal paths,

which leads to cycles in the CDG. As in previous

approaches, cycles are broken by restricting routing.

However, channels are labeled using a heuristic in

such a way that the number of routing restrictions is

low.

In this paper, we propose a mechanism that remo-

ves channel dependences without restricting routing.

Although this mechanism has been �rst proposed in

[3], [4] to improve up*/down* routing, it can be ap-

plied to any routing algorithm. In this paper we will

apply it to other routing schemes.

The rest of the paper is organized as follows. Sec-

tion II presents how the mechanism works and some

details about its implementation. In Section III the

mechanism is applied to some routing strategies. In

Section IV evaluation results for di�erent networks

are presented, analyzing the bene�ts of using our me-

chanism combined with previous routing proposals.

Finally, in Section V some conclusions are drawn.

II. ITBs: A Mechanism to Remove Channel

Dependences

The basic idea of the mechanism is the following.

The paths between source-destination pairs are com-

puted following any given rule and the corresponding

CDG is obtained. Then, the cycles in the CDG are

broken by splitting some paths into sub-paths. To

do so, one intermediate host inside the path is selec-

ted, and, at this host, packets are completely ejec-

ted from the network as if it was their destination.

Later, packets are re-injected into the network to re-

ach their �nal destination. Notice that more than

one intermediate host can be needed. As packets are

completely ejected at intermediate hosts, the depen-

dences between the input and output switch channels



2 FLICH ET AL.: IN-TRANSIT BUFFERS: A MECHANISM TO IMPROVE PERFORMANCE...

are completely removed. CDG can become acyclic by

repeating this process until no cycles are found.

minimal path

in-transit host

up*/down* path

4 5

37

0"up" direction

6

2

1

Fig. 1. Link direction assignment and use of the ITB mecha-
nism for an irregular network.

This mechanism was �rst proposed to remove the

dependences between `down' and `up' channels in the

up*/down* routing algorithm [3], [4]. It was referred

to as in-transit bu�ers (ITB). By removing depen-

dences between `down' and `up' channels, minimal

paths between some hosts, forbidden by the origi-

nal up*/down* routing algorithm, are now provided.

For example, although in Figure 1 there is a minimal

path between switch 4 and switch 1 (4! 6! 1), it

is forbidden because it uses an `up' link after a `down'

link at switch 6. However, with the ITB mechanism

this path is allowed by using one host at switch 6 as

an in-transit host to break the dependence. By using

ITBs, minimal routing can be guaranteed while kee-

ping the deadlock-free condition.

On the other hand, ejecting and re-injecting

packets at some hosts also improves performance by

reducing network contention. Packets that are ejec-

ted free the channels they have reserved, thus allo-

wing other packets requiring these channels to ad-

vance through the network (otherwise, they would

become blocked). Therefore, adding some extra

ITBs at some hosts may help in improving perfor-

mance. Hence, the goal of the ITB mechanism is

not only to provide minimal paths by breaking some

dependences but also to improve performance by re-

ducing network contention. However, ejecting and

re-injecting packets at some intermediate hosts also

introduces some drawbacks. First, latency of these

packets is increased by some amount of time. As

network load is low, this e�ect will be more promi-

nent. An eÆcient implementation of the mechanism

can help to keep this overhead low. And second,

ITBs use some additional resources in both network

(links), and network interface cards (memory pools

and DMA engines).

If the rules used to build the paths between source-

destination pairs lead to an unbalanced traÆc dis-

tribution, then adding more ITBs than the strictly

needed will help. This is the case for up*/down*,

because this routing tends to saturate the area near

the root switch. Thus, there is a trade-o� between

using the minimum number of ITBs that guarantees

deadlock-free minimal routing and using more than

these to improve network throughput.

Figure 2 shows the implementation of the in-

local queue
at the in-transit host

in-transit buffer

NIC

"down" link

"up" link
down-up restriction

in-transit message

Switch

Fig. 2. In-Transit bu�er mechanism.

transit bu�er mechanism. Some changes in the

packet header format and in the Myrinet Control

Program (MCP) [5] are required. A mark is in-

serted in the packet header in order to notify the

in-transit host that the packet must be re-injected

into the network after removing that mark. Some

memory is needed at the network interface card to

store in-transit packets and the MCP program has

to be modi�ed to detect in-transit packets and pro-

cess them accordingly. In order to minimize the in-

troduced overhead, as soon as the in-transit packet

header is processed and the output channel is free,

a DMA transfer can be programmed to re-inject the

in-transit packet. To make the mechanism deadlock-

free, it must be guaranteed that an in-transit packet

that is being re-injected can be completely ejected

from the network if the re-injected part of the packet

becomes blocked, thus removing potential channel

dependences that may result in a deadlock (down-up

transitions). Thus, when an in-transit packet arrives

at a given host, care must be taken to ensure that

there is enough bu�er space to store it at the inter-

face card before starting the DMA transfer. If the

bu�er space at the network interface card has been

exhausted, the MCP should store the packet in the

host memory, considerably increasing the overhead

in this case.

III. Applying the ITB Mechanism to Some

Routing Algorithms

In this section, we will apply the ITB mecha-

nism to several source-based routing algorithms:

up*/down*, DFS and smart-routing. In the case of

up*/down*, we will use the two mentioned approa-

ches: Allocating the minimum and non-minimum

number of ITBs. In the �rst case, we will place

the minimum number of ITBs that guarantees

deadlock-free minimal routing. Thus, given a source-

destination pair, we will compute all minimal paths.

If there is a valid minimal up*/down* path it will be

chosen. Otherwise, a minimal path with ITBs will

be used. In the second one, we will use more ITBs

than strictly needed to guarantee deadlock-free mini-

mal routing. In particular, we will randomly choose

one minimal path. If the selected path complies with

the up*/down* rule, it is used without modi�cation.

Otherwise, ITBs are inserted. Notice that there may

exist valid minimal up*/down* paths between the

same source-destination pair but they are not used



XI JORNADAS DE PARALELISMO|GRANADA, SEPTIEMBRE 2000 3

Hence, more ITBs than the strictly necessary will be

used. By using these two approaches, we can eva-

luate the trade-o� mentioned above.

In the case of DFS, we will use ITBs in the same

way as in the second approach used for up*/down*

but verifying if the paths comply with the DFS rule

before inserting ITBs. However, for smart-routing,

we will use the following approach. We �rst compute

the paths between source-destination pairs that bet-

ter balance network traÆc. It is important to notice

that the obtained routes are not the same that smart-

routing computes. Smart-routing computes both ba-

lanced and deadlock-free routes whereas we compute

only balanced routes. For this reason, we will refer

to these routes as \balanced" rather than \smart".

Then, we compute the CDG and place ITBs to con-

vert it into an acyclic one. On the other hand, since

computing balanced routes alone is easier than com-

puting both balanced and deadlock-free routes, the

computational cost of the resulting routing algorithm

is lower than the computational cost of the smart-

routing. Hence, the resulting routing algorithm re-

laxes one of the most claimed drawbacks of smart-

routing.

IV. Performance Evaluation

A. Network Model

Network topologies are completely irregular and

have been generated randomly, taking into account

three restrictions: (i) all the switches in the network

have the same size (8 ports), (ii) there are exactly

4 hosts connected to each switch (so, there are 4

ports available to connect to other switches) and (iii)

two neighboring switches are connected by a single

link. We have analyzed networks with 16, 32, and 64

switches (64, 128, and 256 hosts, respectively).

Links, switches, and interface cards are modeled

based on the Myrinet network. Concerning links,

we assume Myrinet short LAN cables. These cables

are 10 meters long, o�er a bandwidth of 160 MB/s,

and have a delay of 4.92 ns/m (1.5 ns/ft). Flits are

one byte wide. Physical links are also one 
it wide.

Transmission of data across channels is pipelined [8].

Hence, a new 
it can be injected into the physical

channel every 6.25 ns and there will be a maximum

of 8 
its on the link at a given time. Each Myrinet

switch has a simple routing control unit that remo-

ves the �rst 
it of the header and uses it to select

the output link. That link is reserved when it beco-

mes free. Assuming that the requested output link

is free, the �rst 
it latency is 150 ns through the

switch. After that, the switch is able to transfer 
its

at the link rate, that is, one 
it every 6.25 ns. Each

output port can process only one packet header at a

time. An output port is assigned to waiting packets

in a demand-slotted round-robin fashion. When a

packet gets the routing control unit, but it cannot

be routed because the requested output link is busy,

it must wait in the input bu�er until its next turn. A

crossbar inside the switch allows multiple packets to

traverse it simultaneously without interference Each

Myrinet network interface card has a routing table

with one entry for every possible destination of mes-

sages. The tables are �lled according to the routing

scheme used.

In the case of using ITBs, the incoming packet

must be recognized as in-transit and the transmission

DMA must be re-programmed. We have used a delay

of 275 ns (44 bytes received) to detect an in-transit

packet, and 200 ns (32 additional bytes received) to

program the DMA to re-inject the packet. These

timings have been taken on a real Myrinet network.

Also, the total capacity of the in-transit bu�ers has

been set to 512KB at each interface card.

B. Network Load

Several message destination distributions and sizes

have been analyzed. However, for the sake of brevity,

results will be shown only for 512-byte messages and

uniform distribution. For each simulation run, we

assume that the packet generation rate is constant

and the same for all the hosts. We evaluate the full

range of traÆc, from low load to saturation.

C. Simulation Results

In this section we evaluate the performance of

the ITB mechanism when it is applied to the above

mentioned source-based routing algorithms. First,

we analyze the behavior of the routing algorithms

without using in-transit bu�ers. We evaluate the

up*/down* routing (UD), the depth-�rst search

spanning tree based routing (DFS), and the smart-

routing algorithm (SMART).

Then, we evaluate the use of in-transit bu�ers

over the up*/down* and DFS routings. For the

up*/down* routing, we analyze the two above-

mentioned approaches: using the minimum num-

ber of ITBs needed to guarantee deadlock-free mi-

nimal routing (UD MITB), and using more ITBs

(UD ITB). For the DFS routing, we use the second

approach. This new routing will be referred to as

DFS ITB. Finally, we evaluate the use of in-transit

bu�ers over balanced but deadlocking routes sup-

plied by the smart-routing algorithm. This routing

will be referred to as BALANCED ITB.

As evaluation results, we will plot the average ac-

cepted traÆc measured in 
its/ns/switch versus the

average message latency measured in ns.

C.1 Original Routing Algorithms

Figures 3.a, 3.b, and 3.c show the behavior of

the analyzed routing algorithms (UD, DFS, and

SMART) for the uniform distribution of message de-

stinations for topologies of 16, 32, and 64 switches,

respectively. SMART routing is not shown for the

64-switch network because it was not available due

to its high computation time. As it was expected,

the best routing algorithm is SMART. It achieves

the highest network throughput for all the topo-

logies where it is used. In particular, for the 16-

switch network, SMART increases throughput over

UD and DFS routings by factors of 1 22 and 1 10



4 FLICH ET AL.: IN-TRANSIT BUFFERS: A MECHANISM TO IMPROVE PERFORMANCE...

respectively. Also, for larger networks (32 switches)

SMART increases network throughput by factors of

1.77 and 1.28 with respect to the UD and DFS rou-

tings, respectively. For the 64-switch network, the

best routing algorithm is the DFS routing (SMART

routing was not available). Concerning only DFS

and UD routing algorithms, we observe that DFS

improves UD for all the network sizes.

The higher network throughput achieved by

SMART routing is due to its better traÆc balan-

cing. Figures 4.a, 4.b, and 4.c show the utilization

of links connecting switches for the 32-switch net-

work when using UD, DFS, and SMART routings,

respectively. Links are sorted by utilization. Traf-

�c is near 0.03 
its/ns/switch (where the UD rou-

ting is reaching saturation). We observe that, when

using the UD routing, half the links are poorly used

(52% of links with a link utilization lower than 10%)

and a few links highly used (only 11% of links with

a link utilization higher than 30%), being some of

these overused (3 links with a link utilization hig-

her than 50%). TraÆc is clearly unbalanced among

all links. On the other hand, the DFS routing sof-

tens this unbalancing. But the best traÆc balan-

cing is achieved by the SMART routing. We observe

that links are highly balanced, ranging link utiliza-

tion between 7.76% and 20.26%. As traÆc is better

balanced, more traÆc can be handled by the SMART

routing and therefore, higher throughput is achieved.

C.2 In-transit Bu�ers with UD and DFS

We focus now on the performance of the in-transit

bu�er mechanism when it is applied to the UD and

DFS routings. Figures 5.a, 5.b, and 5.c show the

performance results obtained by the resulting routing

algorithms (UD MITB, UD ITB, and DFS ITB) for

the uniform distribution of message destinations for

16, 32, and 64-switch networks, respectively.

The in-transit bu�er mechanism always improves

network throughput over both original routings. Mo-

reover, as network size increases, more bene�ts are

obtained by the in-transit bu�er mechanism. Con-

cerning UD MITB routing, we observe that UD is

improved by factors of 1.12, 1.50, and 2.00 for 16,

32, and 64-switch networks, respectively. However,

when more ITBs are used, more bene�ts are obtai-

ned. In particular, UD is improved by UD ITB by

factors of 1.22, 2.14, and 2.75 for the 16, 32, and

64-switch networks, respectively. Concerning DFS,

DFS ITB routing improves network throughput by

factors of 1.10, 1.39, and 1.54.

The most important drawback of routings compu-

ted from spanning trees is traÆc unbalancing. As

network size increases, routing algorithms tend to

overuse determined links (links near the root switch)

and this leads to unbalanced traÆc. As in-transit

bu�ers allow the use of alternative routes, network

traÆc is not forced to pass through the root switch

(in the spanning tree) achieving better network per-

formance (see Figures 6.a 6.b, and 6.c).

As stated before the ITB mechanism introduces

some latency penalty. The worst case occurs when

network traÆc is very low. For 512-byte messages,

we can observe that this increase is never higher than

5%. In general, it is noticeable only for short messa-

ges and also depends on the number of ITBs alloca-

ted (not shown).

C.3 In-transit Bu�ers with SMART

Smart-routing is not based on spanning trees. Mo-

reover, its main goal is to balance network traÆc.

In fact, we have already seen the good traÆc ba-

lancing achieved by this routing algorithm (Figure

4.c). Therefore, it seems that in-transit bu�ers will

have little to o�er to the smart-routing. Figures

7.a and 7.b show the performance results for the

SMART and BALANCED ITB routings for 16 and

32-switch networks. In 64-switch networks, smart

routes were not available due to its high computation

time. We observe that, also for smart-routing, the in-

transit bu�er mechanism increases network through-

put. In particular, for 32-switch networks, the BA-

LANCED ITB routing increases network through-

put by a factor of 1.33.

We have shown before that traÆc is highly distri-

buted among all links when SMART routing is used.

Figures 8.a and 8.b show traÆc balancing among all

links for the SMART and BALANCED ITB routings

at 0.03 
its/ns/switch traÆc point. Results are very

similar in both cases. The SMART routing is quite

good in balancing traÆc among all links, and the-

refore, the in-transit bu�er mechanism does not im-

prove network throughput by balancing traÆc even

more.

To fully understand the better performance achie-

ved by the BALANCED ITB routing we focus now

on network contention. For this reason, Figures 9.a

and 9.b show the blocked time of links for both rou-

ting algorithms. Blocked time is the percentage of

time that the link is stopped due to the 
ow control

protocol. This is a direct measure of network con-

tention. We observe that, smart-routing have some

links blocked more than 10% of time, being some

particular links blocked more than 20% of time. On

the other hand, by using in-transit bu�ers, for the

same traÆc point, blocked time is kept lower than

5% for all links.

V. Conclusions

In previous papers, we proposed the in-transit

bu�er mechanism (ITB) to improve network per-

formance in networks with source routing and

up*/down* routing. Although the mechanism was

primarily intended for breaking cyclic dependences

between channels that may result in a deadlock, we

have found that it also serves as a mechanism to re-

duce network contention and better balance network

traÆc.

In this paper we apply the ITB mechanism over

up*/down*, DFS, and smart-routing schemes, ana-

lyzing its behavior. Results show that the in-transit

bu�er mechanism improves network performance in



XI JORNADAS DE PARALELISMO|GRANADA, SEPTIEMBRE 2000 5

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (flits/ns/switch)

UD
DFS

SMART

(a)

4500

5000

5500

6000

6500

7000

7500

8000

8500

0.01 0.02 0.03 0.04 0.05

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (flits/ns/switch)

UD
DFS

SMART

(b)

5000

6000

7000

8000

9000

10000

11000

12000

0.005 0.01 0.015 0.02 0.025

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (flits/ns/switch)

UD
DFS

(c)

Fig. 3. Average message latency vs. traÆc. Network size is (a) 16 switches, (b) 32 switches, and (c) 64 switches.

(a) (b) (c)

Fig. 4. Link utilization. TraÆc is 0.03 
its/ns/switch. Network size is 32 switches. (a) UD, (b) DFS, and (c) SMART routings.

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (flits/ns/switch)

UD
UD_MITB

UD_ITB
DFS

DFS_ITB

(a)

4500

5000

5500

6000

6500

7000

7500

8000

8500

0.01 0.02 0.03 0.04 0.05 0.06 0.07

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (flits/ns/switch)

UD
UD_MITB

UD_ITB
DFS

DFS_ITB

(b)

4500

5000

5500

6000

6500

7000

7500

8000

8500

0.01 0.02 0.03 0.04 0.05

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (flits/ns/switch)

UD
UD_MITB

UD_ITB
DFS

DFS_ITB

(c)

Fig. 5. Average message latency vs. traÆc. UD, DFS, UD MITB, UD ITB, and DFS ITB routings. Network size is (a) 16
switches, (b) 32 switches, and (c) 64 switches.

(a) (b) (c)

Fig. 6. Link utilization. (a) UD MITB, (b) UD ITB, and (c) DFS ITB. Network size is 32 switches. TraÆc is 0.03

its/ns/switch.

all cases. Up*/down* is signi�cantly improved due to

the high routing restrictions imposed to the network

and the unbalanced traÆc nature of the spanning

trees. Better source routing algorithms, like DFS and

smart-routing, are also improved by the ITB mecha-

nism, due to its ability to reduce network contention.

Finally, we have observed that as more ITBs are ad-

ded to the network, network throughput increases

but the latency also increases due to the small pen-

alty of using in-transit bu�ers. So, when using ITB,

there is a trade-o� between network throughput and

message latency that network designers have to esta-



6 FLICH ET AL.: IN-TRANSIT BUFFERS: A MECHANISM TO IMPROVE PERFORMANCE...

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
A

ve
ra

ge
 M

es
sa

ge
 L

at
en

cy
 (

ns
)

Traffic (flits/ns/switch)

SMART
BALANCED_ITB

(a)

4500

5000

5500

6000

6500

7000

7500

8000

8500

0.01 0.02 0.03 0.04 0.05 0.06 0.07

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (flits/ns/switch)

SMART
BALANCED_ITB

(b)

Fig. 7. Average message latency vs traÆc. SMART and BALANCED ITB routings. Network size is (a) 16 switches and (b)
32 switches.

(a) (b)

Fig. 8. Link utilization of (a) SMART and (b) BALANCED ITB routings. Network size is 32 switches. TraÆc is 0.03

its/ns/switch.

(a) (b) (c)

Fig. 9. Blocked Time. TraÆc is (a, b) 0.05 
its/ns/switch and (c) 0.06 
its/ns/switch. Network size is 32 switches. (a)
SMART and (b, c) BALANCED ITB.

blish.

As for future work, we plan to implement the

proposed mechanism on an actual Myrinet network

in order to con�rm the obtained simulation results.

Also, we are working on techniques that reduce ITB

overhead.

Referencias

[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. Seizovic and W. Su, \Myrinet - A gigabit
per second local area network," IEEE Micro, pp. 29{36,
February 1995.

[2] L. Cherkasova, V. Kotov, and T. Rokicki, \Fibre channel
fabrics: Evaluation and design," in 29th International
Conference on System Sciences, Feb. 1995.

[3] J. Flich, M.P. Malumbres, P.Lopez, and J. Duato, \Im-
proving Routing Performance in Myrinet Networks," in
International Parallel and Distributed Processing Sym-
posium (IPDPS 2000), May 2000.

[4] J. Flich, M.P. Malumbres, P.Lopez, and J. Duato, \Per-
formance Evaluation of a New Routing Startegy for Ir-
regular Networks with Source Routing," in International
Conference on Supercomputing (ICS 2000) May 2000

[5] GM protocol, 'http://www.myri.com/GM'
[6] J.C. Sancho, A. Robles, and J. Duato, \New Methodo-

logy to Compute Deadlock-Free Routing Tables for Irre-
gular Networks," in Workshop on Communications and
Architectural Support for Network-based Parallel Com-
puting, January, 2000.

[7] M. D. Schroeder et al., \Autonet: A high-speed,
self-con�guring local area network using point-to-point
links," Technical Report SRC research report 59, DEC,
April 1990.

[8] S. L. Scott and J. R. Goodman, \The Impact of Pipelined
Channels on k-ary n-Cube Networks," in IEEE Transac-
tions on Parallel and Distributed Systems, vol. 5, no. 1,
pp. 2{16, January 1994.


