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Abstract: Several Medium Access Control (MAC) and Routing protocols have been 

developed in the last years for Underwater Wireless Sensor Networks (UWSN). One of the 

main difficulties to compare and validate the performance of different proposals is the lack 

of a common standard to model the acoustic propagation in the underwater environment. In 

this paper we analyze the evolution of underwater acoustic prediction models from a simple 

approach to more detailed and accurate models. Then, different high layer network protocols 

are tested with different acoustic propagation models in order to determine the influence of 

environmental parameters on the obtained results. After several experiments, we can 

conclude that higher-level protocols are sensitive to both (a) physical layer parameters 

related to the network scenario and (b) the acoustic propagation model. Conditions like 

ocean surface activity, scenario location, bathymetry or floor sediment composition, may 

change the signal propagation behavior. So, when designing network architectures for 

UWSN, the role of physical layer should be seriously taken into account in order to assert 

that the obtained simulation results will be close to the ones obtained in real network 

scenarios. 

Keywords: Underwater wireless sensor networks, network simulation, acoustic propagation 

models, MAC and routing protocols. 
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1. Introduction 

There has been an increasing interest in the development of Underwater Wireless Sensor Networks 

(UWSN) in the last years. The first attempts to analyze UWSN behavior were based on the mature 

technology developed during the last decade in terrestrial wireless sensor networks (TWSN). Despite 

having a very similar functionality, UWSNs exhibit several architectural differences with respect to the 

terrestrial ones, which are mainly due to the transmission medium characteristics (sea water) and the 

signal employed to transmit data (acoustic ultrasound signals) [1]. Then, the design of appropriate 

network architecture for UWSNs is seriously hardened by the conditions of the communication system 

and, as a consequence, what is valid for terrestrial WSNs is perhaps not valid for UWSNs. So, a 

general review of the overall network architecture is required in order to supply an appropriate network 

service for the demanding applications in such an unfriendly submarine communication environment. 

Basically, an UWSN is formed by the cooperation among several network nodes (often called 

sensor nodes) that establish and maintain the network through the use of bidirectional acoustic links. 

Every node is able to send/receive messages from/to other nodes in the network, and also to forward 

messages to remote destinations in case of multi-hop networks. Every node may have one or several 

sensors that are actively recording environmental data which should be forwarded to special sink 

nodes, typically platforms or buoys at the surface. Sink nodes have communication channels to 

forward (and/or local store) the collected data to the remote control station in the coast, typically 

through a Radio Frequency (RF) link. 

Since acoustic signals are mainly used in UWSNs, it is necessary to take into account the main 

aspects involved in the propagation of acoustic signals in underwater environments, including: (1) the 

propagation speed of sound underwater is around 1500 m/s (5 orders of magnitude slower than the 

speed of light), and so the communication links will suffer from large and variable propagation delays 

and relatively large motion-induced Doppler effects; (2) phase and magnitude fluctuations lead to 

higher bit error rates compared with radio channels’ behaviour, being mandatory the use of forward 

error correction codes (FEC); (3) as frequency increases, the attenuation observed in the acoustic 

channel also increases, being this a serious bandwidth constraint; (4) multipath interference in 

underwater acoustic communications is severe due mainly to the surface waves or vessel activity, 

being a serious problem to attain good bandwidth efficiency. 

So, designing an efficient and reliable communication channel is not an easy task, being roughly 

different from TWSN approaches. So, this may be the reason of the existence of a lot of simulation 

tools that define different models of underwater acoustic signal propagation. In fact, there is no 

agreement to use a particular simulation tool and/or standard model to represent the underwater 

acoustic propagation behavior; indeed there are almost as many simulation tools for this purpose as 

MAC and routing protocol proposals. In general, these studies have mainly been focused in developing 

higher layer protocols without paying much attention to the physical layer and its components. 

AUVNetSim [2] is an example where the physical layer is too simple, based on Thorp approximations, 

so different environment conditions cannot be considered in the propagation model, leading to 

simulation results that may be far from the ones obtained in real network deployments.  

Other approaches define complex underwater acoustic propagation models that are closer to real 

behavior of underwater acoustics. This is the case of the acoustic propagation model proposed by Xie 
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and Gibson [3] which it is based on the Monterrey Miami Parabolic Equation (MMPE). The MMPE 

equation calculates the evolution of sound pressures produced by an acoustic source in a specific 

underwater scenario. It divides the scenario in a grid of 3-D cells, performing the requiring 

computations to get a representative sound pressure for each cell. If we reduce the cell size, we can 

obtain more accurate prediction results, but the computational demand for the corresponding 

calculations is overwhelming at medium to large size network scenarios. The MMPE model is 

implemented with OPNET Modeler [4], so small scale network simulations may be performed, but 

there is an intrinsic scalability problem when performing network simulations.  

Another underwater network simulation framework is the World Ocean Simulator System (WOSS) 

[5]. It is composed by several tools like (a) ns2 simulator [6], (b) Bellhop tool that accurately models 

the underwater sound propagation by an specific ray tracing algorithm, and (3) network scenarios 

defined with real data (temperature, salinity, wave activity, etc.) from well-known world ocean 

databases. The WOSS framework and the MMPE model are two approaches that perform an accurate 

acoustic propagation modeling, but they suffer from high complexity limiting the simulation to small 

network scenarios and low number of network nodes.  

In order to alleviate the complexity constraint, in [7] we proposed a statistical prediction model 

based on the Bellhop ray tracing tool that reduces its complexity and achieves similar levels of 

prediction accuracy.  So, we will be able to perform network modeling with reasonable high accuracy 

level and low computational overhead.  

These modeling tools and a lot of variations around them lead to the hard task of comparing two 

different proposals unless they are implemented on the same platform. And, even in this case, the 

simulator should be as realistic as possible towards the real environment conditions. Otherwise the 

results will lack of accuracy, and empirical testing, at least in scale-down experiments, should be done 

before releasing the final implementation of the underwater nodes, reducing the power of simulation 

tools for predicting real network behavior. 

   At simulation time, when we define the parameters of a network scenario and the location where 

network nodes would be deployed, we may use a simple assumption through general scenario 

parameters or define those scenario parameters that will have a direct influence in the acoustic 

propagation behavior. For example, we may decide to use a simple scenario where the sound speed 

propagation is considered as a fixed value of 1500 m/s, with a two dimensional deployment area (depth 

is not considered) and a simple acoustic propagation approach  like the one proposed by Thorp [10], to 

evaluate the performance of a point-to-point link between two nodes. On the contrary, we could define 

a more detailed network scenario by including, among others, the scenario world location with 

bathymetry and floor sediment composition that will impact on the way sound propagation is 

reflected/absorbed at the ocean floor. Also, the temperature of the water will depend on both the 

latitude and longitude of network scenario and the season of the year. This fact together with the water 

salinity and the depth may change the sound speed between 1450 and 1540 m/s. There are other 

important factors that may change sound propagation behavior such as the well-known ocean wave’s 

influence which is different for shallow and deep waters, or the noise produced by ships, biological 

activity or shoals. All of these scenario parameters should be taken into account in order to develop 

detailed acoustic propagation models for UWSN, so modeling higher-level network protocols will be 
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Bellhop Ray Tracing requires the solution of the ray equations to determine the ray coordinates of 

the acoustic signal propagation. Amplitude and acoustic pressure requires the solution of the dynamic 

ray equations which are described in detail in [16]. This tool is integrated with empirical data updated 

from world databases that measure the Sound Speed Profile (SSP), bathymetry and floor sediment such 

as the General Bathymetric Chart of the Oceans (GEBCO) and National Oceanic and Atmospheric 

Administration (NOAA)[14][15]. The ocean wave’s motion is also included to calculate the rays 

trajectories; so taking into account the type of sediments and the sound speed profile (SSP) this 

propagation model shows a behavior that it is very close to experimental studies for acoustic 

propagation in underwater environments. (More details in [15][16]. 

 

 
Fig. 1. Bellhop ray trace 

 

For a system with cylindrical symmetry, the ray equations can be written as: 
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where r(s) and z(s) represent the ray cylindrical coordinates and s is the arclength along the ray; the 

pair c(s) [ξ (s),ζ(s)] represents the tangent versor along the ray. Initial conditions for r(s), z(s), ξ(s) and 
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where θs represents the launching angle,  (rs, zs) is the source position, and cs is the sound speed at 

the source position. The coordinates are sufficient to obtain the ray travel time: 
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ds
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(a) Thorp 

(b) MMPE (c) BH/BH-SPM 

Fig. 3. Attenuation of acoustic waves 

 

In figure 3 the acoustic attenuation map from the selected propagation models is shown. It was 

obtained with a specific underwater scenario where a source node, located at 10m depth, is emitting an 

acoustic beam of 120 degrees at 10 kHz. The scenario environmental conditions are the same 

(bathymetry, surface activity, temperature, etc.). As it can be shown, the waves (at top) and the 

underwater floor (at bottom) are represented in blue and brown colors, respectively. We can quickly 

compare the attenuation values for the different models whereas in (a) Thorp, the simple model only 

shows signal degradation in accordance with the distance without taking into account neither the 

scenario depth nor the source radiation pattern, in (b) the MMPE model is able to define a more 

accurate attenuation map taking into account, depth, distance and ocean wave activity. Finally, in 

figure 3 (c) the acoustic physics are taken into account by using Bellhop model which introduces the 

ray reflections/absorptions depending on floor sediment composition, the floor shape and the surface 

wave’s geometry. In addition, a different sound speed profile is calculated based on the scenario world 

location and its bathymetry.  

Once these models are presented, the next step is to determine if the differences appreciated in 

figure 3, may be transferred to the upper network layers in such a way that performance of higher layer 

protocols is affected in a significant way. If so, then it would be necessary to consider the use of 

complex propagation models that represent as accurate as possible the underwater acoustic propagation 

in order to obtain simulation results close to the ones obtained in experimental test-beds. 
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In this section we are going to evaluate the different propagation models proposed in section 2, 

assuming we have a CSMA/CA MAC protocol and the scenario and simulation parameters defined 

above. The performance metrics we will show are: 

 

(1) Goodput, defined as the throughput found at the application layer (note that in top of MAC 

layer we have no other network layers, only the application), so only data packets that 

successfully arrive to the gateway node are taken into account. This also means that control 

packets like RTS, CTS, and ACK are not considered in the computation of goodput. 

(2) Average Packet Delay, defined as the average delay incurred by a packet to reach its 

destination. This delay is calculated from the time when MAC layer gets the packet at source 

node to start delivery until the instant when this packet is correctly received at gateway node.  
 

 
 

Fig. 7. Average Goodput with different acoustic propagation models 

 

In Figure 7, we the average goodput from 10 random scenarios (as defined in previous subsection) 

is shown. As it can be observed, the results appear to follow the same pattern with clearly different 

goodput values depending on the propagation model used. The Thorp propagation model gets the best 

performance, MMPE is estimable worse and finally Bellhop is the one with the worst behavior. This 

behavior agrees with the prediction stated before as the connection links between the nodes that are 

farther from gateway suffer the consequences of using more accurate propagation models like MMPE 

and Bellhop. In other words, Thorp model always provides link reachability to network nodes during 

the simulation; however MMPE loses communication due to the wave effect and this leads to reduced 

goodput performance. This behavior is even more pronounced with Bellhop model where signal 

attenuation is calculated in a more accurate way, resulting in a higher number of dropped packets 

during the n-way handshaking process of CSMA/CA protocol.  

On the other hand we measure the average packet delay which will strongly depend on the channel 

propagation delay. So, the propagation delay (Tprop) depends on the distance (d) between sensor and 

gateway nodes, the specified inter frame delay (SIF), and the sound speed propagation (Tssp) that may 

change with node depth and water temperature, as shown in figure 8. 

0,08

0,1

0,12

0,14

0,16

0 1 2 3 4

G
o

o
d

p
u

t 
(p

ac
ke

ts
/s

)

Network Load (packets/s)

THORP
MMPE
BELLHOP



Sensors 2011, 11                            

 

 

16

 
 

Fig. 8. Valencia’s (scenario location) annual average sound speed as a function of node depth 

	

In expression (10) we define the delay experienced by a packet delivery in one-hop transmission 

without network contention/interference, taking into account the CSMA/CA protocol handshake and 

the distance and sound speed parameters.  

	

Tprop	ൌ	d	/Tssp			,			Tpkt	ൌ	packet_size	/	data_rate			,	SIF	ൌ	Inter_Frame_Delay	 	 (10) 

Delay	ൌ	Tprop	ሺRTSሻ		Tpkt	ሺRTSሻ		SIF		Tprop	ሺCTSሻ		Tpkt	ሺCTSሻ		SIF		Tprop	ሺDATAሻ		Tpkt	ሺDATAሻ	
 

So the experienced delay of packet sent by a sensor located 1,500 meters away from gateway node 

and with 10 meters depth would be:  

 

Tprop	ሺRTSሻ	= Tprop	ሺCTSሻ	ൌ	Tprop	ሺDATAሻ	ൌ	1,500	/	1,520	ൌ	0.9868	s	
Tpkt	ሺRTSሻ	ൌ	Tpkt	ሺCTSሻ	ൌ	24	/	5000	ൌ	0.0048	s	

																																																													Tpkt	ሺDATAሻ	ൌ	1024	/	5000	ൌ	0.2048	s	 (11) 

SIF	ൌ	0.02048	s	

Delay	ൌ	3	*	0.9868		2	*	0.0048	0.2048		2	*	0.02048	ൌ	3.21576	s	
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Fig. 9. Average packet delay with different acoustic propagation models 

 

The results shown in figure 9 reveal almost the same delay for all propagation models until the 

network enters in a saturation state, where MMPE and Bellhop seem to have better results. At first 

sight this may lack of coherence but if we take a close look at the distribution of packets received in 

the gateway from the different source nodes, we will appreciate that with MMPE and Bellhop, the 

gateway receives less packets from the farther nodes as they are more affected by the attenuation 

variability introduced by these propagation models, as shown before in figure 6. So, this is the main 

cause of the lower overall packet delay with the use of more accurate acoustic propagation models, 

since the average packet delay decreases. 

In the early first tests, it is clear that the propagation model is an important issue to take into 

account but now we go a bit further by changing the environmental parameters of the network scenario 

in order to assess their influence. For that purpose we will use one of the scenarios used before, fix the 

network load at 2 packets/s to the point just before network saturation, and introduce two different 

months January and August (with different ocean average temperatures) of the year plus six different 

levels of wave heights (varying surface conditions) form 1 to 11 meters height, the rest of network and 

environmental parameters remain the same as in table 1. 

 

(a) Propagation Loss (b) Goodput 

 
Fig. 10. Propagation loss (a) and goodput (b) values varying physical scenario parameters 

 

In figure 10(a) the acoustic attenuation found between two network nodes, sensor 1 and gateway, is 

shown. As expected, Thorp’s results remain constant since its equation does not include the effect of 

the physical parameters. Meanwhile, MMPE and Bellhop propagation models significantly reduce the 

obtained goodput as the wave height increases, i.e. they suffer from the wave motion effect. Also, 

neither Thorp nor MMPE are affected by the change of season whereas Bellhop shows different results 

for the months selected, showing worse performance in January than in August due to the different 

propagation conditions derived from the average ocean temperature. The average delay results 

including variable physical parameters are not included here as they are almost the same behavior than 

in Figure 9.  
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In the first test we choose two MAC protocols: CSMA and CSMA/CA. Although they seem to be 

very similar approaches, CSMA it is a simple version with no signaling to handle a packet 

transmission, meanwhile CSMA/CA is a 4-way handshake protocol as defined in section 3.  

Our purpose is to analyze how these MAC protocols tackle a network deployment with different 

power transmission policies, clearing up where it is worth to focus the efforts in terms of power 

consumption, throughput, packet delay, etc. The simulation parameters are the same as in table 1 

increasing the global load up to 12 packets/s. 

 
 

(a) (b) 
Fig. 12. Goodput (a) and delay (b) of selected MAC protocols in OH and MH modes  

 

In Figure 12(a), we can see that CSMA-OH reaches soon its highest performance, and after 

saturation point it degrades goodput performance very quickly reaching near network starvation state. 

However, CSMA-MH follows the same pattern with a smoother curve. This behavior in OH scenario 

can be easily explained because at lower loads the gateway receives more or less the same number of 

packets from all network nodes, while in MH scenarios the effect of hot-spot traffic pattern leads to 

unbalance this behavior and as a consequence reduce network load in the gateway neighborhood.  

 In turn the CSMA/CA evolution is similar in both strategies reaching quickly its best performance 

and keeping it despite increasing the load; having a better overall result in the MH strategy due to the 

same reasons commented before. It is important to remark that at higher network loads, in all cases but 

especially in MH, sensors that are closer to the gateway have more chances to achieve successful data 

packet transmissions than farther nodes (no fair resource sharing due to hot-spot traffic pattern and the 

inherent large propagation delay). 

From these results we can state that MH strategy has an overall better performance, being at the 

same time more energy efficient since it is able to reduce energy demands to the half of the ones 

required by OH. Also, it was observed that those nodes located at the scenario surroundings will have 

less probability to successfully deliver packets to gateway. So, this issue opens the way to define 

routing protocols that will balance the overall packet delivery rate between all the sensor nodes with 

independence of their location.  
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Fig.16. Goodput results with DACAP + Routing using two different propagation models 
 

Figure 16 depicts and interesting behavior of DACAP protocol in terms of goodput performance. In 

addition there is a clear indication that also, at the routing layers, the environmental conditions of the 

network scenario may considerably impact in the results of network performance. 

As also shown in previous results, Thorp propagation model does not take into account 

environmental conditions, so it plots a constant goodput value. As, expected the static routing protocol 

gets better goodput results because FBR has an extra waiting time in order to accept more than one 

CTS, but as every node has always the same reachable nodes in its neighborhood it always choses the 

same node to reach to the gateway, that is the reason why using static routing in ideal conditions is a 

better option. If we use Bellhop the static alternative loses performance as the attenuation grows due to 

the physical changes, meanwhile FBR performance is not so affected in worse conditions as it can 

dynamically change the routing paths when a connection link is lost. 
 

6. Conclusions  

One of the main difficulties to compare and validate the performance of different UWSN proposals 

is the lack of a common standard to model the acoustic propagation in the underwater environment. In 

this paper we analyzed several underwater acoustic propagation models from a simple approach to 

more detailed and accurate models, in order to study whether differences between then may seriously 

impact in the performance evaluation of higher layer protocols. As a first conclusion we found that 

accurate and low-complexity propagation models are required for network simulation in order to 

obtain reliable results attained to the specific scenario and environmental parameters.  

Also we perform several simulation experiments to determine the sensibility of higher layer 

protocols (MAC and routing protocols) to propagation models and scenario environmental parameters. 

From the obtained results, we conclude that (1) n-way handshake protocols, like CSMA/CA or 
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DACAP suffer from high packet delays, but their show better behavior in terms of goodput and energy 

consumption; and (2) crosslayer approaches between routing and MAC layers are required to improve 

network performance, so it is highly recommended to allow routing protocols to get appropriate 

feedback from MAC layer about network and environmental conditions found at physical layer, since 

in UWSNs we showed the impact of physical layer modeling on network performance.  

It has been settled the importance not only of choosing a realistic propagation model but also define 

with precision the environment, starting with the geographic position and the parameters that we can 

obtain from it to the physical environment conditions like the season of the year or the ocean wave 

motion. So, when designing network architectures for UWSN, the role of physical layer should be 

seriously taken into account to be in a position to assert that simulation results will be close to the ones 

obtained in real network scenarios.  
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