
Improving Network Performance by Reducing Network Contention in
Source-Based COWs with a Low Path-Computation Overhead�

J. Flich, P. López, M. P. Malumbres, and J. Duato
Dept. of Computer Engineering (DISCA)

Universidad Politécnica de Valencia
Camino de Vera, 14, 46071–Valencia, Spain
fjflich,plopez,mperez,jduatog@gap.upv.es

T. Rokicki
Instantis, Incorporated

Menlo Park, California, USA
rokicki@instantis.com

Abstract

In previous papers, we have proposed the in-transit
buffer mechanism (ITB) to improve network performance
in COWs with irregular topology and source routing. This
mechanism allows the use of minimal paths among all hosts,
breaking cyclic dependences between channels by storing
and later re-injecting packets at some intermediate hosts.
However, it also has two additional features that can im-
prove even more network performance. First, the ITB mech-
anism reduces network contention because some messages
are ejected from the network freeing network links. Second,
the ITB mechanism allows the use of any path between each
source-destination pair, improving traffic balance.

In this paper, we present a new routing algorithm that
takes advantage of ITB by exploiting both issues: traffic
balance and network contention reduction. The evaluation
results show that network throughput can be considerably
improved. On average, network throughput increases with
respect to up*/down* by factors of 2.51 and 3.77 in 32 and
64-switch networks, respectively.

1. Introduction

Clusters Of Workstations (COWs) are currently being
considered as a cost-effective alternative for small and
large-scale parallel computing. In COWs, topology is usu-
ally fixed by the physical location constraints of the com-
puters, so the resulting topology is typically irregular. Some
networks, like Myrinet [1] use source routing (as opposed
to distributed routing, like Servernet [7]) because switches
are simpler and faster. In this case, the path to destination
is built at the source host and it is written into the packet

�This work was supported by the Spanish CICYT, Generalitat Valen-
ciana and Universidad Politénica de Valencia under Grants TIC97–0897–
C04–01, TIC2000–1151–C07 and GV98-15-50

header before delivery. Switches route packets through the
fixed path found at the packet header.

Up*/down* [9] is the most well-known routing algo-
rithm for irregular networks. It is based on an assignment of
direction labels to links. To do so, a breadth-first spanning
tree is computed and then, the “up” end of each link is de-
fined as: (1) the end whose switch is closer to the root in the
spanning tree; (2) the end whose switch has the lower ID, if
both ends are at switches at the same tree level. As a result,
each cycle in the network has at least one link in the “up”
direction and one link in the “down” direction. Thus, cycles
in the channel dependence graph (CDG) [3] are avoided by
prohibiting packets to traverse links in the “up” direction
after having traversed one in the “down” direction.

A similar routing algorithm is the DFS [10]. It computes
a depth-first spanning tree with no cycles. Then, it adds the
remaining channels to provide minimal paths, which leads
to cycles in the CDG. Cycles are broken by restricting rout-
ing. However, channels are labeled using a heuristic to re-
duce routing restrictions.

Smart-routing [2] considers all possible paths for ev-
ery source-destination pair. Then, it searches through the
CDG for cycles, removing dependences taking into account
a heuristic. This process finishes when the CDG has no cy-
cles. Although smart-routing distributes traffic better than
other approaches, it has the drawback of its high computa-
tion overhead, since it uses a linear programming solver to
balance the traffic while it tries to break cycles.

In [6] we evaluated these routing algorithms for several
topologies, identifying three major factors that limit perfor-
mance of networks with source routing. The first one is
the use of non-minimal paths. As network size increases,
routing algorithms based on spanning trees (up*/down* and
DFS) tend to use long paths. In the case of smart-routing,
the good traffic balance achieved also leads to the use of
long paths. The use of long paths increases network con-
tention as messages use, on average, more links.



The second limiting factor is traffic unbalance. Routings
based on spanning-trees tend to saturate the zone near the
root switch. This effect is more noticeable as network size
increases. On the other hand, the smart-routing algorithm
highly balances network traffic.

The last limiting factor of performance is network con-
tention. Because wormhole switching is used and virtual
channels are not allowed, contention on one link can in-
stantly block other links, cascading throughout the network.
This serious limiting factor increases latency and reduces
overall performance.

Therefore, the best routing algorithm should be the one
that uses short paths, highly balances network traffic, and
helps in reducing network contention, guaranteeing also
deadlock freedom. Finally, it should be also desirable for
this algorithm to require a reasonable low computation time
and to be scalable. Existing routing algorithms have always
focused in the first two issues. In this paper, we also con-
sider network contention and computation time.

2. Motivation

The ITB mechanism [4, 5, 6] avoids routing restric-
tions by ejecting packets at intermediate hosts and later re-
injecting them, thus breaking those dependences that cause
cycles in the CDG. By avoiding routing restrictions, the
ITB mechanism allows the use of minimal paths for ev-
ery source-destination pair. Moreover, the mechanism al-
lows a better traffic balance than routings based on spanning
trees (up*/down* and DFS). On the other hand, when we
applied this mechanism to smart-routing, we noticed that
although smart-routing highly balances traffic, the result-
ing combined routing algorithm yields even higher network
performance. This is due to the reduction in network con-
tention achieved by ejecting packets at some hosts.

Moreover, network contention is highly affected by the
number of ITBs we put in the network. The more ITBs
we put, the less network contention will appear. On the
other hand, as ITBs add some latency to in-transit packets
[4, 5, 6], with more ITBs in the network, packets will suffer
higher latency penalties. Therefore, when using ITBs, there
is a trade-off between reduction in network contention and
the increase in message latency.

In this paper, we analyze this trade-off. We study the
effect on network contention by using different number of
ITBs. In particular, we propose three methods to compute
and allocate ITBs in the network.

On the other hand, routing algorithms that highly balance
traffic, like smart-routing, have a high computation cost.
These routing algorithms select paths considering simulta-
neously load balancing and deadlock freedom. Often, as
new paths are computed, the decision made on other paths
already computed needs to be modified, requiring the use of

backtracking. As an example, the smart-routing algorithm
is unable to obtain paths for networks with more that 32
switches in a reasonable amount of computing time.

By using ITBs to break cycles, path computation can be
performed without taking into account deadlocks. There-
fore, the path computation algorithm first selects the set of
paths that offer a good traffic balance. As the deadlock-
free restriction is not being considered, the number of avail-
able paths to choose from is higher and backtracking is
not longer needed. Later, ITBs will be inserted to avoid
deadlock. So, by using ITBs we can design a routing algo-
rithm that offers good load balancing and can be computed
quickly.

Therefore, the contribution of the paper is twofold. First,
a new path computation algorithm is presented. This algo-
rithm will balance traffic while requiring a low computation
time. And second, three approaches will be used (by using
different number of ITBs) in order to reduce network con-
tention. These two contributions will we presented together
as a new routing algorithm.

The rest of the paper is organized as follows. In Sec-
tion 3 we present the new routing algorithm. In Section
4 evaluation results for different networks and traffic load
conditions are presented, analyzing in detail the benefits of
the new routing algorithm. Finally, in section 5 some con-
clusions are drawn and future work is anticipated.

3. A New Routing Algorithm with ITBs

Routing algorithms for networks with source routing can
be divided into two stages, as shown in Figure 1. First, the
routing algorithm computes a limited set of paths for every
source-destination pair. After that, it selects the final set of
paths that will be used. Usually, only one path for every
source-destination pair is selected. These two stages (com-
puting and selecting paths) are influenced by some restric-
tions. The first one is deadlock freedom. This restriction
can be applied to the first stage when routes are computed
(up*/down* and DFS). Therefore, only paths that do not in-
troduce cycles in the CDG are computed. However, this
restriction can be also applied to the second stage (smart-
routing). The smart-routing algorithm considers all paths
for every source-destination pair and then selects the path
subset that does not introduce cycles in the CDG.

The second restriction is that short path lengths are pre-
ferred. However, often shortest paths are not deadlock-free.
Hence, the routing algorithm must choose longer paths.

Finally, paths may be computed using a load balancing
algorithm. However, again, the deadlock freedom condition
restricts the number of alternative paths that can be used and
therefore traffic balance may not be achieved (up*/down*
and DFS). On the other hand, the smart-routing algorithm
has some feedback between both stages to override this



source-destination
1 path for each

pair
Network
topology

algorithm
load balancing 

Routing restrictions:
deadlock freedom
reduced path length

Computing
paths paths

Selecting

Figure 1. Stages in the design of typical rout-
ing algorithms for networks with source rout-
ing.

Network
topology

source-destination
1 path for each

pair

network
contention

ITBs
cycles with

breaking

algorithm
load balancing 

paths

Computing
paths

Selecting

reduced path length

Figure 2. Stages in the design of the new rout-
ing algorithm for networks with source rout-
ing.

problem. In this case, selecting some paths can involve
changing some already computed paths. This feedback can
introduce a high computation time penalty.

By using ITBs, we can modify the design shown in Fig-
ure 1 into the one shown in Figure 2. First, the routing algo-
rithm computes the whole set of minimal paths. Since there
may be a high number of minimal paths between a pair of
nodes, we randomly select a predefined maximum number
of such paths. Notice that deadlock freedom is not longer
considered in this stage. In the next step, traffic is balanced.
As deadlock freedom related restrictions have not been con-
sidered, we can play with more paths and therefore, we can
try to balance traffic without requiring feedback between
the stages, considerably reducing computation time.

After selecting the final set of paths, the last stage breaks
cycles in the CDG. Here, in-transit buffers are used in order
to guarantee deadlock freedom. So, the minimum number
of ITBs are placed to break the existing cycles in the CDG.
On the other hand, network contention can be reduced by
adding more ITBs than those needed to guarantee deadlock
freedom. At the end, we have just one path for every source-
destination pair and the resulting path set is deadlock free.

3.1. Balancing and Selecting Paths

Usually, routing algorithms balance traffic having in
mind a uniform distribution of message destinations. Al-
though actual traffic patterns change depending on running

procedure balance-and-select-paths()
var p:path
begin

repeat
p=nil
for each path

eliminate path from weight-map
compute standard deviation of weight-map
add path to weight-map
annotate the path that shows the lowest standard

deviation and has alternative paths (p)
end
if p<>nil

eliminate path from weight-map
delete path

end
until p==nil

end procedure

Figure 3. Balancing and selecting paths.

applications, this message destination distribution is often
considered as the worst case. In fact, the smart-routing al-
gorithm balances traffic for a uniform distribution and per-
forms well for different traffic patterns [6]. We will take
the same approach in this paper, balancing paths assuming
a uniform distribution of message destinations.

The way we balance traffic is by counting the number
of paths that cross each link and trying to keep that num-
ber uniform on all network links. Therefore, once paths
are computed, we select those paths that best balance the
number of paths per link. Figure 3 shows the algorithm
used for balancing and selecting paths. This algorithm re-
moves paths by minimizing a cost function. The cost func-
tion is the standard deviation of the number of paths that
cross each link. To do that, at each loop iteration it removes
one path temporarily and computes the standard deviation
of the number of paths per link using the rest of paths. This
is repeated for all the paths. After this process, the algo-
rithm knows the standard deviations resulting for the elim-
ination of each path. Then, it removes the path that shows
the minimum increase (the maximum decrease) in the stan-
dard deviation. Notice that a given path will be removed
only if there are still alternative paths for the corresponding
source-destination pair. The algorithm finishes when none
path can be removed. At the end, there will be only one path
for each source-destination pair.

3.2. Breaking Cycles and Reducing Contention

The second part of our routing algorithm deals with the
removal of cycles in the CDG and also with reducing net-
work contention. As explained before, there is a trade-
off between network contention and latency penalty when



procedure breaking-cycles()
begin

for each link
link-number[link] = random-number

end
for each path

previous-number = link-number[path.link[0]]
for each hop

if previous-number < link-number[path.link[hop]]
put ITB on path

end
previous-number = link-number[path.link[hop]]

end
end

end procedure

Figure 4. Breaking cycles and reducing net-
work contention.

adding ITBs. We will evaluate three different approaches.
In the first approach, we will place the minimum num-

ber of ITBs to guarantee deadlock freedom. This is the
best solution for reducing the latency increase. The sec-
ond approach will put ITBs on all the switches. Therefore,
packets will cross the network visiting one in-transit host
at each switch. This approach obtains an acyclic CDG be-
cause there are only dependences between channels con-
necting two switches and channels connecting switches to
hosts and vice-versa. On the other hand, this is the best
approach to reduce network contention.

The last approach is half-way between the previous ones.
It will try to place the appropriate number of ITBs to achieve
low network contention while keeping a low latency over-
head. Figure 4 shows the algorithm. First, we assign a ran-
dom identifier to each link. We take care to assign unique
identifiers to each link. Then, in order to guarantee that the
routing algorithm is deadlock free, we will arrange the use
of links. So, we introduce the following routing restriction.
A message can use a link if the previously used has a lower
identifier. Routing restrictions will be overcame with ITBs.
The corresponding CDG will be acyclic, since in any po-
tential cycle there always will be at least two consecutive
channels that do not follow the established link order. No-
tice that, as link identifiers have been randomly assigned,
this approach will place ITBs in about half the places the
previous approach does.

4 Performance Evaluation

In this section, we evaluate the new routing algorithm.
First, we present the network model and traffic patterns we
will use. Then, we present the simulation results comparing
different source routing algorithms with the new one pro-

posed in this paper.

4.1. Network Model and Network Load

Network topology is irregular and has been generated
randomly, imposing three restrictions: (i) all the switches
have the same size (8 ports), (ii) there are 4 hosts connected
to each switch and (iii) two neighbor switches are connected
by a single link. These assumptions are quite realistic and
have already been considered in other evaluation studies
[5, 12]. We have analyzed networks with 16, 32, and 64
switches (64, 128, and 256 hosts, respectively). To make
results independent of the topology, we evaluate up to 10
random topologies for each network size.

Links, switches, and interface cards are modeled based
on the Myrinet network [1]. Concerning links, we assume
Myrinet short LAN cables [8] (10 meters long, 160 MB/s,
4.92 ns/m). Flits are one byte wide. Physical links are one
flit wide. Transmission of data across channels is pipelined
[11] with a rate of one flit every 6.25 ns and a maximum of
8 flits on the link at a given time. A hardware “stop and go”
flow control protocol [1] is used to prevent packet loss. The
slack buffer size in Myrinet is fixed at 80 bytes. Stop and
go marks are fixed at 56 bytes and 40 bytes, respectively.

Each switch has a simple routing control unit that re-
moves the first flit of the header and uses it to select the out-
put link. The first flit latency is 150 ns through the switch.
After that, the switch is able to transfer flits at the link rate.
Each output port can process only one packet header at a
time. A crossbar inside the switch allows multiple packets
to traverse it simultaneously.

Each Myrinet network interface card has a routing table
with one entry for every possible destination of messages.
The tables are filled according to the routing scheme used.

In the case of using ITBs, the incoming packet must be
recognized as in-transit and the transmission DMA must be
re-programmed. We have used a delay of 275 ns (44 bytes
received) to detect an in-transit packet, and 200 ns (32 addi-
tional bytes received) to program the DMA to re-inject the
packet. These timings have been taken on a real Myrinet
network. Also, the total capacity of the in-transit buffers
has been set to 512KB at each interface card.

In order to evaluate different workloads, we use different
message destination distributions to generate network traf-
fic: Uniform (the destination is chosen randomly with the
same probability for all the hosts), Bit-reversal (the desti-
nation is computed by reversing the bits of the source host
id.), Local (destinations are, at most, 5 switches away from
the source host, and are randomly computed), Hot-spot (a
percentage of traffic [20%, 15%, and 5% for 16, 32, and
64-switch networks, respectively] is sent to one host cho-
sen randomly and the rest of traffic is sent using a uniform
distribution) and a Combined distribution, which mixes the



0

5000

10000

15000

20000

25000

0.02 0.04 0.06 0.08 0.1

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (flits/ns/switch)

UD
SMART

RANDOM
BSMART

BALANCED

(a)

0

5000

10000

15000

20000

25000

0.01 0.02 0.03 0.04 0.05 0.06 0.07

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (flits/ns/switch)

UD
SMART

RANDOM
BSMART

BALANCED

(b)

0

5000

10000

15000

20000

25000

0.01 0.02 0.03 0.04 0.05

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (flits/ns/switch)

UD
RANDOM

BALANCED

(c)

Figure 5. Evaluation results for the uniform distribution of message destinations. 512-byte messages.
Network size is: (a) 16, (b) 32, and (c) 64 switches.

previous ones. In the later case, each host will generate
messages using each distribution with the same probability.

For each simulation run, we assume that the packet gen-
eration rate is constant and the same for all the hosts. We
evaluate the full range of traffic, from low load to satura-
tion. Although we use different message sizes (32, 512, and
1K bytes), for the sake of brevity most results will be shown
only for 512-byte messages.

4.2. Simulation Results

4.2.1 Load Balancing Behavior

In order to isolate the benefits achieved only by the traf-
fic balancing method, in this section, we only use the min-
imum number of ITBs that guarantee deadlock freedom.
The resulting routing algorithm will be referred to as BAL-
ANCED. We will compare it with classical routing al-
gorithms such as the up*/down* (UD) and smart-routing
(SMART). We will also use the routing algorithm proposed
in [6] for comparison purposes. This routing algorithm
combines the load balancing algorithm of the smart-routing
with the use of in-transit buffers. It also uses the minimum
number of ITBs and will be referred to as BSMART.

Finally, as a reference, we will also use a random traf-
fic balancing algorithm. This algorithm computes all the
possible minimal paths and selects the final set of paths ran-
domly. This routing algorithm will also use the minimum
number of ITBs and will be referred to as RANDOM.

Figure 5 shows the performance results for the differ-
ent routing algorithms for 16, 32, and 64-switch networks.
Message size is 512 bytes and uniform distribution of mes-
sage destinations is used. Notice that SMART and BS-
MART routing algorithms are not shown for 64-switch net-
works because for this network size it was not possible to
compute the paths.

As we can see, the routing algorithms that do not use in-
transit buffers (UD and SMART) obtain the worst results,

except for the SMART routing in the 16-switch network that
outperforms the RANDOM routing. As this behavior has
already been evaluated in previous papers [4, 5, 6] we only
focus on the load balancing behavior.

Regarding the routing algorithms that use ITBs (BAL-
ANCED, BSMART, and RANDOM) the BALANCED and
the BSMART routing algorithms achieve a higher network
throughput than the one achieved by the RANDOM routing
algorithm for all networks. To better analyze traffic balanc-
ing behavior, Figure 6 shows the link utilization of these al-
gorithms when they are reaching saturation in the 32-switch
network. Links are sorted by utilization.

The best traffic balance is achieved by BSMART and
BALANCED, with some advantage of BSMART. However,
this better balancing does not have an important impact on
network performance (as shown in Figure 5). Moreover,
BSMART shows a slightly decrease in performance with
respect to BALANCED, due to the higher number of ITBs
used by BALANCED. In particular, BSMART uses on av-
erage 0.32 ITBs per message, whereas BALANCED uses
a bit more, 0.38. However, the great difference between
both routing algorithms is that BSMART uses a linear pro-
gramming solver when computing paths, whereas the new
proposed routing algorithm (BALANCED) uses an iterative
process that is faster. This is an important issue in systems
that are prone to changes in network topology (i.e. COWs).

On the other hand, RANDOM routing achieves a worse
traffic balance than BALANCED and BSMART. Indeed, as
shown in Figure 5.b, BALANCED and BSMART increase
RANDOM throughput by a factor of 1.3. This result in-
dicates that the effort made in balancing network traffic is
worth while. With a simple and easy traffic balancing al-
gorithm, good results are achieved, and additional efforts
(BSMART) yields no further improvements.

Finally, notice that SMART routing achieves a load bal-
ancing similar to the one obtained by the BSMART, as both
routing algorithms use the same traffic balancing algorithm.

Table 1 shows average results for other randomly gen-



0

10

20

30

40

50

60

20 40 60 80 100 120

U
T

IL
IZ

A
T

IO
N

 (
%

)

LINKS

BSMART
BALANCED

RANDOM
SMART

UD

Figure 6. Link utilization at saturation points
for each routing. Network size is 32 switches.

UD SMART BSMART RAND
Sw Pattern Avg Avg Avg Avg
16 Uniform 1.44 1.12 1.03 1.21
32 Uniform 1.99 1.33 1.03 1.18
64 Uniform 2.80 N/A N/A 1.16
16 Hot-spot 1.06 1.01 1.00 1.02
32 Hot-spot 1.25 1.09 1.05 1.07
64 Hot-spot 2.00 N/A N/A 1.02
16 Reversal 1.45 0.93 1.09 1.18
32 Reversal 2.13 1.29 1.05 1.12
64 Reversal 2.94 N/A N/A 1.07
16 Local 1.04 1.07 1.04 1.06
32 Local 1.04 1.10 1.07 1.04
64 Local 1.06 N/A N/A 1.03
16 Combined 1.40 1.10 1.02 1.16
32 Combined 1.84 1.25 1.06 1.17
64 Combined 2.45 N/A N/A 1.11

Table 1. Factor of throughput increase when
using BALANCED with respect to UD, SMART,
BSMART, and RANDOM routings for different
traffic patterns. 512-byte messages.

erated topologies. It shows the average factor of through-
put increase when using the BALANCED routing algo-
rithm with respect to the UD, SMART, BSMART, and
RANDOM routing algorithms, respectively. As we can
see, on average, for the uniform distribution, UD through-
put is strongly increased (almost tripled for 64 switches)
whereas the SMART throughput is moderately increased
(up to 33% for 32 switches). On the other hand, BAL-
ANCED also outperforms RANDOM and nearly achieves
the same throughput than BSMART. This confirms that by
using a simple traffic balancing algorithm (BALANCED)
we can achieve the performance obtained by a sophisticated
and time-consuming load balancing algorithm (BSMART).

The main drawback of using ITBs is the added latency
to messages [6]. This penalty is only noticeable for low
traffic loads and short messages. To analyze this effect, Ta-

UD SMART BSMART RAND
Sw Msgs Avg Avg Avg Avg
16 32 6.83 8.04 0.25 3.13
32 32 15.22 15.57 4.12 4.23
64 32 17.18 N/A N/A 4.31
16 512 0.81 1.63 0.00 0.48
32 512 3.22 3.38 1.02 0.94
64 512 1.76 N/A N/A 1.12
16 bimodal 2.00 3.69 -0.08 1.11
32 bimodal 5.91 8.23 2.27 1.93
64 bimodal 2.95 N/A N/A 2.79

Table 2. Percentage of latency increase when
using BALANCED with respect to UD, SMART,
BSMART, and RANDOM. Uniform traffic pat-
tern.

ble 2 shows the percentage of latency increase when using
the BALANCED routing algorithm with respect to the rest
of routing algorithms for low traffic loads. Messages of 32
and 512 bytes are used. Also, a combination of both mes-
sage sizes (bimodal) is considered (70% of 32-byte mes-
sages plus 30% of 512-byte messages). We can see that the
latency penalty is higher than 10% only for short messages
on medium and large networks (32 and 64 switches) and
when we compare BALANCED with respect to the UD and
SMART algorithms, which do not use ITBs. Comparing
BALANCED with BSMART and RANDOM, which also
use ITBs (although not exactly the same number), the la-
tency increase is small (about 4% in the worst case).

As stated earlier, the load balancing algorithms usually
rely on an expected traffic pattern (usually the uniform traf-
fic pattern). However, a different traffic pattern may appear
in the network. For this, we have also evaluated the routing
algorithms under different traffic patterns. Table 1 shows
the factor of throughput increase when using the BAL-
ANCED routing algorithm with respect to the other routing
algorithms under different traffic patterns. Although, for
some traffic patterns, BALANCED achieves lower through-
put increases than for the uniform traffic pattern, they are
still noticeable. As traffic pattern changes, path lengths also
change. With ITBs, the longer the path the more the im-
provement over alternative routing algorithms. For the lo-
cal traffic pattern, roughly the same throughput is achieved
with all the routing algorithms because path lengths are very
short and fewer ITBs are needed. Finally, note that BAL-
ANCED also achieves nearly the same throughput as BS-
MART for the different traffic patterns considered.

4.2.2 Network Contention Behavior

Now, we focus on the second part of the routing algorithm
(network contention reduction). We have proposed three
approaches to assign ITBs in the network while breaking



0

5000

10000

15000

20000

25000

0.02 0.04 0.06 0.08 0.1 0.12 0.14

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (flits/ns/switch)

UD
BMAX

SMART
BMIN

BNUMBERED

(a)

0

5000

10000

15000

20000

25000

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (flits/ns/switch)

UD
BMAX

SMART
BMIN

BNUMBERED

(b)

0

5000

10000

15000

20000

25000

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

A
ve

ra
ge

 M
es

sa
ge

 L
at

en
cy

 (
ns

)

Traffic (flits/ns/switch)

UD
BMAX
BMIN

BNUMBERED

(c)

Figure 7. Evaluation results for the uniform distribution of message destinations. 512-byte messages.
Network size is: (a) 16, (b) 32, and (c) 64 switches.

cycles. The first one that uses the minimum number ITBs
to make the CDG acyclic will be referred to as BMIN. The
one that uses ITBs in all the switches will be referred to as
BMAX and the one that uses ITBs in about half the possi-
ble places will be referred to as BNUMBERED (as it num-
bers the links). Notice that BMIN, BNUMBERED, and
BMAX use the new load balancing algorithm, using dif-
ferent number of ITBs. The comparison of BNUMBERED
and BMAX with BMIN will evaluate the impact of ITBs on
network contention. We compare also these three routing
algorithms with the up*/down* (UD) and the smart-routing
(SMART) algorithms.

Figure 7 shows the performance results for the differ-
ent routing algorithms using 512-byte messages and a uni-
form traffic pattern. We observe that both BNUMBERED
and BMAX are able to increase the network throughput
achieved by BMIN. Notice, however, that average message
latency is also increased for the full range of traffic. We will
address this issue later.

By using more ITBs, BNUMBERED and BMAX reduce
network contention. To analyze this fact, Figure 8 shows
the percentage of stopped time of links for different rout-
ing algorithms. Network size is 32 switches and traffic is
0.066 flits/ns/switch (BMIN is reaching saturation). We ob-
serve that, with the BMIN routing algorithm, some links
are stopped more than 10% of the total time. However,
links with BNUMBERED are stopped less than 10%, and
the 95% of links with BMAX are stopped less than 7%.
Therefore, we conclude that the ITB mechanism also helps
in increasing network throughput by reducing network con-
tention. But, as average message latency is also increased, it
seems that the BMAX approach is not appropiated. Indeed,
the BNUMBERED routing algorithm reaches roughly the
same network throughput as BMAX and uses half the ITBs.

For more network topologies, similar results have been
obtained. Table 3 shows average factors of throughput in-
crease for different network sizes and different routing al-
gorithms. On average, BNUMBERED increases network

UD SMART BMIN BMAX
Sw Avg Avg Avg Avg
16 1.70 1.32 1.18 0.98
32 2.51 1.69 1.27 0.99
64 3.77 N/A 1.35 1.04

Table 3. Factor of throughput increase when
using BNUMBERED with respect to UD,
SMART, BMIN, and BMAX routings. Uniform
traffic pattern. 512-byte messages.

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100 120

ST
O

PP
E

D
 (

%
)

LINKS

BMIN
BNUMBERED

BMAX

Figure 8. Stopped time (network contention).
Traffic is 0.066 flits/ns/switch. Network size is
32 switches.

throughput of BMIN by factors of 1.18, 1.27, and 1.35 for
16, 32, and 64-switch networks, respectively. With respect
to the traditional routings the throughput is improved by al-
most four times (UD). We also confirm that the BNUM-
BERED routing algorithm achieves near the same network
throughput as BMAX does.

In order to analyze in detail latency overhead, Table
4 shows the percentage of latency increase when using
the BNUMBERED routing algorithm with respect to UD,
SMART, BMIN, and BMAX, respectively. We observe that,



UD SMART BMIN BMAX
Sw Msgs Avg Avg Avg Avg
16 32 35.24 36.78 26.60 -25.00
32 32 46.29 46.74 26.96 -29.62
64 32 48.33 N/A 26.58 -35.84
16 512 7.92 8.80 7.05 -7.45
32 512 9.91 10.09 6.48 -10.25
64 512 9.55 N/A 7.66 -13.02
16 bimodal 15.86 17.77 13.49 -15.08
32 bimodal 20.21 22.84 16.07 -20.65
64 bimodal 18.53 N/A N/A -26.26

Table 4. Percentage of latency increase when
using BNUMBERED with respect to UD,
SMART, BMIN, and BMAX routings. Uniform
traffic pattern.

by using many more ITBs, as BNUMBERED does, latency
penalty can be increased up to 50% with respect to UD
and SMART for short messages and in low traffic condi-
tions. For bimodal traffic, latency penalty is smaller, up
to 20% on average. Although this penalty should be taken
into account, the great improvements in network throughput
should also be considered.

For other traffic patterns (not shown) throughput im-
provements are lower (but still noticeable). For local traffic
pattern, throughput is not decreased.

In summary, load balance is not the only key contribu-
tor to network performance. Reducing network contention
with ITBs can yield significant improvements in network
throughput. The BNUMBERED routing algorithm exploits
both issues and outperforms previous proposals.

5. Conclusions

We have presented a new source routing algorithm based
on the use of the in-transit buffer mechanism. Our rout-
ing algorithm tries to optimize three important factors that
are strongly related with the overall network performance:
minimal routing, traffic balance, and network contention.

Our routing algorithm computes the set of minimal paths
among network nodes. Then, it chooses a subset that offers
good traffic balance through a very simple algorithm. Fi-
nally, it guarantees deadlock freedom and also reduces net-
work contention by a clever allocation of ITBs. By keeping
simple the traffic balance algorithm, i) path computation can
be afforded in a reasonable time and ii) paths for large net-
works can be computed.

The evaluation results show that traffic balance alone
is able to strongly improve network throughput over any
previous proposal. For instance, in a network with 64
switches, up*/down* is almost tripled. When combining
traffic balance and network contention reduction, the ob-
tained throughput is increased even more (up*/down* is in-

creased almost 4 times) at the price of some latency over-
head, specially for short messages and low traffic loads.

We are currently developing the ITB mechanism in a
Myrinet network and implementing all the proposed rout-
ing algorithms. Also, we are working on techniques that try
to hide and/or reduce the latency penalty.

References

[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. Seizovic and W. Su, “Myrinet - A gigabit per
second local area network,” IEEE Micro, pp. 29–36, Feb.
1995.

[2] L. Cherkasova, V. Kotov, and T. Rokicki, “Fibre channel fab-
rics: Evaluation and design,” in Proc. of 29th Int. Conf. on
System Sciences, Feb. 1995.

[3] W. J. Dally and C. L. Seitz, “Deadlock-free message rout-
ing in multiprocessors interconnection networks,” in IEEE
Trans. on Computers, vol C-36, no. 5, pp. 547-553, May
1987.

[4] J. Flich, M.P. Malumbres, P. Lopez, and J. Duato, “Improv-
ing Routing Performance in Myrinet Networks,” in Proc. of
Int. Parallel and Distributed Processing Symp., May 2000.

[5] J. Flich, M.P. Malumbres, P. Lopez, and J. Duato, “Perfor-
mance Evaluation of a New Routing Startegy for Irregular
Networks with Source Routing,” in Proc. of Int. Conf. on Su-
percomputing, May 2000.

[6] J. Flich, P. Lopez, M.P. Malumbres, J. Duato, and T. Ro-
kicki, “Combining In-Transit Buffers with Optimized Rout-
ing Schemes to Boost the Performance of Networks with
Source Routing,” Proc. of Int. Symp. on High Performance
Computing, Oct. 2000.

[7] R. W. Horst, “ServerNet deadlock avoidance and fractahe-
dral topologies,” in Proc. of the Int. Parallel Processing
Symp., April 1996.

[8] Myrinet, ’M2-CB-35 LAN cables, http://www.myri.com/
myrinet/product list.html’

[9] S. S. Owicki and A. R. Karlin, “Factors in the performance
of the AN1 computer network,” Performance Evaluation Re-
view, vol. 20, pp. 167-180, June 1992.

[10] J.C. Sancho, A. Robles, and J. Duato, “New Methodology to
Compute Deadlock-Free Routing Tables for Irregular Net-
works,” in Proc. of Workshop on Communications and Ar-
chitectural Support for Network-based Parallel Computing,
Jan. 2000.

[11] S. L. Scott and J. R. Goodman, “The Impact of Pipelined
Channels on k-ary n-Cube Networks,” in IEEE Trans. on
Parallel and Distributed Systems, vol. 5, no. 1, pp. 2–16, Jan.
1994.

[12] F. Silla, M. P. Malumbres, A. Robles, P. López and J. Duato,
“Efficient Adaptive Routing in Networks of Workstations
with Irregular Topology,” in Proc. of Workshop on Commu-
nications and Architectural Support for Network-based Par-
allel Computing, Feb. 1997.


