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Abstract

Networks of workstations (NOWs) are becoming incre-
asingly popular as a cost-effective alternative to parallel
computers. Typically, these networks connect processors
using irregular topologies, providing the wiring flexibility,
scalability, and incremental expansion capability required
in this environment.

In some of these networks [1], packets are delivered
using source routing. Due to the irregular topology, the rou-
ting scheme is often non-minimal. In this paper we analyze
the routing scheme used in Myrinet networks in order to im-
prove its performance. We propose new routing algorithms
that balance the utilization of the available routes and al-
ways use minimal paths.

We show through simulation that the current routing
schemes used in Myrinet networks can be improved by mo-
difying only the routing software without increasing the
software overhead significantly. The overall throughput can
be doubled without modifying the network hardware.

Keywords Networks of workstations, irregular topolo-
gies, wormhole switching, minimal routing, Myrinet.

1 Introduction

Due to the increasing computing power of micropro-
cessors and the high cost of parallel computers, networks
of workstations (NOWs) are currently being considered as
a cost-effective alternative for small-scale parallel compu-
ting. Although NOWs do not provide the computing power
available in multicomputers and multiprocessors, they meet
the needs of a great variety of parallel computing problems
at a lower cost.

Among the current gigabit LAN technologies, Myrinet
[1] has one of the highest performance/cost ratio. One of

�This work was supported by the Spanish CICYT under Grant TIC97–
0897–C04–01 and by Generalitat Valenciana under Grant GV98-15-50

the reasons is that the research effort made on parallel com-
puters has been applied to the design of high-speed local
area networks. We will focus on this network because its
design is simple and very flexible. In particular, it allows us
to change the network behavior through the Myrinet Con-
trol Program (MCP) software. This software is loaded on
the network adapter program memory at boot time. It initia-
lizes the network adapter, performs the network configura-
tion automatically, does the memory management, defines
and applies the routing algorithm, formats packets, transfers
packets from local processors to the network and vice versa,
etc.

One of the tasks managed by the MCP is the selection
of the route to reach the destination of each message. As
the Myrinet routing scheme uses source routing, the net-
work adapter has to build network routes to each destination
during the initialization phase. The network adapter have
mechanisms to discover the current network configuration,
being able to build routes between itself and the rest of net-
work hosts. Myrinet uses up*/down* routing [5] to build
these paths. Although the original distributed up*/down*
routing scheme provides partial adaptivity, in Myrinet only
one of the routes is selected to be included into the routing
table, thus resulting in a deterministic routing algorithm. On
the other hand, many paths provided by the up*/down* rou-
ting are non-minimal on certain networks.

2 Motivation

In previous works [8, 9], we analyzed the behavior of
distributed routing algorithms in irregular topologies, sho-
wing that adaptive routing schemes outperform up*/down*
routing schemes by improving the routing flexibility and
providing minimal paths. Therefore, it would be interesting
to analyze the feasibility of implementing minimal routing
in commercial networks and evaluate its behavior. In the
case of Myrinet, this would be possible thanks to the flexi-
bility of the MCP program. If we could change the MCP
program in order to improve the network behavior without



significantly increasing the software overhead, performance
may considerably improve.

In this paper, we take on such a challenge. We propose
a method to implement minimal source routing. Also, we
analyze different routing policies and compare them with
the current scheme, in order to increase network perfor-
mance.

In particular, we propose a new approach to increase
overall network throughput using minimal routing. The idea
is based on dividing forbidden minimal routes into valid
sub-routes and forcing a special kind of virtual cut-through
in the network interface cards at the in-transit hosts. Howe-
ver, splitting routes requires the collaboration of network
hosts to forward packets from one sub-route to the next.
This overhead must be taken into account in order to make
a fair comparison.

Our main goal is to improve network performance wi-
thout modifying the network design, by reusing existing
hardware and changing only the MCP program in network
adapters.

The rest of the paper is organized as follows. In Section
3, the current Myrinet routing scheme is introduced, and
several proposals are described in order to improve routing
flexibility. In Section 4, the performance of the proposed
techniques are evaluated by simulation. Finally, in Section
5, some conclusions are drawn.

3 Improving the Routing Flexibility in Myri-
net Networks

Myrinet uses up*/down* routing [5] to build network
routes. Up*/down* routing is based on an assignment of
direction to the operational links. To do so, a breadth-first
spanning tree is computed and then, the “up” end of each
link is defined as: (1) the end whose switch is closer to the
root in the spanning tree; (2) the end whose switch has the
lower ID, if both ends are at switches at the same tree level.
The result of this assignment is that each cycle in the net-
work has at least one link in the “up” direction and one link
in the “down” direction. To eliminate deadlocks while still
allowing all links to be used, this routing uses the following
up*/down* rule: a legal route must traverse zero or more
links in the “up” direction followed by zero or more links in
the “down” direction. Thus, cyclic dependencies between
channels are avoided because a message cannot traverse a
link along the “up” direction after having traversed one in
the “down” direction.

There may exist different valid up*/down* paths bet-
ween the same source-destination pair. However, Myrinet
routing software only uses one of the shortest paths. This
path will be used to send packets to the corresponding de-
stination until a network topology change is detected. In
this case, the routing tables will be updated according to the

new topology. On the other hand, to guarantee deadlock
freedom, up*/down* routing is not always able to provide a
minimal path between every pair of hosts. As network size
increases, this effect becomes more important.

Two ideas can be exploited to improve routing flexibility.
First, more than a single choice can be stored in the routing
table for each source-destination pair, and several alterna-
tives can be used to select the route that will be used. Se-
cond, other routing schemes together with a deadlock hand-
ling mechanism can be considered. Among all the feasible
choices, we will analyze two possible ways to increase the
performance of Myrinet networks:

(a) Using up*/down* routing with a more efficient route
selection algorithm. Several selection policies that avoid
using the same route between each source-destination pair
have been considered, trying to balance the use of the
available routes. Up*/down* routing can supply several va-
lid routes between two network hosts and, in some cases,
there exist more than one shortest up*/down* route. The-
refore, we will store in the table a set of routes for each
source-destination pair, including the best ones, and selec-
ting one of them according to some criteria. We have con-
sidered the following path selection algorithms:

� OSUD (One Shortest Up*/Down* path): Always the
same shortest up*/down* path. This is the current rou-
ting policy used in Myrinet.

� RSUD (Random Shortest Up*/Down* path): Ran-
domly selection among all the shortest up*/down*
paths.

� RRSUD (Round-Robin Shortest Up*/Down* path):
Round-robin selection among all the shortest
up*/down* paths.

� PUD (Probabilistic Up*/Down* path): 80% of se-
lected paths using RSUD, and 20% randomly chosen
among up*/down* paths that are one hop longer than
the shortest up*/down* path.

(b) Using a special kind of virtual cut-through switching
at intermediate hosts. In this case, when a message is gene-
rated at a source host, the routing selection procedure will
try to find a minimal route to the destination. If it is a valid
up*/down* minimal route, then it is used without modifi-
cation. Otherwise, it would try a forbidden but minimal
route. To avoid deadlock, the routing algorithm will split
this route into several valid up*/down* sub-routes. The de-
pendencies between the sub-routes (down-to-up transitions)
will be broken by absorbing the message at the intermediate
host and later re-injecting it into the network. Thus, in this
case, the routing algorithm will try to find an intermediate
network host that meets two conditions: It is along a mini-
mal path from source to destination and the sub-paths from



source to the intermediate host and from the intermediate
host to the destination are valid up*/down* routes. Then,
the source host sends the message to the intermediate host,
and this one will forward it to its final destination. Note that
there may exist more than one intermediate host along the
path from source to destination. In this case, all the sub-
paths between intermediate hosts must be valid up*/down*
routes. Also, note that this routing strategy requires that at
least one host is connected to every switch where there may
exist down-to-up transitions.

The critical part of this proposal is the overhead intro-
duced at the intermediate hosts. Some memory to buffer
in-transit packets is needed at the network adapter of the
in-transit host and the MCP program has to be modified to
detect in-transit packets and process them accordingly. In
order to minimize the introduced overhead, a DMA transfer
to re-inject the in-transit packet can be programmed as soon
as its header is processed and the output channel is free. So,
the delay to forward this packet will be the time required
for processing the header and initiating the DMA. As the
MCP allows this kind of DMA programming, it is possible
to implement it without modifying the network hardware.
On the other hand, there is no problem if the DMA transfer
begins before the packet has been completely received, be-
cause it will arrive at the same rate that it is transmitted, as-
suming that all the links in the network have the same band-
width. Note that Myrinet does not implement virtual chan-
nels. Therefore, once a packet header reaches the network
interface card, flits will continue arriving at a constant rate.
The only additional requirement is that the packet is com-
pletely stored in the network adapter memory at the source
host before starting transmission to avoid interference with
the host I/O bus.

To make this mechanism deadlock free, it must be gua-
ranteed that an in-transit packet that is being re-injected can
be completely ejected from the network if the re-injected
part of the packet becomes blocked, thus removing poten-
tial channel dependencies that may result in a deadlock. So,
when an in-transit packet arrives at a given host, care must
be taken to ensure that there is enough buffer space to store
it at the interface card before starting the DMA transfer.
Otherwise, the MCP should store the packet in the host me-
mory, considerably increasing the overhead. In this case, a
fixed amount of buffer space will be allocated in the net-
work interface card for in-transit packets. The host memory
will be used in case of buffer overflow. Although this stra-
tegy requires an infinite number of buffers in theory, a very
small number of buffers are required in practice. We rely
on dynamic allocation of buffers to simulate infinite buffer
capacity.

On the other hand, several minimal routes (with or
without in-transit buffers) can be considered for a given
source-destination pair. The possible path selection choices

considered lead to these new routing algorithms:

� OMIT (One Minimal In-Transit path): Always uses the
same minimal path from source to destination.

� RMIT (Random Minimal In-Transit path): Random
choice among all possible minimal paths.

� RRMIT (Round-Robin Minimal In-Transit path):
Round-robin selection among all minimal paths.

� PIT (Probabilistic In-Transit path): 80% of selected
paths using RMIT, and 20% randomly selected among
paths that are one hop longer than minimal paths.

� RRMIT-MIN (Round-Robin Minimal In-Transit path
MINimizing in-transit hosts): Round robin selection
among minimal paths that minimize the number of in-
transit hosts. Hence, in-transit hosts will be used only
when the up*/down* routing algorithm does not pro-
vide a minimal route.

4 Performance Evaluation

4.1 Network Model

The network is composed of a set of switches. Network
topology is completely irregular and has been randomly ge-
nerated taking into account three restrictions. First, we as-
sumed that there are exactly 4 hosts attached to each switch.
Second, all the switches in the network have the same size.
We assumed that each switch has 8 ports. So, there are 4
ports available to connect to other switches. Finally, two
neighboring switches are connected by a single link. These
assumptions are quite realistic and have already been consi-
dered in other studies [8, 9].

In order to evaluate the influence of the network size on
system performance, we varied the number of switches in
the network keeping the number of hosts connected to each
switch constant and equal to 4. We have used network sizes
of 16, 32, and 64 switches.

For each simulation run, we assume that the message ge-
neration rate is constant and the same for all the hosts. Once
the network has reached a steady state, the flit generation
rate is equal to the flit reception rate. We have evaluated the
full range of traffic, from low load to saturation. Message
destinations are randomly chosen among all the hosts.

4.2 Myrinet Links, Switches, and Interfaces

We assume short LAN cables [3] to interconnect swit-
ches and hosts. These cables are 10 meters long, offer a
bandwidth of 160 MB/s, and have a delay of 4.92 ns/m (1.5
ns/ft). Flits are one byte wide. Physical links are also one



flit wide. Transmission of data across channels is pipelined
[6]. Hence, a new flit can be injected into the physical chan-
nel every 6.25 ns and there will be a maximum of 8 flits on
the link at a given time.

Each Myrinet switch has a simple routing control unit
that removes the first flit of the header and uses it to select
the output channel (when the output channel becomes free).
The first flit latency is 150 ns through the switch. After that,
the switch is able to transfer flits at the link rate, that is,
one flit every 6.25 ns. Each output port can only process
one message header at a time. An output port is assigned
to waiting packets in a demand-slotted round-robin fashion.
A crossbar inside the switch allows multiple packets to tra-
verse it simultaneously without interference.

We do not use virtual channels since current Myrinet
switches do not support them. A hardware “stop and go”
flow control protocol [1] is used to prevent packet loss. In
this protocol, the receiving switch transmits a stop (go) con-
trol flit when its input buffer fills over (empties below) 56
bytes (40 bytes) of its capacity. The slack buffer size in
Myrinet is fixed at 80 bytes.

Each host has a routing table with one or more entries for
every possible destination of packets. The way tables are
filled determines the routing scheme that will be used. We
will analyze the two schemes and the path selection algo-
rithms proposed in Section 3. Although tables can be filled
with all the possible routes to every possible destination, to
avoid using a huge table that may result in a high look-up
delay, we imposed a limit of 10 alternative routes for each
source-destination pair.

In the case of minimal routing with in-transit buffers the
network DMA must be re-programmed. To do so, some
special registers must be loaded up. We have used a delay
of 275 ns (44 bytes received) to detect an in-transit mes-
sage, and 200 ns (32 bytes more) to program the DMA to
re-inject the message1. Also, the total capacity of the in-
transit buffers has been limited to 90KB at each Myrinet
interface card.

4.3 Simulation Results

In this section, we show the results obtained from the si-
mulation of the Myrinet network for the different routing al-
gorithms analyzed. First we will analyze the impact of route
selection using up*/down* routes (OSUD, RSUD, RRSUD,
and PUD). Later, we will analyze the benefits of using mi-
nimal routing by means of the in-transit buffer mechanism
(OMIT, RMIT, RRMIT, PIT, and RRMIT-MIN). We have
used different message sizes, but for the shake of brevity,
we only show results for 512-byte packets.

1These timings have been obtained from a real Myrinet network.

4.3.1 Up*/Down* Routing with Alternative Routes

We first evaluate the behavior of the up*/down* routing al-
gorithm using the different path selection choices presented
in Section 3 (OSUD, RSUD, RRSUD, and PUD). We will
show results for networks sizes of 16, 32, and 64 switches.
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Figure 1. Average message latency vs. traf-
fic. Network size is 16 switches.

Figure 1 shows the results for 16-switch networks for a
message size of 512 bytes. With low traffic rate, the dif-
ferent path selection algorithms have almost the same per-
formance, with the exception of the PUD algorithm, which
achieves higher latency due to the use of longer paths. As
traffic grows, we observe that RRSUD and RSUD algo-
rithms provide better performance than OSUD because they
balance traffic among the different available routes. Howe-
ver, the OSUD algorithm forces all the traffic from a source
to a given destination to follow always the same path.

Now, we focus on the impact of network size on the dif-
ferent routing algorithms. Figures 2 and 3 show results for
networks with 32 and 64 switches, respectively.

The conclusions are roughly the same as for 16-switch
networks. PUD path selection algorithm performs poorly,
and the others (OSUD, RSUD, RRSUD) perform similarly
except for high traffic loads. However, RSUD and RRSUD
algorithms do not improve performance over OSUD. This is
because these algorithms are highly dependent on the net-
work topology and the number and length of available shor-
test up*/down* routes. As network size increases, shortest
up*/down* routes are longer on average, and different va-
lid routes will share more links. Thus, these routes tend to
perform as a single route, leading the RSUD and RRSUD
to behave in the same way as OSUD.

We conclude that RRSUD and RSUD generally reduce
network contention by using different routes to reach a gi-
ven destination. However, these algorithms merely improve
the current Myrinet routing algorithm (OSUD) by a small
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Figure 2. Average message latency vs. traf-
fic. Network size is 32 switches.
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Figure 3. Average message latency vs. traf-
fic. Network size is 64 switches.

amount.

4.3.2 Minimal Routing with In-Transit Buffers

We focus now on the performance of minimal routing using
in-transit buffers. We compare the OMIT, RMIT, RRMIT,
PIT, and RRMIT-MIN path selection algorithms with the
basic up*/down* routing algorithm (OSUD). We vary the
network size from 16 switches to 64 switches.

Figure 4 shows the results for a 16-switch network using
512-byte packets. As we can see, all the path selec-
tion algorithms that use minimal paths (OMIT, RMIT, RR-
MIT, PIT, and RRMIT-MIN) significantly outperform the
OSUD routing algorithm that uses only up*/down* paths.
In particular, RMIT and RRMIT algorithms almost double
the throughput achieved by OSUD algorithm (e.g., 0.051
flits/ns/switch versus 0.096 flits/ns/switch).

However, all these minimal algorithms (except RRMIT-
MIN), exhibit a slightly higher average latency for low traf-
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Figure 4. Average message latency vs. traf-
fic. Network size is 16 switches.

fic than the original OSUD algorithm (4011 ns with RMIT
versus 3906 ns with OSUD for 0.006 flits/ns/switch). This
is due to the use of in-transit buffers. Crossing one in-transit
host adds 625 ns (475 ns to detect the message and program
the re-injection and 150 ns to cross the switch again) to the
latency of the message. The RRMIT-MIN algorithm avo-
ids this problem by minimizing the use of in-transit hosts.
RRMIT-MIN algorithm achieves near the same average la-
tency for low traffic (3915 ns) as OSUD and offers better
throughput (reaching to 0.077 flits/ns/switch, that is, 1.51 ti-
mes better than OSUD). However, this algorithm offers less
throughput than the others algorithms do. As message and
network size increase, the latency added by in-transit hosts
becomes less significant. Also, new Myrinet interface im-
plementations will lead to a reduction in the detection time
of in-transit packets and DMA reprogramming times.

Let us consider the influence of path selection strategies.
Random (RMIT) and round-robin (RRMIT) are the best
choices due to their ability of choosing any of the availa-
ble minimal paths versus the use of only one path in OMIT.
As was expected, the use of non-minimal paths (PIT) leads
to the worst performance. PIT path selection algorithm sa-
turates at 0.08 flits/ns/cycle and shows higher latency.

As network size increases, the up*/down* routing algo-
rithm does not scale well [8]. Figures 5 and 6 show the
results for networks of 32 and 64 switches, respectively.
In a 32-switch network, the new routing scheme doubles
the performance achieved by the basic up*/down* routing
(OSUD) except for RRMIT-MIN that is 1.8 times better. In
particular, RMIT achieves more than twice the throughput
achieved by OSUD. In a 64-switch network, the enhance-
ment achieved by the new approach is even higher. In this
case, the best minimal routing scheme achieves three times
better throughput than the basic up*/down* scheme.

Finally, it is important to point out that the 90KB re-
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Figure 5. Average message latency vs. traf-
fic. Network size is 32 switches.
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Figure 6. Average message latency vs. traf-
fic. Network size is 64 switches.

served for buffers at the Myrinet interface card has been
enough in all simulations to store all the in-transit packets
without using the host memory. Current Myrinet interface
cards are shipped with 4MB and less than 128KB are set
aside for the MCP.

To conclude, the proposed software implementation of
in-transit buffers in Myrinet interface cards allows the use
of deadlock-free minimal routing, drastically increasing the
overall network throughput, doubling it for small network
sizes (16 switches), and more than tripling it for large net-
work sizes (64 switches).

5 Conclusions

In this paper, we proposed several routing strategies to
improve Myrinet performance. First, keeping the origi-
nal up*/down* routing scheme, we proposed different path
selection algorithms in order to improve network perfor-

mance. These mechanisms are simple enough to avoid
adding overhead in the MCP (Myrinet Control Program).
The results show that performance is improved by a small
amount for small networks. Unfortunately, for large net-
works, there are even diminishing returns.

Second, a deadlock avoidance-based minimal routing
scheme that forwards packets by splitting routes into se-
veral deadlock-free sub-routes as well as several selection
policies are proposed. This mechanism can be easily im-
plemented in current Myrinet networks. Results show that
throughput can be doubled for small networks and tripled
for large networks (with respect to the original Myrinet rou-
ting algorithm).

As for future work, we plan to implement the proposed
mechanism on an actual Myrinet network in order to con-
firm these results. Also, we are working on new path se-
lection algorithms that increase adaptivity by reducing the
resource sharing among alternative routes.
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