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Abstract

Networks of workstations (NOWs) are becoming increas-
ingly popular as a cost-effective alternative to parallel com-
puters. Typically, these networks connect processors using
irregular topologies, providing the wiring flexibility, scal-
ability, and incremental expansion capability required in
this environment. Similar to the evolution of parallel com-
puters, NOWs are also evolving from distributed memory
to shared memory programming model. However, physical
distances between processors are longer in NOWs than in
tightly-coupled distributed shared-memory multiprocessors
(DSMs), leading to higher message latency and lower net-
work bandwidth. Therefore, the network may be a bottle-
neck when executing some parallel applications in a NOW
supporting a shared-memory programming paradigm.

In this paper we analyze whether the interconnection
network is able to efficiently handle the traffic generated
in a NOW with the shared memory model. In particular,
we are interested in analyzing the influence of the routing
mechanism in the performance of the system. We evaluate
the behavior of a NOW with irregular topology by means
of an execution-driven simulator using SPLASH-2 appli-
cations as the input load. The results show that the rout-
ing algorithm can considerably reduce the total execution
time of applications. In particular, routing adaptivity can
reduce the total execution time by 58 % in some applica-
tions. These results confirm the behavior observed in previ-
ous works using synthetic traffic loads.

1 Introduction

Research in parallel computers has focused on mul-
ticomputers and multiprocessors during the last decades.

�This work was supported by the Spanish CICYT under Grant TIC97–
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These machines provide high computing power by arrang-
ing tens or hundreds of processors that work in a coordi-
nated way in order to solve a given task. The communica-
tion needed to coordinate and synchronize these processors
is carried out through the interconnection network.

Large-scale parallel computers evolved from multicom-
puters (iPSC/1, iPSC/2, nCUBE-2, nCUBE-3, TMC CM-
5, Intel Paragon) to distributed shared-memory multipro-
cessors (DSM), either with cache coherence (SGI Origin
2000) or without cache coherence (Cray T3D, Cray T3E).
The higher architectural complexity required to provide a
single memory address space is worth its cost. It pro-
vides a simpler programming model in which communica-
tion is achieved by accessing shared memory locations, and
synchronization is performed by using barriers. Addition-
ally, sequential applications that require a large amount of
memory to be executed efficiently can be directly ported to
DSMs. In general, this is not possible in a multicomputer
because each processor has a relatively small local memory.

However, due to the increasing computation power of
microprocessors and the high cost of parallel computers,
networks of workstations (NOWs) are currently being con-
sidered as a cost-effective alternative for small-scale paral-
lel computing. Although NOWs do not provide the com-
puting capacity available in multicomputers and multipro-
cessors, they meet the needs of a great variety of parallel
computing problems at a lower cost. Moreover, the nature
of NOWs allows an incremental expansion of the system.

Nevertheless, most commercial interconnects for NOWs
only provide support for message-passing. These networks
consist of a network interface card that is plugged into the
I/O bus of each workstation, and one or more switches inter-
connecting the interface cards through point-to-point links
[3]. In general, the bandwidth provided by currently avail-
able interface cards and switches is high enough for the
requirements of message-passing applications. However,
the performance of some parallel applications is limited by



message latency.
Similarly to the evolution of parallel computers, NOWs

are also evolving from distributed memory to shared mem-
ory. Most approaches implement the shared memory model
in software [1, 28]. However, a few commercial inter-
face cards support the shared-memory programming model.
This is the case for the SCI-PCI adapter from Dolphin [6].
This card does not support cache coherence in hardware be-
cause memory traffic cannot be seen from the I/O bus. Also,
interface cards are reaching the limits of I/O buses.1 In or-
der to provide a higher bandwidth and lower latency, some
researchers have started to develop interface cards that are
plugged directly into the memory bus providing support for
shared-memory [18], also implementing a cache-coherence
protocol.

2 Motivation

A decade ago, the invention of wormhole switching
led to very fast interconnection networks [2]. As a con-
sequence, the interconnection network was no longer the
bottleneck in a multicomputer. However, DSMs require
faster interconnection networks than multicomputers be-
cause messages are shorter (a typical message consists of
a cache line and some control information) and much more
frequent [15]. While the interconnection network is not the
bottleneck yet, some researchers reported that a lower la-
tency and a higher network bandwidth may significantly
reduce the execution time of several parallel applications
[29, 4, 27]. As processor clock frequency is increasing at
a faster rate than network bandwidth, the interconnection
network may become a bottleneck within the next years [8].

The situation is more critical for NOWs supporting a sin-
gle memory address space. Physical distance between pro-
cessors is higher in NOWs than in DSMs, leading to higher
latency (due to the propagation delay) and lower bandwidth
(due to the use of narrower links).2 Additionally, the use
of irregular topologies makes routing and deadlock han-
dling much more complex. Existing routing algorithms are
either deterministic [3] or provide some degree of adap-
tivity [20, 19, 26]. Some of them lead to a frequent use
of non-minimal paths and an unbalanced use of physical
links. As a consequence channel utilization is low, reducing
the effective network bandwidth even more. Therefore, we
can expect the network to be a bottleneck when executing
some parallel applications on a NOW supporting a shared-
memory programming paradigm. Then, it is important to

1For example, link bandwidth in Myrinet is 160 Mbytes/s. ServerNet II
[11] and ChaosLAN [17] provide links with 1 Gigabit/s peak bandwidth.
However, a 32-bit PCI bus running at 33 MHz only achieves a peak band-
width of 133 Mbytes/s.

2For example, Cray T3E, Cray T3D, and SGI SPIDER routers [23, 22,
10] use 14, 16, and 20 data wires per link, respectively. ServerNet II [11]
and Myrinet [3] use serial and 8-bit links, respectively.

analyze the behavior of parallel applications on these ma-
chines.

In this paper, we analyze whether the interconnection
network in a NOW is able to handle the traffic generated by
the execution of some parallel applications. In particular,
we evaluate different routing algorithms on NOWs with ir-
regular topology, using the total execution time as the main
performance parameter. These results will provide a more
precise idea of the impact of routing algorithms on appli-
cation performance than previous results based on trace-
driven simulations [27]. As applications, we have selected
a subset of the SPLASH-2 suite [30]: FFT, Radix, Barnes,
and LU. The execution of these applications is simulated on
a DSM test-bed with a hardware supported cache-coherence
protocol. This environment allows the execution of a paral-
lel program on the simulated machine, using a given cache-
coherence protocol that generates coherence commands and
memory traffic to a detailed interconnection network simu-
lator subsystem. The main goal of this study is to determine
whether the routing schemes affect the total execution time
of an application, in order to evaluate their impact on the
network design. We show that the use of adaptive routing
helps to significantly reduce the execution time of these ap-
plications.

The rest of this paper is organized as follows. In Section
3, NOWs are introduced, describing several techniques to
improve performance. Section 4 presents the test-bed used
in the evaluation. In Section 5, the performance of different
routing algorithms is evaluated using SPLASH-2 applica-
tions. Finally, in Section 6 some conclusions are drawn.

3 Networks of Workstations

NOWs are usually arranged as switch-based networks
with an irregular interconnection pattern. Some of the
switch ports are attached to processing elements, while the
rest of the ports are connected to other switches to provide
connectivity between processors, or left open. Generally,
links connecting switches are bidirectional full-duplex.

Most of the NOWs proposed up to now implement
wormhole switching [3, 14]. Since this is the most com-
monly used switching technique, we will restrict ourselves
to wormhole switching in this paper.

Routing in irregular networks is more complex than in
regular ones, due to the irregularity and unpredictability of
the network topology at design time. Two approaches can
be used: source routing and distributed routing. In source
routing, when a processor generates a message it looks up in
a routing table that provides the path towards the destination
processor and stores that information in the message header.
Thus, the path followed by a given message is fixed at the
source node. This approach is used in Myrinet networks [3].
On the other hand, in distributed routing each switch has a



routing table. When a message has to be routed at some
switch, the routing algorithm looks up in the associated ta-
ble, obtaining the output link to be used. Therefore each
switch computes only the next link to be used, leading to
more routing flexibility. In both cases, before the network
is ready to deliver messages, some network configuration
algorithm must be executed in order to fill the routing tables
with the suitable information. This information depends
on the routing algorithm. Several distributed deadlock-free
routing schemes have been proposed for irregular networks,
like the up*/down* routing scheme [20], the Eulerian-trail
routing algorithm [19] or the adaptive routing scheme pro-
posed in [26, 24].

We will restrict the scope of this paper to distributed
routing, analyzing the behavior of NOWs with up*/down*
and adaptive routing. To make the paper self-contained, we
will summarize these routing schemes in the following sec-
tions.

3.1 Up*/Down* Routing

Up*/down* is a distributed deadlock-free routing algo-
rithm that provides partially adaptive routing in irregular
networks. In order to fill the routing tables, a breadth-first
spanning tree (BFS) on the graph of the network is com-
puted first using a distributed algorithm. Routing is based
on a direction assignment to all the links in the network. In
particular, the “up” end of each link is defined as: (1) the
end whose switch is closer to the root in the spanning tree;
(2) the end whose switch has the lower ID, if both ends are
at switches at the same tree level. The result of this assign-
ment is that each cycle in the network has at least one link
in the “up” direction and one link in the “down” direction.
To avoid deadlocks, this routing scheme uses the follow-
ing up*/down* rule: a message cannot traverse a link in the
“up” direction after having traversed a link in the “down”
direction.

When a message arrives at a switch, the routing algo-
rithm is computed by accessing the routing table. The ad-
dress of the table entry is obtained by concatenating the in-
put port number with the address of the destination node
stored in the message header. If there are several suitable
outgoing ports, one of them is selected.

Up*/down* routing is not always able to provide a min-
imal path between every pair of nodes due to the restriction
imposed by the up*/down* rule. As the network size in-
creases, this effect becomes more important.

3.2 Adaptive Routing

We will summarize the design methodology for adap-
tive routing algorithms on irregular networks proposed in
[24, 26]. This methodology starts from a deadlock-free

routing algorithm, splitting all the physical channels in the
network into two virtual channels. We will refer to them as
the original and new channels, respectively. Next, the rout-
ing algorithm is extended so that new channels are freely
used with the only restriction that they must forward mes-
sages closer to their destination, and original channels are
used in the same way as in the original routing function.
Additionally, when a message is injected into the network,
it can only leave the source switch through new channels,
since they provide a higher degree of adaptivity and, usu-
ally, a shorter path. Also, when a message arrives at an
intermediate switch, it first tries to reserve a new channel.
If all the suitable outgoing new channels are busy, then an
original channel belonging to a minimal path is selected. If
none of the original channels provides a minimal path to the
destination, then one of the original channels that provide
the shortest path will be used. To ensure that the new rout-
ing function is deadlock-free, once a message reserves an
original channel, it can no longer reserve a new one [24, 26].
This message will be routed through original channels until
it arrives at the destination switch.

The minimal adaptive algorithm [24, 26] is an applica-
tion of this design methodology to the up*/down* routing
algorithm. This routing algorithm provides fully adaptive
minimal routing between all pairs of nodes until messages
are forced to move to original channels. When a message
starts using original channels, it provides the same adaptiv-
ity as the up*/down* routing algorithm.

4 EDINET: An Execution-Driven Simulator
to Evaluate Interconnection Networks

The EDINET (Execution Driven Interconnection NET-
work) simulator [9] allows executing a shared-memory ap-
plication on a simulated DSM or NOW system. It is com-
posed of two simulators. The first one is Limes [16], an
execution-driven simulator that allows parallel program ex-
ecution and models the memory subsystem. The second
one is the interconnection network simulator that we have
already used in several evaluation studies [24, 7]. The mem-
ory simulator part of Limes simulates the memory subsys-
tem sending requests to the interconnection network simu-
lator in order to simulate the transmission of messages.

4.1 Processor and Memory Model

The processor model has been chosen based on modern
processor designs [13]. We assumed at each node a 480
MHz single-issue microprocessor with a perfect instruction
cache and a 128 KB 2-way set associative data cache with a
line size of 64 bytes. The memory bus was assumed to be 8
bytes wide. On a memory block access, the first word of the
block was assumed to be returned in 16 processor cycles;



the successive words follow in a pipelined fashion, one per
clock cycle. The machine used a full-mapped directory with
an invalidation-based cache coherence protocol [5] imple-
mented in hardware. The network interface has two sepa-
rated queues to process incoming and outgoing requests. To
avoid coherence protocol deadlocks we have implemented
the approach proposed in [5]. In this approach when an
input buffer is full, requests are rejected with a NACK com-
mand. Later, the source will send again the request after a
random delay.

We have used a sequential memory consistency model.
In this model, there is at most one outstanding request per
processor. Therefore, a data miss stalls the processor un-
til the data is returned. So, there is a bounded number of
messages traversing the network at the same time. We have
used this model because it is the simplest to implement and
the easiest to program. Other memory consistency models
may help in improving performance by increasing processor
utilization [12]. So, with more flexible consistency models
more traffic may be generated, and thus, processors may is-
sue more requests to the network.

4.2 Network Model

The network is composed of a set of switches. Net-
work topology is completely irregular and was generated
randomly, taking into account three restrictions. First, we
assumed that there are exactly 4 nodes (processors) con-
nected to each switch. Second, all the switches in the net-
work have the same size. We assumed that each switch has
8 ports (so, there are 4 ports available to connect to other
switches). Finally, two neighboring switches are connected
by a single link.

Each switch has a routing control unit that selects the
output channel for a message as a function of its destination
node, the input port number, and the output channel sta-
tus. Table look-up routing is used. Up*/down* and adap-
tive routing (see section 3) may be used. Routing delay
is assumed to be three processor clock cycles3. The rout-
ing control unit can only process one message header at a
time. It is assigned to waiting messages in a demand-slotted
round-robin fashion. When a message gets the routing con-
trol unit, but it cannot be routed because all the alternative
output channels are busy, it must wait in the input buffer
until its next turn. A crossbar inside the switch allows mul-
tiple messages traversing it simultaneously without interfer-
ence. It is configured by the routing control unit each time
a successful routing is made. The time needed to transfer a
flit across the crossbar is assumed to be 3 processor clock

3We assume that the router clock runs at 160MHz, as in current Myrinet
switches. This clock frequency is three times slower than processor clock
frequency. Routing takes one router clock cycle, that is, three processor
clock cycles. In what follows, all the references to clock cycles will refer
to processor clock cycles.

cycles. Considering that wires in NOWs are usually long,
and assuming a Myrinet link bandwidth of 160 MB/s and
maximum wire length of 10m, physical channel propaga-
tion delay is assumed to be equal to 36 processor clock cy-
cles. Transmission of data across channels is pipelined [21],
assuming that a new flit can be injected into the physical
channel every 3 processor clock cycles. Flits are one byte
wide. Physical links are one flit wide.

As physical channels may be split into several virtual
channels, the “stop and go” flow control protocol [3] is used
to efficiently use the available link bandwidth. In this pro-
tocol, the receiving switch transmits a stop (go) control flit
when its input buffer fills over (empties below) 66% (40%)
of its capacity. Considering that there can be up to 12 flits
on the wire and assuming a one-cycle delay to decode con-
trol flits, input buffer size must be equal to 75 flits. Output
buffer size has been fixed to 4 flits.

Table 1. Applications and the input sizes used.
Application Problem Sizes

LU 16� 16 to 512� 512 doubles,
8� 8 blocks

Radix 256K, 512K, and 1M keys,
1K radix, max 1M

FFT 2
12 to 2

18 complex data points
Barnes 1024, 2048, and 4096 particles

4.3 Network Load

We injected into the network the traffic generated by the
execution of several parallel benchmarks. In particular, we
used a subset of the SPLASH-2 suite (FFT, LU, Radix, and
Barnes) [30]. These are challenging computational appli-
cations. Table 1 lists the actual problem sizes used for the
applications.

5 Performance Evaluation

In this section, we evaluate the impact of using dif-
ferent routing algorithms on total execution time and net-
work behavior, using the execution-driven test-bed intro-
duced above. In particular, the up*/down* (UD) and mini-
mal adaptive (MA-2VC) routing algorithms are compared.
As MA-2VC algorithm requires two virtual channels per
physical channel, in order to make a fair comparison, we
have also evaluated the up*/down* routing algorithm with
two virtual channels (UD-2VC). Also, we have included
an ideal network model called PNET (Perfect NETwork).
In this model, messages cross the interconnection network
without contention using minimal paths. Message latency is



assumed to be equal to the base latency, that is, the propaga-
tion delay along the shortest path from source to destination.

We have evaluated a system with 64 nodes. Taking
into account that there are 4 processors connected to each
switch, the network has 16 switches.

The main performance measure is the total execution
time of the applications. Also, other measures like average
message latency and average network throughput have been
considered. In particular, we obtained the average message
latency and average throughput during program execution
at regular intervals. In all simulations the applications fin-
ished correctly and the application results were the expected
ones.

5.1 Simulation Results

Figure 1 shows the total execution time of the applica-
tions for the routing algorithms analyzed.

In the FFT kernel (Figure 1-a), the MA-2VC routing al-
gorithm reduces the total execution time by 38 % for the
lowest problem size and by 53 % for the highest problem
size with respect to the UD. When comparing with UD-
2VC, MA-2VC reduces total execution time by 25 % for
the lowest problem size and by 36 % for the highest prob-
lem size. These results show that the key to improve perfor-
mance is not only adding virtual channels but using them
in a more flexible way, as the MA-2VC does. This adap-
tive routing algorithm allows messages to follow alternative
paths instead of blocking, waiting for channels to become
free. Additionally, it balances link utilization, improving
throughput (as we will see later) and providing a higher ef-
fective network bandwidth.

On the other hand, PNET reduces execution time from
42 % for the lowest problem size to 43 % for the highest
problem size with respect to the MA-2VC. Although results
obtained by MA-2VC are still far from the ones obtained by
the PNET model, the relative difference remains constant
for all the complexity points evaluated. Comparing with
UD, PNET outperforms UD by 64 % for the lowest problem
size and by 73 % for the highest problem size.

In the LU, Radix, and Barnes applications (Figures 1-
b, 1-c, and 1-d) results are qualitatively similar. The MA-
2VC outperforms both the UD and UD-2VC in terms of
application execution time. The largest improvements are
achieved for the highest problem size and are equal to 38
% (LU), 58 % (Radix), and 46 % (Barnes) when comparing
MA-2VC with UD, and equal to 19 % (LU), 40 % (Radix),
and 30 % (Barnes) when comparing MA-2VC with UD-
2VC. As can be seen, adaptivity and virtual channels are
very useful in all the cases.

Adaptive routing helps in reducing application execution
time. However, it is important to characterize the network
traffic requirements of the applications. Network through-

put and latency indicate how loaded the network is.
Figure 2 shows the average latency measured as the

elapsed time from message generation at the source node
to message delivery at the destination node for the appli-
cations considered. Again, as expected, average message
latency is reduced when using MA-2VC routing algorithm.

Figure 3 shows the average network throughput (mea-
sured in flits/cycle/switch) achieved by each application for
every routing algorithm analyzed. As can be expected, net-
work throughput increases when application complexity in-
creases. The exceptions are Radix and Barnes, in which
network throughput is almost constant for all the sizes of
the data set we analyzed. In all the cases, the use of MA-
2VC routing strongly increases network throughput with re-
spect to UD routing. The explanation is very simple. The
amount of generated messages is almost the same, regard-
less of the routing algorithm. As we have seen, MA-2VC
reduces total execution time by allowing the use of shorter
and alternative paths to forward messages toward their des-
tinations. As a consequence, the ratio between the number
of flits transferred and the elapsed time increases.

On the other hand, maximum throughput never exceeds
0.2 flits/cycle/switch. In [26], it was shown that net-
work throughput could be as high as 0.08, 0.15, and 0.25
flits/cycle/switch using UD, UD-2VC, and MA-2VC rout-
ing algorithms, respectively, for a uniform distribution of
message destinations and a similar network topology. As a
consequence, the network is not saturated, on average. But
there may exist hidden hot spots that saturate the network.

The analysis of traffic rate and average latency during
the execution of the application allows us to analyze appli-
cation behavior more precisely. Moreover, we are interested
in analyzing how good adaptivity is in the presence of hot
spots. We have gathered statistics for 1000 points at regular
intervals during all the simulation. For the sake of brevity,
results are only shown for the FFT and Radix applications
and for the largest data set analyzed (218 points in FFT and
1M keys in Radix). Figures 4 and 5 show the average traffic
rate and average latency during the sampling intervals, for
both applications considered.

As can be seen, in the FFT application the three curves
for throughput and latency have almost the same shape, with
three phases of high traffic rate separated by synchroniza-
tion points, in which traffic rate is very low. The main dif-
ferences are quantitative. The MA-2VC routing algorithm
achieves the highest throughput and the lowest latency in
all the sampled intervals. Notice that peak latencies are re-
duced from more than 2000 cycles in the UD to 600 cycles
in the MA-2VC. However, only in the intervals with high
traffic rate the increased flexibility offered by the adaptive
routing algorithm makes a difference. These intervals are
shorter when a higher degree of adaptivity is used in the
routing algorithm. As expected, the case for the MA-2VC is



0

5e+06

1e+07

1.5e+07

2e+07

11 12 13 14 15 16 17 18 19E
X

E
C

U
T

IO
N

 T
IM

E
 (

PR
O

C
E

SS
O

R
 C

Y
C

L
E

S)

COMPLEXITY (2**M POINTS)

MA-2VC
UD-2VC

UD
PNET

a

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

0 100 200 300 400 500 600E
X

E
C

U
T

IO
N

 T
IM

E
 (

PR
O

C
E

SS
O

R
 C

Y
C

L
E

S)

COMPLEXITY (NxN MATRIX)

MA-2VC
UD-2VC

UD
PNET

b

0

2e+07

4e+07

6e+07

8e+07

1e+08

200 400 600 800 1000 1200E
X

E
C

U
T

IO
N

 T
IM

E
 (

PR
O

C
E

SS
O

R
 C

Y
C

L
E

S)

COMPLEXITY (NUMBER OF KEYS IN KB)

MA-2VC
UD-2VC

UD
PNET

c

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1000 1500 2000 2500 3000 3500 4000 4500E
X

E
C

U
T

IO
N

 T
IM

E
 (

PR
O

C
E

SS
O

R
 C

Y
C

L
E

S)

COMPLEXITY (NUMBER OF PARTICLES)

MA-2VC
UD-2VC

UD
PNET

d
Figure 1. Execution times for FFT, LU, RADIX and BARNES
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Figure 2. Latency for FFT, LU, RADIX and BARNES
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Figure 3. Throughput for FFT, LU, RADIX and BARNES

the shortest one. On the other hand, intervals with low traf-
fic rate are almost identical regardless of the routing scheme
used. A similar behavior is obtained for the Radix applica-
tion.

We can also see with the Radix application that the net-
work reaches throughput values up to 0.4 flits/cycle/switch,
which are higher than the maximum throughput achievable
with a uniform distribution. At first glance, these points
seem to be saturation points. However, this is not the case.
Figure 6 shows the average distance traveled by messages
for each time interval with the UD routing algorithm. We
can observe that in the high traffic points the average dis-
tance decreases, indicating that the traffic pattern is chang-
ing to a highly local traffic pattern. On the other hand,
we can see that the average distance decreases to less than
one, indicating that many messages do not leave the source
switch. Thus, the RADIX application does not saturate
the interconnection network at these points. However, tak-
ing into account that we are using a sequential consistency
memory model, the interconnection network could saturate
with a more aggressive memory model.

In summary, routing algorithm has a great impact on ap-

plication execution time in a NOW with a hardware shared
memory model. The running applications generate a very
specific traffic pattern. This traffic is handled in a differ-
ent way depending on the routing algorithm implemented
within the interconnection network. With minimal adap-
tive routing, messages cross the interconnection network
through minimal paths, leading to reduced latencies. In ad-
dition, adaptive routing also allows the use of alternative
paths, achieving a more balanced use of resources and in-
creasing network throughput. As a consequence, applica-
tions finish earlier.

6 Conclusions

In this paper we analyzed the influence of routing algo-
rithm on the performance of a NOW with a hardware shared
memory model using the traffic generated by some real ap-
plications. This analysis has been performed by simulating
the behavior of networks with irregular topology, using an
execution-driven environment. Several SPLASH-2 appli-
cations (Barnes-Hut, FFT, Radix, and LU) were used on a
distributed shared-memory multiprocessor (DSM) simula-
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Figure 4. Throughput and latency during the
execution of FFT

tor with 64 processors, a hardware cache-coherence proto-
col and a network consisting of 16 switches (4 nodes per
switch). The execution time of these applications was the
main performance measure.

We conclude that the routing algorithm plays a key role
in the design of interconnection networks for NOWs using a
hardware shared memory model. In particular, when using
a sequential consistency model (there are a maximum of p
requests per time unit in a system with p processors), the
interconnection network reaches high traffic loads in some
critical phases of program execution. Hence, efforts must
be done in routing algorithm design. These efforts must
be oriented toward adding more adaptivity to current rout-
ing algorithms like up*/down*. The low latencies and high
throughput achieved by more adaptive routing schemes no-
ticeably decrease the overall execution time of the consid-
ered applications. Reduction time ranges from 38 % in the
worst case to 58 % in the best case. Thus, virtual channels
and minimal routing are the key to achieve a significant per-
formance improvement in NOWs systems with a hardware
shared memory model.
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