Impact of Adaptivity on the Behavior of Networks of
Workstations under Bursty Traffic*

F. Silla, M. P. Malumbres and J. Duato
Dpto. Inf. de Sistemas y Computadores
Universidad Politécnica de Valencia
Camino de Vera, 14, 46071-Valencia, Spain
{fsilla,mperez,jduato } @gap.upv.es

Abstract

Networ ks of workstations (NOWSs) are becoming increas-
ingly popular as an alternativeto parallel computers. Typi-
cally, these networks present irregular topologies, providing
thewiring flexibility, scalability, and incremental expansion
capability required in this environment. Smilar to the evo-
lution of parallel computers, NOWSs are also evolving from
distributed memory to shared memory. However, distances
between processors are longer in NOWSs, leading to higher
message latency and lower network bandwidth. Therefore,
we can expect the networ k to be a bottleneck when executing
some parallel applications on a NOW supporting a shared-
memory programming paradigm.

In this paper we analyze whether the interconnection
network in a NOW is able to efficiently handle the traffic
generated in a DSM with the same number of processors.
We evaluate the behavior of a NOW using applicationtraces
captured during the execution of several SPLASH2 appli-
cations on a DSM simulator. We show through simulation
that the adaptive routing algorithm previously proposed by
us almost eliminates network saturation due to its ability
to support a higher sustained throughput. Therefore, adap-
tive routing becomes a key design issue to achieve similar
performance in NOWs and tightly-coupled DSMs.

1. Introduction

Research in parallel computers has focused on mul-
ticomputers and multiprocessors during the last decades.
Large-scale parallel computers evolved from multicomput-
ers to distributed shared-memory multiprocessors, either
with cache coherence or without cache coherence. The
higher architectural complexity required to provide a sin-

*This work was supported by the Spanish CICYT under Grant TIC97—
0897-C04-01

D. Dai and D. K. Panda
Dept. of Computer and Information Science

Ohio State University, Columbus, OH 43210-1277

{dai,panda}@cis.ohio-state.edu

gle memory address space is worth its cost. It provides
a simpler programming model in which communication is
achieved by accessing shared memory locations, and syn-
chronization is performed by using barriers. Additionally,
sequential applications that require a large amount of mem-
ory to be executed efficiently can be directly ported to
DSMs. In general, this is not possible in a multicomputer
because each processor has a relatively small local memory.

Due to the increasing computation power of micro-
processors and the high cost of parallel computers, net-
works of workstations (NOWS) are being considered as a
cost-effective alternative for small-scale parallel comput-
ing. NOWSs do not provide the computing capacity avail-
able in multicomputers and multiprocessors, but they meet
the needs of a great variety of parallel computing problems
at a lower cost. Moreover, the nature of NOWs makes them
scalable and allows an incremental expansion of the system.

Recent network products, like Autonet [17], Myrinet
[1], and ServerNet [11], use point-to-point links between
switching elements instead of the traditional shared medi-
ums (like Ethernet) used in computer networks. These
NOWSs usually present an irregular topology as a conse-
quence of the needs in a local area network. Moreover, in-
stead of being a direct network, NOWs are often arranged
as switch-based interconnects, thus reducing the number of
switches required for a given number of processors.

Research in NOWSs is advancing relatively fast because
the research effort made on parallel computers is now being
transferred to this raising environment.

As a natural evolution from local area networks, most
interconnects for NOWs only provide support for message-
passing. These networks consist of a network interface card
that is plugged into the I/O bus of each workstation, and
one or more switches interconnecting the interface cards
through point-to-point links [1]. In general, the bandwidth
provided by currently available interface cards and switches
is high enough for the requirements of message-passing ap-

plications. However, the performance of some parallel ap-
plications is limited by message latency. Most of this la-
tency is due to the software messaging layer. Several at-
tempts have been made to reduce this bottleneck [8].

As parallel computers, NOWs are also evolving from
distributed memory to shared memory. Some commercial
interface cards support the shared-memory programming
model. This is the case for the SCI-PCI adapter from Dol-
phin [5]. However, this card does not support cache co-
herence in hardware because memory traffic cannot be seen
from the 1/O bus. Also, interface cards are reaching the
limits of 1/0 buses'. In order to provide a higher band-
width and lower latency, some researchers have started to
develop interface cards that are plugged into the memory
bus. Some experimental NOWs provide support for shared-
memory [16], also implementing a cache-coherence proto-
col that allows out-of-order delivery of messages.

2. Motivation

A decade ago, the invention of wormhole switching led
to very fast interconnection networks. As a consequence,
the interconnection network was no longer the bottleneck in
a multicomputer. However, DSMs? require faster intercon-
nection networks than multicomputers because messages
are shorter (a typical message consists of a cache line and
some control information) and much more frequent. While
the interconnection network is not the bottleneck yet, some
researchers began to report that a lower latency [21] and a
higher network bandwidth [2] may significantly reduce the
execution time of several parallel applications. As proces-
sor clock frequency is increasing at a faster rate than net-
work bandwidth, the interconnection network may become
a bottleneck within the next few years [7].

The situation is more critical for NOWSs supporting a sin-
gle memory address space. Physical distance between pro-
cessors is higher in NOWSs than in DSMs, leading to higher
latency (due to the propagation delay) and lower bandwidth
(due to the use of narrower links)3. Additionally, the use of
irregular topologies makes routing and deadlock handling
much more complex. Existing routing algorithms are ei-
ther deterministic [1] or provide some degree of adaptivity
[17]. They provide non-minimal paths and an unbalanced
use of physical links. As a consequence channel utiliza-
tion is low, reducing the effective network bandwidth even
more. Therefore, we can expect the network to be a bottle-

LFor example, link bandwidth in Myrinet is 160 Mbytes/s. ServerNet |1
[9] provides links with 1 Gigabit/s peak bandwidth. However, a 32-bit PCI
bus running at 33 MHz only achieves a peak bandwidth of 133 Mbytes/s.

2Throughout this paper, the terminology ‘DSM’ is used to refer to
tightly-coupled distributed shared memory systems like DASH, FLASH,
SGlI Origin, etc.

3For example, Cray T3E routers [19] use 14 data wires per link. Server-
Net 11 [9] and Myrinet [1] use serial and 8-bit links, respectively.

neck when executing some parallel applications on a NOW
supporting a shared-memory programming paradigm. Tak-
ing into account that NOWSs are evolving from distributed
memory to shared memory, it is important to analyze the
behavior of parallel applications on these machines, also
providing solutions to alleviate the bottleneck.

In this paper, we take on such a challenge. We analyze
whether the interconnection network in a NOW is able to
handle the traffic supported by the network in a DSM when
executing some parallel applications. In particular, we eval-
uate different routing algorithms on NOWSs with irregular
topology, using traces from parallel applications. These
traces were captured from the execution of SPLASH2 ap-
plications (Barnes-Hut, Water, Radix, and LU) on a DSM
simulator with a hardware cache-coherence protocol. The
main goal of this study is to determine whether the intercon-
nection network in a NOW becomes a bottleneck when exe-
cuting the same applications. Therefore, we fed the network
in a simulated NOW with the same traces captured from the
execution of those applications in a DSM simulator. We
show that the slower interconnection network available in a
NOW becomes a bottleneck, saturating during some periods
of time. The use of adaptive routing algorithms, derived by
using a methodology previously developed by us [20] helps
to alleviate such bottlenecks.

The main contribution of this paper is a study of the
network behavior in a NOW under the traffic generated by
several shared-memory parallel benchmarks executed on a
DSM simulator with the same processors. This study pro-
vided the following insights:

e Network traffic is bursty, as other studies showed.
Shared-memory parallel applications are usually pro-
grammed by splitting computation into several steps.
At the end of each step, processes update global vari-
ables and synchronize, leading to bursty traffic.

e Peak traffic saturates the network for all the appli-
cations we analyzed when using routing algorithms
from commercial systems. The lower effective net-
work bandwidth available in a NOW compared to a
DSM leads to saturation. Therefore, execution time
will be longer in a NOW, even if it uses the same
processors, than in a DSM with the same number of
nodes.

e Architectural improvements that increase channel uti-
lization and throughput, like adaptive routing and vir-
tual channels, considerably reduce the time duration
when the network is saturated. Therefore, this archi-
tectural improvements allow NOWSs to achieve per-
formance similar to a DSM with the same number of
processors.

Section 3 presents the trace mechanism used to evaluate
interconnection networks. In Section 4, the performance of

different routing algorithms is evaluated using application
traces. Finally, in Section 5 some conclusions are drawn.

3. A Simulation Model Based on Application
M essage Traces

In general, the interconnection network is not the bottle-
neck in current DSM systems. Therefore, techniques that
improve network throughput are of little interest in this en-
vironment [21]. Nowadays, DSMs and NOWs are designed
by using the same processors. The main architectural dif-
ferences between these machines are the interconnection
network and communication assisting circuitry such as the
node controller. In this paper, we focus on the network. Ina
NOW, links are usually longer and narrower than in a DSM,
therefore increasing latency and reducing bandwidth. How-
ever, the lower message latency achieved by the network
in a DSM may have a very small impact on the execution
time of parallel applications. In general, performance could
be reasonably comparable in a DSM and a NOW when us-
ing the same processors, unless the interconnection network
saturates. If it saturates, messages are queued in the injec-
tion queue at the source nodes, drastically increasing mes-
sage latency and seriously degrading performance. The fol-
lowing question arises: Is the interconnection network the
bottleneck in a NOW? Will the network in a NOW be able
to handle the traffic supported by the network in a DSM
without saturating? Note that only a fraction of the net-
work bandwidth is used in a DSM during the execution of
parallel applications [21]. Therefore, despite the lower ef-
fective bandwidth provided by a NOW, this bandwidth may
be enough for the requirements of parallel applications.

To answer the above question, we gathered message
traces at the node controller during the execution of several
parallel applications on an execution-driven DSM simula-
tor. Then, we fed the interconnection networks of a NOW
with those traces in order to analyze if it can handle the
same amount of traffic without saturating. In particular,
we evaluated the performance of several routing algorithms
for irregular networks by using message traces generated by
an execution-driven simulation of several SPLASH2 bench-
mark applications.

The simulated hardware DSM system used an architec-
ture similar to the FLASH machine [12]. The system had
64 nodes connected by an 8 x 8 mesh with a bandwidth
of 400 MB/s/link and 15 ns per-hop delay. The processor
in each node was assumed to be a 200 MHz single-issue
microprocessor with a perfect instruction cache and a 128
KB 2-way set associative data cache with a line size of 64
bytes. The cache was assumed to operate in dual-port mode
using write-back and write-allocate policies. The instruc-
tion latencies, issue rules, and memory interface were mod-
eled based on the DLX design [10]. The memory bus was

assumed to be 8 bytes wide. On a memory block access,
the first word of the block was assumed to be returned in 30
processor cycles; the successive words follow in a pipelined
fashion. The machine used a full-mapped, invalidation-
based directory coherence protocol [13]. The node con-
troller took 14 cycles to process an incoming (or outgoing)
request or reply. The network interface took 15 cycles to
construct and 8 cycles to dispatch a message. The synchro-
nization protocol assumed was queuing based similar to the
one used in DASH [14]. Our simulated architecture used the
sequential memory consistency model. A cache miss stalls
the processor until the critical word of data is returned.
Four applications Barnes, LU, Radix, and Water, all
ported from the SPLASH2 suite [22] were used in this
study. The problem sizes (listed in Table 1) for the appli-
cations were selected with two considerations. First, they
are reasonably large to generate realistic network behavior.
Second, the sizes of resulting trace files are manageable.

| Application | Problem Size |

Barnes-Hut | 8K particles, § = 1.0, 4 time steps
LU 512 x 512 doubles, 8 x 8 blocks,
Radix 1M keys, 1K radix, max 1M
Water 512 molecules, 4 time steps

Table 1. Applications and their input sizes.

Figure 1 shows the total number of messages injected
into the network per time unit. Note that the plot shows the
total number of messages generated by all the processors
during each 500,000-cycle time interval. As can be seen
in Figure 1(a), there are several bursts of traffic during the
execution of the Barnes-Hut application. This bursty traf-
fic may instantly saturate the network. If saturation occurs,
messages are stored in an injection queue at the source node.
Thus, depending on the ability of the network to process this
kind of traffic, the overall execution time may be consider-
ably affected. Note that the shared tree is completed at the
end of each burst and the processors are not able to proceed
until this phase finishes. Figure 1 also shows the traffic pat-
tern of the Water, LU, and Radix applications. Bursty traffic
can also be observed in these applications as well.

4. Perfor mance Evaluation

In this section, we compare the performance of the
up/down routing scheme (UD) [17] and our minimal adap-
tive (MA-2VC) routing algorithm [20]. The latter requires
two virtual channels per physical channel. In order to make
a fair comparison, we have also evaluated the up/down rout-
ing algorithm with two virtual channels (UD-2VC).

Our simulator models the network at the flit level. We
used traces to drive the simulator. The performance mea-

160000 T T T
’Amount of messages’ ——

140000

120000

100000

80000

Messages

60000

40000

20000

0 L L Q"\' L L L L L C
1le+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07
Time (cycles)

(@)

80000

T T T T
’Amount of messages’ ——
70000 1
60000 - q

50000 - 1

40000 - 1

Messages

30000

20000

10000

0
1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07
Time (cycles)

(©

200000 T T
’Amount of messages’ ——
180000 1

160000 - q

140000 - 1

120000 - 1

100000 q

Messages

80000

60000

40000 1

20000 q

0 . " N)
1e+07 1.5e+07 2e+07 2.5e+07 3e+07
Time (cycles)

180000 T T T
’Amount of messages’ —~—

160000

140000

120000

100000

Messages

80000

60000

40000

20000

1le+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07
Time (cycles)

(d)

Figure 1. Number of messages injected during the execution time of (a) Barnes, (b) Water, (c) LU, and

(d) Radix applications.

sure is message latency because total execution time is de-
termined by the trace file. Message latency lasts since the
message is queued at the network interface until its last flit
is received at the destination node. It is measured in clock
cycles. We obtained the average message latency for each
set of 50,000 received messages during program execution.
When traffic is intense, a more detailed analysis is required.
Thus, when presenting simulation results we will make a
zoom of the plot in the critical points by gathering measure-
ments every 5,000 received messages.

As can be seen in Figure 1, there are time intervals in
which the message injection rate increases considerably. At
these points some messages would be lost if the queues
were not deep enough. The time spent waiting on the source
queue is also considered in the message latency. We con-
sider the network becomes saturated when the average num-

ber of messages stored in these queues is higher than one.

With respect to the network model, the network is com-
posed of a set of switches. Network topology is completely
irregular was generated randomly. For the sake of simplic-
ity, we assumed that there are exactly 4 processors con-
nected to each switch. Also, two neighboring switches are
connected by a single link. Finally, all the switches in the
network have the same size. We assumed that each switch
has 4 ports available to connect to other switches.

4.1. Simulation Results

Figure 2 shows the average message latency in each time
interval versus time during the Barnes-Hut execution for the
three routing algorithms (UD, UD-2VC, and MA-2VC) on
a network with 64 processing elements and 16 switches.
Each processor has one injection channel. As seen, message

T T

"MA-2VC' — |

"UD-2VC’ —+—
UD’ e

80000

70000

60000

50000

40000

Latency (cycles)

30000

20000

10000 -
0 L)

Al
1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7
Time (cycles)

Figure 2. Average message latency versus
time during Barnes-Hut execution.

latency remains very low for the three routing algorithms
during the whole execution except for five short periods of
time, where it increases considerably. Comparing this figure
with Figure 1(a), it can be seen that these saturation points
correspond to the bursty points mentioned in Section 3. Let
us analyze saturation in more detail. The UD routing algo-
rithm produces a very high latency at these points, as well
as the UD-2VC routing scheme, which achieves a slightly
lower latency. However, the MA-2VC routing algorithm re-
duces latency drastically in the first two bursty points and
even avoids saturation during the remaining ones.

The scale in Figure 2 does not allow us to study the dif-
ferences in latency when the interconnection network is not
heavily loaded. Also, the behavior during the saturation
points cannot be clearly seen. We could have used logarith-
mic scale in the Y axis in order to show these issues. How-
ever, after trying with logarithmic scale, we realized that
they were difficult to study and, in any case, they did not
clearly show the behavior of the routing algorithms during
saturation. Therefore, the plots in Figure 3 are zooms that
display all these issues properly. Note that in these plots,
measures are taken every 5,000 received messages instead
of every 50,000 messages as in Figure 2. The consequence
is that sudden spikes in latency are not hidden because la-
tency data represented in the plots are the average from a
fewer amount of messages. Thus, these plots show the re-
sponse of the interconnection network more accurately than
the plot in Figure 2. This remark is also valid for the zooms
of the other SPLASH2 applications shown in this paper.

Figure 3(a) — a detail of the bottom part of Figure 2 —
shows the differences in latency when the network is not
heavily loaded. As can be seen in this figure, the three rout-
ing schemes behave similarly for low loads, as it was ex-

pected after the study in [20]. The UD routing algorithm
achieves the highest latency, as expected, while the low-
est latency is achieved by the MA-2VC routing algorithm.
However, this difference is not significant because the high-
est difference is about five clock cycles. It is interesting to
compare these latencies with the theoretical base latency for
wormhole in the absence of contention, which is about 50
cycles for the average distance between nodes and the av-
erage message length in the traces. The similarity between
the theoretical base latency and the latency obtained in the
simulations indicates that during these periods of time the
network load is really low.

Figure 3(b) is a zoom of the first saturation point in Fig-
ure 2. It can be seen that the UD routing scheme needs seven
times more time to process this traffic peak than the MA-
2V/C algorithm. Also, with respect to the UD-2VC algo-
rithm, MA-2VC behaves more than four times faster. Fig-
ures 3(c) and 3(d) show similar results for the second and
third bursty points. These results confirm the conclusions in
[20], where the MA-2VC algorithm achieved a throughput
several times greater than the UD routing algorithm using
a uniform distribution of message destinations. However,
differences in throughput are more noticeable when appli-
cation traces are used. This result indicates that there are hot
spots in the network due to repetitive communication pat-
terns. In this situation, the MA-2VC routing algorithm be-
haves comparatively better than with uniform traffic, since
itis a fully adaptive algorithm.

An issue that needs some specific study is why the bursty
traffic spikes are so hard to handle by the different routing
algorithms, specially the UD algorithm. From Figure 1(a),
we can see that the injection rate never exceeds 200,000
messages per interval of 500,000 cycles, with 64 proces-
sors and 16 switches. This is only a rate of 1 msg/proc/160
cycles. Moreover, messages in a DSM machine are small
(they are control messages and cache lines), so why the
spikes are so difficult to handle?. We have analyzed the
message length distribution in the trace file. Short mes-
sages (5 bytes) represent 61.42% of the messages, while
long messages (69 bytes) account for 38.57% of the to-
tal number of messages. Therefore, the average message
length is 29.68 bytes. Taking measures at 5,000 cycle inter-
vals, the maximum amount of information injected into the
network per interval is 96,861 bytes. This means an injec-
tion rate of 1.21 bytes/switch/cycle. However, simulations
carried out with synthetic load and the message length dis-
tribution mentioned above show that a network consisting of
16 switches using the UD routing algorithm saturates at an
injection rate of 0.37 bytes/switch/cycle. As a consequence,
the network becomes completely saturated.

In the case of the other SPLASH2 applications, similar
results were obtained when their traces were used to drive
the simulator. Figures 4 and 5 show the simulation results

100

90

80

70

Latency (cycles)

.
1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07
Time (cycles)

(@)

T
250000 - MA-2VC —o—
'Ub-2vC’ —+—

'UD’ =—

200000

150000

Latency (cycles)

100000 -

50000 -

g 4
3.7e+07 3.75e+07 3.8e+07
Time (cycles)

(©

n AW
3.85e+07 3.9e+07

450000 ! 1
" 'MA-2VC’ —-—

400000
350000
300000

250000

200000

Latency (cycles)

150000 -

100000 -

50000 -

o

1.85e+07

n o

1.9e+07 1.95e+07 2e+07
Time (cycles)

(b)

0SB
1.8e+07

180000 ‘MA-2VC’ ——
B 'UD-2VC’ —+—

'uUD’ -e—
160000 |

140000 -
120000 -
100000 -

80000 -

Latency (cycles)

60000

40000

20000 -

&

5.2e+07 5.25e+07 5.3e+07
Time (cycles)

(d)

. Y
5.35e+07 5.4e+07

Figure 3. Different views of Figure 2.

for the Water and LU applications, respectively (results for
Radix are not shown to save space). Two plots are shown
for each application. The first one displays the overall ap-
plication behavior, and the second one presents a detail of
one of the bursty points. In general, it can be seen that the
UD routing algorithm is not able to manage the total traf-
fic generated by the processors in the saturation periods,
reaching excessive latency values. On the other hand, the
UD-2VC behaves better than UD, but the network also sat-
urates. Thus, the use of virtual channels, by itself, does not
solve the problem. However, the MA-2VC routing algo-
rithm avoids the network saturation at these points for all the
applications under study. Although the figures do not accu-
rately show the behavior of MA-2VC at the bursty points,
this routing algorithm never saturates the network for these
three applications. In particular, at Figure 4(b), we can see
the second bursty point, and the maximum latency values
achieved by MA-2VC, UD-2VC, and UD are 60, 31,700,

and 300,000 respectively. This shows the importance of us-
ing a minimal adaptive routing scheme.

These results are very important from an architectural
point of view. As mentioned, NOWSs are migrating from dis-
tributed memory to shared memory. This evolution needs
faster interconnection networks. As shown above, current
NOWSs are not ready to support the traffic generated by
shared-memory applications. The introduction of virtual
channels and a minimal routing algorithm like the MA-2VC
algorithm contribute to meet the requirements of NOWs.

5. Conclusions

Networks of workstations are becoming increasingly
popular as a cost-effective alternative to parallel comput-
ers. Typically, these networks connect processors using ir-
regular topologies [1, 11]. Irregularity provides the wiring
flexibility, scalability and incremental expansion capabil-

90000 T T

'MA-2VC’ ——

'UD-2vC’ —— |
"UD’ =

80000

70000 - 1

60000 - 1

50000 q

40000 - 1

Latency (cycles)

30000 - 1

20000 q

10000 1

0 I L o L .
5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07
Time (cycles)

(@)

350000

300000

250000

200000

150000

Latency (cycles)

100000 -

50000

1.4e7 1.42e7 1.44e7 1.46e7 148e7 15e7 1.52e7 1.54e7 1.56e7
Time (cycles)

(b)

Figure 4. Average message latency versus time during Water execution.

90000 [‘ ‘ i

"MA-2VC’ ~—

"UD-2VC’ ——
D o 1

80000 -
70000 - 1
60000 - 1
50000 - 1

40000 q

Latency (cycles)

30000 q

20000 - 1

R, S

0
1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07
Time (cycles)

(@)

10000

250000 T T

'MA-2VC’ ——

'UD-2vC’ —+—
"UD’ =

200000

150000 -

Latency (cyles)

100000 -

50000 -

o I

0 . %
3.92e7 3.93e7 3.94e7 3.95e7 3.96e7 3.97e7 3.98e7 3.99e7 4e7 4.01le7
Time (cycles)

(b)

Figure 5. Average message latency versus time during LU execution.

ity required in this environment. Similar to the evolution
of parallel computers, NOWSs are also evolving from dis-
tributed memory to shared memory. Some commercial
interface cards support the shared-memory programming
model [5]. Some experimental NOWSs provide support for
shared-memory [16], also implementing a cache-coherence
protocol that allows out-of-order delivery of messages.

In this paper we analyzed whether a NOW with irregular
topology is able to handle the traffic supported by the inter-
connection network in a DSM with the same number of pro-
cessors. This analysis has been performed by simulating the
behavior of networks with irregular topology, using traces
from parallel applications. These traces were captured from
the execution of SPLASH?2 applications (Barnes-Hut, Wa-
ter, Radix, and LU) on a distributed shared-memory multi-

processor (DSM) simulator with 64 processors and a hard-
ware cache-coherence protocol. We studied the network be-
havior using different routing algorithms, highlighting the
application requirements with respect to the services pro-
vided by the network. This study provided the following
insights:

e Network traffic is bursty, as already known.

e In the parallel applications we analyzed, peak traf-
fic saturates the network for all the applications when
using routing algorithms from commercial systems.
Therefore, the lower effective bandwidth provided by
the network in a NOW is not enough to achieve the
same performance as in a DSM.

e Architectural improvements that increase channel uti-
lization and throughput, like adaptive routing and

virtual channels, considerably reduce network con-
tention and message latency. Therefore, these archi-
tectural improvements allow a NOW to achieve per-
formance similar to that of a DSM with the same
number of processors.

In summary, this paper shows that several parallel appli-
cations for shared-memory machines produce bursty traffic,
and that our fully adaptive routing algorithm handles bursty
traffic much more efficiently than the up/down routing al-
gorithm with the same network parameters. Therefore, the
use of fully adaptive routing algorithms and virtual channels
may considerably improve performance when the applica-
tions tend to saturate the network at some point during the
execution. As a consequence, the use of fully adaptive rout-
ing and virtual channels may considerably reduce the total
application execution time in a NOW.

As for future work, we plan to develop a complete DSM
testbed that includes our irregular network simulator, so that
we could estimate the reduction of total application execu-
tion time when fully adaptive routing algorithms are used.

References

[1] N. J. Boden et al., “Myrinet - A gigabit per second
local area network,” IEEE Micro, Feb. 1995.

[2] G.T.Byrdetal., “Evaluation of communication mech-
anisms in invalidate-based shared memory multipro-
cessors,” in Proc. of the 1997 PCRCW, June 1997.

[3] D. Dai and D. K. Panda. “Reducing Cache Invalida-
tion Overheads in Wormhole DSMs Using Multidesti-
nation Message Passing, in Int. Conf. on Parallel Pro-
cessing, Aug 1996.

[4] D. Dai and D. K. Panda, “How we can design better
networks for DSM Systems?,” in Proceedings of the
1997 Parallel Computer Routing and Communication
Workshop, June 1997.

[5] Dolphin, The Dolphin SCI Interconnect, available at
http://www.dolphinics.no.

[6] J. Duato, “On the design of deadlock-free adap-
tive routing algorithms for multicomputers: Design
methodologies,” in Proc. of Parallel Architecturesand
Languages Europe 91, June 1991.

[7] J. Duato, S. Yalamanchili and L. M. Ni, Interconnec-
tion Networks: An Engineering Approach. IEEE Com-
puter Society Press, 1997.

[8] T. von Eicken et al., “Active messages: A mecha-
nism for integrated communication and computation,”
in Proc. of the 19th Int. Symp. on Computer Architec-
ture, June 1992.

[9] D. Garcia, “Servernet Il,” in 1997 Parallel Computer
Routing and Communication Workshop, June 1997.

[10] J. L. Hennessy and D. Patterson. Computer Architec-
ture: A Quantitative Approach, Morgan Kaufmann,
1990.

[11] R. Horst, “ServerNet deadlock avoidance and fracta-
hedral topologies,” in Proc. of the Int. Parallel Pro-
cessing Symp., Apr. 1996.

[12] J. Kuskin etal, “The Stanford FLASH Multiprocessor,
in Proc. of the Int. Symp. on Computer Architecture,
1994,

[13] D. Lenoski et al, “The Directory-Based Cache Coher-
ence Protocol for the DASH Multiprocessor, in Proc.
of the 17th Annual Symp. on Computer Architecture,
May 1990.

[14] D. Lenoski, et al., “The Stanford DASH multiproces-
sor,” |EEE Computer, vol. 25, no. 3, March 1992.

[15] J. Miguel, et al., “Assessing the performance of the
new IBM SP2 communication subsystem,” Technical
Report 96-06-01, Department of Electrical and Com-
puter Engineering, University of California, Irvine,
June 1996.

[16] A.G. Nowatzyk, etal., “S-Connect: From networks of
workstations to supercomputer performance,” Proc. of
the 22nd Int. Symp. on Comp. Architecture, June 1995.

[17] M. D. Schroeder et al., “Autonet: A high-speed,
self-configuring local area network using point-to-
point links,” Technical Report SRC research report 59,
DEC, April 1990.

[18] S. L. Scottand G. Thorson, “Optimized routing in the
Cray T3D,” Proc. of the Workshop on Parallel Com-
puter Routing and Communication, May 1994.

[19] S. L. Scottand G. Thorson, “The Cray T3E networks:
adaptive routing in a high performance 3D torus,” in
Proc. of Hot Interconnects IV, Aug. 1996.

[20] F. Silla and J. Duato, “Improving the Efficiency of
Adaptive Routing in Networks with Irregular Topol-
ogy,” in 1997 Int. Conf. on High Perf. Computing, Dec.
1997.

[21] A. S. Vaidya et al., “Performance benefits of Vir-
tual Channels and Adaptive Routing: An Application
Driven Study,” in Int. Conf. on Supercomputing, 1997

[22] S. C. Woo et al., “The SPLASH-2 Programs: Chrac-
terization and Methodological Considerations, in Int.
Symp. on Computer Architecture, 1995.

