
Gigabit Ethernet Backbones with Active Loops1

R.García, M.P. Malumbres and J. Pons
Department of Computer Engineering (DISCA)

Technical University of Valencia, Spain
{roman, mperez , jpons}@disca.upv.es

1 This work was funded by an UPV grant (ref. 2001.0019)

Abstract

The current standard Ethernet switches are based on
the Spanning Tree (ST) protocol. Their most important
restriction is that they can not work when the topology
has active loops. In fact, the ST protocol selects a tree
from the real topology by blocking the links that are not
involved in the tree. This restriction produces a network
traffic unbalancing behavior saturating those links near
the root switch while rest of links will be idle or with a
very low utilization.

This paper proposes a new transparent switch protocol
for Gigabit Ethernet backbones that considerably
improves the performance of current ones. The proposed
protocol is named ALOR for Active Loops and Optimal
Routing. ALOR protocol could be used in the last stage of
a fat tree network in order to allow a final backbone with
active loops. So, rings, mesh and other regular/irregular
active loop topologies can be used to connect the Gigabit
switches in order to obtain better performance results.

1. Introduction

Routers and switches (bridges) are the basic devices
for LAN interconnection. They have different properties
and each one has its own scope. For example, routers
forward packets using hierarchical addressing (i.e. IP
addressing) but they expect that every station be
configured to work with them.

Switches can be used to build a diameter-limited
network, usually named " Switched LAN" or "extended
LAN". The current standard switch is a transparent switch.
Transparent means that the stations do not need to use
special software to work with switches. The most
attractive feature of transparent switches is their easy
installation procedure and null maintenance.

This paper does not try to go back over the old
dilemma about routers vs. switches. This paper is focused
in an old restriction associated with switches, their
inability to work with loops [1].

A switch is a smart hub. It learns where the stations
are, so it can forward frames to their destination using the
appropriate paths. The learning process is simple:

(a) Station-n transmits a frame. The frame header has

the fields “destination address”, “source address”,
“data” and others.

(b) Switch-j receives the frame on port-i. The switch
reads the “source address” field and learns that
station-n must be reached using port-i.

The learning process is, obviously, a continuous

process. When a switch do not know where a destination
station is, it simply sends a copy of the frame on all its
ports but the one on which frame was received. Finally,
any switch in the LAN learns the way to reach any active
station and route frames in consequence [5].

There is an important restriction to make the learning
process feasible; loops are forbidden. Why?. Because a
loop implies alternative paths, so a station can be detected
by multiples ports in the same switch and this confuses the
learning process. And, more important, broadcast frames
would be caught in the loop infinitely with no solution.
Therefore, the current standard switches use ST algorithm
to transform any topology into a tree.

The figure-1 (a) shows a tree with three hierarchy
levels. Root-switch is in the first (top) level of the
hierarchy. At the bottom there are the leaf-switches. They
connect with stations. If only one technology is used (i.e.
10 Mbps Ethernet) it is clear that an excess of traffic will
saturate switches near to root. In order to alleviate this
problem, engineers have designed powerful switches with
multiple ports (24 ports per switch, and even more, are
usual) and/or use “fat tree” topologies.

Figure-1 (b) shows a typical fat tree based in Ethernet
technologies. A problem in a fat tree is that the best
performing technology has to be kept for the backbone
LAN, and cannot be used in the rest of the LANs in order
to balance traffic and bandwidth. A variant of this
problem occurs when it is necessary to update the end-
stations technology. For example, currently it is usual to
install Fast Ethernet (100 Mbps) at the stations. So, it is

only possible to make a fat tree with two hierarchical
levels (1Gbps on top and 100 Mbps down). Considering
the maximum number of ports per switch (24 ports is the
common available) it is a restriction in order to connect a
great number of stations (like in a campus LAN).

Note that the problem is that the backbone with gigabit
Ethernet switches is a collapsed backbone. The backbone
is formed for only one gigabit switch. If we finally need to
use three o more gigabit Ethernet switches as backbone
(distributed backbone), we have again the problem of the
tree [2].

This paper proposes a new protocol (ALOR) for
gigabit switches that allow the use of active loop
topologies. Therefore, strongly connected regular
topologies, like meshes, as well as irregular topologies
with active loops, can be used without wasting bandwidth.
As loops imply alternative paths, the ALOR protocol
could use optimal routes.

ALOR works on top of ST protocol. It uses
information gathered by ST. It is a distributed protocol
but, in this case, only for gigabit switches. Although
ALOR is proposed for gigabit switches at network
backbone , it can be used on all network switches [3][4].

In section 2 a detailed description of the protocol is
given. In section 3 a preliminary performance evaluation
was done comparing ALOR performance with respect to
the ST standard. Finally, in section 4 some conclusions
are drawn.

2. Active Loops and Optimal Routing
protocol (ALOR)

The ALOR protocol is based on the idea that switches
can learn "which stations are associated with each gigabit

switch" or, in other words, where each station is. This is
the main difference with respect to the ST based standard,
in which the switches only learn "from which direction"
the station has been listened to. Thus, the ST is not strictly
required, and the most favorable route can be used
considering all the existing links. The optimal route
criterion is based on number of hops.

In order to completely describe the ALOR protocol,
first we are going to explain how a giga-switch can
identify the ports that belong to the defined giga-tree.
Then we will describe how ALOR learns the location of
each active station in the network and as consequence the
best route to reach it. Also, an example is given to show
the different stages of the learning process. And finally,
some additional details are exposed about the ALOR
implementation.

2.1. Determining the gigabit ports that belong to
the giga-tree

A gigabit switch has all its ports working at 1 Gbps.,

but only some of them are involved in the giga-tree (the
distributed backbone). It is necessary to define an
automatic method that allows the gigabit switch to know
which are those ports. ALOR protocol proposes that
gigabit switches exchange ALOR configuration messages
with the following format:

destination address = ALOR group (multicast address),
source address = MAC address of the source switch,
type = ALOR id. ,
data = transmission port status OR acknowledge.

Figure 1. (a) A tree topology. All switches have the same technology (b) A fat tree topology
with a collapsed backbone. (c) A fat tree with a distributed backbone running ALOR.

The gigabit switches must accept whatever kind of
ALOR control messages, even if they are received from a
port in blocking status. When ST detects a protocol
change, the ALOR protocol uses configuration messages
as follow:

(a) Every gigabit switch must transmit the message to

all its ports only one time.
(b) When a message arrives at a gigabit switch port, it

must acknowledge it. Acknowledgement messages
becomes more robust the ALOR protocol.

(c) Root-switch transmits first
(d) Rest of gigabit switches transmit configuration

messages when the first ALOR configuration
message is received from a neighbor.

Note: An ALOR configuration message cannot travel

from a gigabit switch to another gigabit switch through a
normal switch (Figure 2). There are two reasons:

(a) It would mean that there is a loop in the topology

because any gigabit switch must reach another
gigabit switch through root. The ST protocol
guarantees there is no active loops.

(b) A normal-switch does not accept ALOR messages
from a blocking port. It will only accept ST
protocol messages.

2.2. ALOR Learning algorithm

The ALOR protocol learning process is based on the

tree generated by the ST protocol, and evolves from the
ST leaves towards the root. This is therefore a bottom-up
process based on the following:

A gigabit switch is proprietary of all the stations that it
listens from all its ports other than the ports in the giga-

tree. Thus, it can associate a "cost to reach" equal to zero
to the MAC address of the source station (hop count is
the simplest metric, but other metrics are also possible).

But the main goal of the learning process is to share the
information among all the switches of the switched-LAN.
Switch knowledge is transmitted to the neighboring
switches through ALOR location messages. Basically
these messages contain a list of the new stations (MAC-
addresses) and the cost (hops) to reach them.

Thus it is necessary to plan a spreading strategy to
obtain a full propagation. This process consists of the
following steps:

Bottom-Up process: This process is initiated by the
leaf-switches. They transmit their knowledge to the
switches with ALOR location messages using the root-
port (port used to reach root switch) to reach the higher
hierarchy levels and the blocking ports to reach the other
branches of the tree (lateral propagation).

Any switch other that the leaf-switches waits to receive
an ALOR location message for all the designated ports
before repeat the process. Finally the bottom-Up process
stops at the root switch. At this moment, the root switch
has a full knowledge of all the active stations in the
switched-LAN and their location (cost). Note that the
routes known by root are optimal since the ST is an
optimal tree.

It is necessary a second propagation, top-down phase,
in order to allow the root switch to spread its knowledge
to the rest of the switches. Then all the switches will know
where the new stations are and how much cost to reach
them.

Top-Down process: This process is initiated by the
root-switch. A switch transmits their knowledge to the
switches using the designated ports to reach the lower
hierarchy levels and the blocking ports to reach the others
branches of the tree (lateral propagation).

A switch repeats the top-down process when it receives
an ALOR location message by its root port. Obviously,
the process stops at the leaf-switches.

2.3. ALOR Learning example

The example is based on a campus LAN with a fat tree

topology (see figure 3.a) that uses gigabit switches in the
backbone. We suppose that the ST is already formed and
the gigabit switches know which ports are involved in the
giga-tree. The cache memory is empty. Four stations “a”,
“b”, “c” and “d” transmit (i.e. a broadcast frame). The
frames reach the corresponding gigabit switches and
ALOR learns, in each switch, that a new station can be
reached by port-I with cost 0. ALOR store in cache
<station><cost><by port>. For example, in Switch-1 store
that “host-a can be reached at cost 0 by port-i” (a0i).

Figure 2. Giga-tree, a tree at the top level of a campus
backbone.

(a)

Figure 3. (a) A fat tree campus topology LAN used in the example. The fat lines between gigabit switches show
the ports enabled by the ST and the dotted lines show the ports blocking. (b) ALOR protocol evolution.

 Switch-1 Switch-2 Switch-3 Switch-4
 2 3 i M+ 1 3 4 i M+ 1 2 4 i M+ 2 3 i M+

tx-1 a a0i b b0i c c0i d d0i
rx-1
tx-2

 d0 d14 d0 d14

rx-2
tx-3

b0
d1

C0
D1

 b12
c13
d22
d23

 c0
d1

 c13 b0
d1

 b12 b0
d1

c0
d1

 b12
c13

rx-3
tx-4

 a0
b1
c1
d2

 a11 a0
b1
c1
d2

 a11

rx-4

 a1
b1
c0
d1

 a1
b0
c1
d1

 a1
b0
c1
d1

a1
b1
c0
d1

 a22
a23

Table 1. Table showing the ALOR protocol evolution on LAN from figure 3.a.

Figure 3.b shows the ALOR protocol evolution. (b-1)
First ALOR configuration messages; transmission and
reception (tx-1 and rx-1). (b-2) tx-2 and rx-2. (b-3) tx-3
and rx-3. (b-4) tx-4

Table 1 shows the detailed evolution of the ALOR
learning process. For each switch, the table shows a
column with the number of the port from which it receives
the ALOR message. To make the example simpler, port-N
means the port that connects with the switch-N. The
column labeled “i” groups the rest of the ports that are not
involved with the input/output of ALOR messages, but are
the ports that connect with the rest of the fat tree, so with
the final stations. The column labeled “M+” is the cache
memory where the results of the ALOR learning process
are summarized.

The first ALOR location messages are transmitted by
switch-4 (a leaf-switch) (Row labeled “tx-1” in Table 1).
It transmits a message to switch-2 and another copy to
switch-3. Message data field contains all new data from its
cache memory “M+”. In the example, switch-4 sends
“d0”. The next row of table 1 (labeled “rx-1, tx-2”) shows
two steps:

(a) In the first one, switches 2 and 3 receive the

message by their port-4 containing data “d0”.
Them both switches learn that its neighbor switch-
4 can reach station-d with cost 0, so if they can
reach switch-4 with cost 1 (one hop), then they can
reach station-d with cost 1. Both switches store in
cache “d14” (“I can reach station-d with cost=1 by
my port-4”).

(b) The second step describes the transmission come
out by switches 2 and 3 (figure 3.b2). In this point
switch-2 sends an ALOR location message to its
gigabit switch neighbors 1 (bottom-up
propagation) and 3 (lateral propagation). Switch-2
sends data (“b0”, ”d1”). Approximately at the
same time switch-3 does the corresponding.
Switch-3 sends data (“c0”, ”d1”).

The rest of the process (next rows of the table) is a

repetition of those steps. It is important to highlight that
“M+” can store more than one route to a single station.
For example, switch-1 in row labeled “rx-2, tx-3”store
“d22” and “d23”, so it knows it has two optimal routes to
reach station-d in with cost 2, one by port-2 (switch-2)
and another one by port-2 (switch-3). The same happens
in the last row of the table in switch-4 with station-a.

Finally, at the end of this ALOR learning cycle, all
gigabit switches know the optimal routes to the stations in
the example. The process is repeated continuously. At the
end of the top-down process a new bottom-up is started by
the leaf-switches.

2.4. Learning fidelity criterion

ALOR switches acquire their knowledge from the
transmission of location messages. We should consider
the implications of lost location messages due to
transmission errors. In case of transmission errors, the
cross information that each switch has from the neighbors
will not be coherent with the information recorded by
these neighbors. But this is not, in fact, a big problem.
When a gigabit switch does not know an optimal route
(ALOR) for a station it will always use the normal
Spanning Tree information.

The following situation could happen (see figure 3.a):
Suppose that Switch-4 wants to transmit a frame to
station-c and does not know that an optimal route exists
through its blocking port to switch-3. Then switch-4 will
send the frame through the spanning tree towards switch-
2. Now, it is possible that switch-2 knows an optimal
route to station-c through its blocking port towards
switch-3. So, it is not a big problem if an ALOR location
message is lost.

Like in the ST protocol, the information learnt by
switches has an expiry time. ALOR uses the same expiry
criterion as ST. There is a long cache time (5 to 15 min.)
for the normal operation and a short cache time (3 to 15
sec.) when a “topology change” is produced.

The expiry time is controlled by the owner switch.
When the station-related information is no longer valid,
the proprietary switch will set an infinite cost associated
with that station in the next location message, (infinite =
255).

2.5. ALOR Routing Protocol

ALOR routing is performed in a distributed manner.

When a station frame reaches a gigabit switch, it is
checked in ALOR cache for the destination station. If
there is a route, and it is different to the route through the
ST, then the frame is sent through the corresponding port,
otherwise ALOR leaves this job to ST.

An interesting case arises when two of the switches
know additional routes which are optimal. In that case the
traffic can be distributed in a proportional way. For
example, if there are two optimal routes, traffic can be
split fifty-fifty but this policy can produce a bad collateral
effect if it is done improperly. If frames can reach a
destination through different routes, it is possible a second
frame reaching destination before the first one. Indeed,
this is a situation that can happens in any distributed
protocol that continuously learns new routes. Note that the
ST protocol does not guarantee this situation.

Finally, for broadcast frames, the best way to spread
them is through the Spanning Tree.

3. ALOR Performance Evaluation

In order to evaluate the performance of the proposed
ALOR protocol we have used SMPL[6]. We have defined
two extended LAN models. The first one will use the ST
protocol and the other will implement the ALOR protocol.
In the simulations, we assume that giga-switches are able
to process every frame in each port at full rate (non
blocking switching). Contention will appear when two or
more frames want to cross the switch using the same
output link. Also, simulations assume that every giga-
switch has a sub-LAN associated with it. Stations in the
sub-LAN generate an exponential pattern traffic –being �
the inter arrival frame rate. All traffic considered in
simulations crosses al least one giga-switch (from stations
in a sub-LAN to another sub-LAN) and it is uniformly
distributed. Frame size is fixed to 1Kbytes. Finally, the
traffic generated by ST and ALOR protocols was also
considered, however no significative differences were
found). As performance metrics we have selected the
average backbone transit delay (measured in
microseconds) and the � factor, related to the exponential
traffic pattern, as the network traffic load indicator.

 In the first simulation we compare a campus LAN with
three giga-switches as backbone using ST and ALOR.
Figures 4 .a and 4.b shows both backbone topologies.
Note that ST protocol does not use the link between
switches 2 and 3.

Figure 5 shows the average transit delay that a frame
requires to cross the backbone. The ALOR protocol gets
near two times more network traffic than ST.

In the second simulation we compare a backbone with
four giga-switches using ST and ALOR. Figure 6 shows
both topologies.

Figure 7 shows the average transit delay to cross the
backbone. In this simulation the differences are greater.
This is normal because we are now comparing a net with
diameter=4 against a net with diameter=1. Simulation
shows a rapid saturation in the link between switches 1
and 2.

4. Conclusions

A new ALOR protocol is proposed in this paper.
ALOR is very simple and easy to implement. It works on
top of the Spanning Tree (ST) protocol and allows gigabit
Ethernet switches to work with active loop topologies. It
is an important enhancement over the ST protocol that
allows topologies with loops but blocks ports in switches
in order to remove topology loops. The ALOR protocol
can work efficiently on whatever kind of topology, being

Sw-1 (root)

Sw-2 Sw-3

(a) (b)

Sw-4

Sw-1 (root)

Sw-2 Sw-3

Sw-4

Figure 6. (a) Shows the giga-switches connected in a
tree topology (Spanning Tree protocol). (b) Shows the
same four giga-switches but with full connected
topology (ALOR protocol).

0

1.000

2.000

3.000

4.000

5.000

0 0,1 0,2 0,3 0,4 0,5 0,6

λλλλ

µµ µµ

ST - 4

ALOR- 4

Figure 7. Average transit delay in the backbone with
ST-4 (Figure 6.a) and ALOR-4 (Figure 6.b).

(a) (b)

Sw-1

Sw-2 Sw-3

Sw-1

Sw-2 Sw-3

Figure 4. Three giga-switches forming a (a) tree
topology (Spanning Tree protocol). (b) ring topology
(ALOR protocol).

0

1.000

2.000

3.000

4.000

5.000

0 0,1 0,2 0,3 0,4 0,5 0,6

λλλλ

µµ µµ

ALOR- 3

ST - 3

Figure 5. Average frame transit delay in the backbone
with ST-3 (Figure 4.a) and ALOR-3 (Figure 4.b).

able to always use the best routes to reach LAN
destinations.

Although we have proposed to use ALOR only on the
gigabit backbones of extended LANs, it can be applied to
every switch in the LAN.

Finally, we have compared the current ST protocol
with ALOR protocol by simulation. Simulation results
show that ALOR considerably improves network
performance on the network backbone even with the
shortest topology, showing that as backbone size and
switch connectivity increase the improvements also
increase. So, ALOR is an alternative to be considered
when designing Gigabit Ethernet Backbones.

5. References

[1] R. Perlman, Interconnection Networks, (2nd Ed.), Addison
Wesley, 1999.
[2] R. Seifert, Gigabit Ethernet, Addison Wesley, 1998.
[3] R. García, J. Duato, JJ.Serrano, “A New Transparent Bridge
Protocol for LAN Internetworking using Topologies With
Active Loops”, in the Proceeding of the 1998 International
Conference on Parallel Processing (ICPP98), 1998.
[4] R. García, J. Duato, “Suboptimal-Optimal Routing for LAN
Internetworking using Transparent Bridges”, International
Journal of Foundations of Computer Science, Vol. 9, No. 2,
1998, pp. 139-156.
[5] IEEE, Mac Bridges, ANSI/IEEE Std. 802.1D, ISO/IEC
10038.
[6] M.H. MacDouall, Simulating Computer Systems. Techniques
and Tools, MIT Press. 1987.

