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Abstract

Networks of workstations (NOWs) are becoming increas-
ingly popular as a cost-effective alternative to parallel com-
puters. Network products like Myrinet [1] and ServerNet
[8] use the technology developped in parallel computers to
compete with other high-speed local area network products.
These networks allow the customer to connect processors
using irregular topologies, providing the wiring flexibility,
scalability, and incremental expansion capability required
in this environment. Also, when performance is the primary
concern, these network products are being used to build
large commodity clusters with regular topologies [12].

In previous papers [5, 6], we have proposed the in-
transit buffer mechanism to improve network performance,
applying it to NOWs with irregular topology and source
routing. This mechanism allows the use of minimal paths
among all hosts, breaking cyclic dependencies between
channels by storing and later reinjecting packets at some
intermediate hosts. In this paper, we apply the in-transit
buffer mechanism to regular networks with source routing
in order to improve their performance. Also, two path selec-
tion policies are evaluated. The first one will always choose
the same minimal path from source to destination, whereas
the second one will choose from different alternative mini-
mal paths in a round-robin fashion.

We evaluate by simulation several regular networks with
different traffic patterns using timing parameters taken from
the Myrinet network. Results show that the overall network
throughput can be doubled for large networks.

1 Introduction

Due to the increasing computing power of microproces-
sors and the high cost of parallel computers, networks of
workstations (NOWs) are currently considered as a cost-
effective alternative for parallel computing.

In some of these networks, packets are delivered using
source routing. In this kind of networks, the path to des-
tination is built at the source host and it is written into
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the packet header before it is transmitted. Switches route
packets through the fixed path found at the packet header.
One example of network with source routing is Myrinet [1].
Myrinet design is simple and very flexible. In particular,
it allows us to change the network behavior through the
Myrinet Control Program (MCP). This software is loaded
in the memory of the network interface card (NIC) at boot
time. It initializes the network adapter, performs the net-
work configuration automatically, does the memory man-
agement, defines and applies the routing algorithm, formats
packets, transfers packets from local processors to the net-
work and vice versa, etc.

One of the tasks managed by the MCP is the selection
of the route to reach the destination of each packet. As the
Myrinet routing scheme uses source routing, the network
adapter has to build network routes to each destination dur-
ing the initialization phase. Network adapters have mecha-
nisms to discover the current network configuration, being
able to build routes between itself and the rest of network
hosts. Myrinet uses up*/down* routing [13] to build these
paths. Although the original distributed up*/down* routing
scheme provides partial adaptivity, in Myrinet only one of
the routes is selected to be included in the routing table, thus
resulting in a deterministic routing algorithm.

The up*/down* routing scheme does not always provide
minimal paths. Also, another drawback of up*/down* rout-
ing is that it forces most of the traffic to cross the vicinity of
the root switch, leading to saturation at relatively low traf-
fic. In order to always use minimal paths and balance traffic,
we have proposed the in-transit buffer mechanism [5] that
consists of breaking cyclic dependencies between channels
by storing and later reinjecting packets at some interme-
diate hosts. In [6] we have evaluated the in-transit buffer
mechanism in networks with irregular topology, showing
that this routing mechanism increases network throughput
significantly.

When performance is the primary concern, Myrinet
switches are also used to build commodity clusters with
regular topologies [12]. In these topologies, up*/down* is
less restrictive than in irregular ones because the up*/down*
scheme supplies minimal paths for almost all destinations.
Therefore, it is not clear whether the in-transit buffer mech-
anism will significantly improve performance with respect
to up*/down* routing as in irregular topologies. In this pa-



per we evaluate the in-transit buffer mechanism in regular
networks with source routing.

The rest of the paper is organized as follows. In Section
2, the current Myrinet source routing scheme is introduced.
In Section 3 the in-transit buffer mechanism is described.
In Section 4, the performance of the proposed mechanism
is evaluated by simulation. Finally, in Section 5 some con-
clusions are drawn.

2 Myrinet Source Routing

Myrinet uses source routing to transmit packets between
hosts. In this technique, the packet header stores the route
that the packet has to follow to reach its destination. To
simplify switch operation, each packet header consists of
an ordered list of output link identifiers that are used by
each intermediate switch to properly route the packet (the
header also stores the header type of the payload). The first
link identifier corresponds to the one that the first switch
will use, the second link identifier will be used by the sec-
ond switch, and so on. Each link identifier is discarded af-
ter being used. Therefore, each network host must have a
representation of the current network topology, in order to
build and maintain routes between itself and each potential
destination host. Routes are built before sending any packet
during the initialization phase. In addition, each network
adapter checks for changes in the network topology (shut-
down of hosts, link/switch failures, start-up of new hosts,
etc.), in order to maintain the routing tables.

Myrinet uses up*/down* routing [13] to build network
routes. Up*/down* routing is based on an assignment of
direction to the operational links. To do so, a breadth-first
spanning tree is computed and the “up” end of each link is
defined as: (1) the end whose switch is closer to the root in
the spanning tree; (2) the end whose switch has the lower
ID, if both ends are at switches at the same tree level (see
Figure 1). The result of this assignment is that each cycle in
the network has at least one link in the “up” direction and
one link in the “down” direction. To eliminate deadlocks
while still allowing all links to be used, this routing scheme
uses the following up*/down* rule: a legal route must tra-
verse zero or more links in the “up” direction followed by
zero or more links in the “down” direction. Thus, cyclic
dependencies between channels are avoided because a mes-
sage cannot traverse a link along the “up” direction after
having traversed one in the “down” direction.

Up*/down* routing is not always able to provide a mini-
mal path between some pairs of nodes, as shown in the fol-
lowing example. In Figure 1, a message transmitted from
switch 4 to switch 1 cannot go through any minimal path.
The shortest path (through switch 6) is not allowed since the
message should traverse a link in the “up” direction after
one in the “down” direction. All the allowed paths (through
switches 0, 2, and through switches 0, 5) are non-minimal
and only one of them will be included in the routing ta-
ble. The number of forbidden minimal paths increases as
the network becomes larger.

up*/down* path
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1

Figure 1. Link direction assignment for an ir-
regular network.
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Figure 2. Use of the in-transit buffer mecha-
nism in an irregular network.

3 In-Transit Buffers: a Mechanism to Imple-
ment Minimal Source Routing

The up*/down* routing algorithm is deadlock-free. It
avoids cyclic dependencies between network links by not
allowing messages to reserve “up” links after having re-
served “down” links. Due to this restriction many minimal
routes are forbidden. The basic idea to eliminate this restric-
tion consists of splitting such forbidden paths into several
valid up*/down* paths. On each path, an intermediate host
is selected as the destination and, at this host, packets are
completely ejected from the network and later re-injected
into it. In other words, the dependencies between “down”
and “up” links are removed by using some buffers at the in-
termediate hosts (in-transit buffers). In Figure 2 we can see
that, with the in-transit buffer mechanism, a minimal route
can be used to route packets from switch 4 to switch 1. To
break channel dependencies, packets are sent to a host con-
nected to the intermediate switch 6. This host will re-inject
packets as soon as possible.

When the up*/down* routing algorithm for a given
packet does not provide any minimal path, the proposed
routing strategy selects a minimal path. In this path, one
or more in-transit hosts are chosen, verifying that each sub-
route is a valid up*/down* path, and therefore, the routing
algorithm is deadlock-free. The packet will be addressed to
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Figure 3. In-Transit buffer mechanism.

the first in-transit host. The in-transit host will re-inject the
packet into the network as soon as possible, forwarding it to
the destination host or to the next in-transit host.

In order to route packets requiring in-transit buffers, the
packet header format must be changed. In particular, a mark
(ITB mark) is inserted in order to notify the in-transit host
that the packet must be re-injected into the network after
removing that mark.

The in-transit buffer mechanism adds latency to the mes-
sage and also uses some additional resources in both net-
work (links) and network interface cards (memory pools
and DMA engines). On the other hand, with this mecha-
nism, “down” to “up” transitions are allowed. As a con-
sequence, the resulting routing algorithm is less restrictive
than the original up*/down* routing algorithm, as it always
uses minimal paths among all hosts.

The critical part of this mechanism is the introduced
overhead at the intermediate hosts. Figure 3 shows the im-
plementation of the in-transit buffer mechanism. To imple-
ment the in-transit buffer mechanism in Myrinet networks,
some memory is needed at the network interface card to
store in-transit packets and the MCP program has to be
modified to detect in-transit packets and process them ac-
cordingly. In order to minimize the introduced overhead,
as soon as the in-transit packet header is processed and the
required output channel is free, a DMA transfer can be pro-
grammed to re-inject the in-transit packet. So, the delay to
forward this packet will be the time required for processing
the header and starting the DMA (when the output channel
is free). As the MCP allows this kind of DMA program-
ming, it is possible to implement the in-transit buffer mech-
anism in Myrinet without modifying the network hardware.
On the other hand, there is no problem if the DMA trans-
fer begins before the packet has been completely received,
because it will arrive at the same rate that it is transmit-
ted1, assuming that all the links in the network have the
same bandwidth2. Note that Myrinet does not implement
virtual channels. Therefore, once a packet header reaches
the network interface card, flits will continue arriving at a
constant rate. The only additional requirement is that the
packet is completely stored in the network adapter mem-

1Due to limited memory bandwidth in the network interfaces, a source
host may inject bubbles into the network, thus lowering the effective re-
ception rate at the in-transit host. This problem has been addressed and
can be easily avoided when implementing the MCP code. Also, future
implementations of Myrinet interfaces will eliminate this problem.

2Myrinet supports mixing links with different bandwidth.

ory at the source host before starting transmission to avoid
interference with the host I/O bus.

To make this mechanism deadlock-free, it must be guar-
anteed that an in-transit packet that is being re-injected can
be completely ejected from the network if the re-injected
part of the packet becomes blocked, thus removing potential
channel dependencies that may result in a deadlock (down-
up transitions). So, when an in-transit packet arrives at a
given host, care must be taken to ensure that there is enough
buffer space to store it at the interface card before start-
ing the DMA transfer. If the buffer space at the network
interface card has been exhausted, the MCP should store
the packet in the host memory, considerably increasing the
overhead in this case. Although this strategy requires an in-
finite number of buffers in theory, a very small number of
buffers are required in practice. We rely on dynamic alloca-
tion of buffers to simulate infinite buffer capacity.

4 Performance Evaluation

In this section, we evaluate the new mechanism and com-
pare it with the original up*/down* routing used in Myrinet.
First, we describe the different topologies and traffic pat-
terns used in the study. Then, we describe the simulation
parameters concerning links, switches, and network inter-
faces. These parameters are based on the Myrinet network.
Finally, we present the simulation results.

4.1 Network Model

The network is composed of a set of switches and hosts,
all of them interconnected by links. In order to perform
a detailed study, we evaluated several regular topologies.
Some of them are well-known topologies and others have
already been implemented using Myrinet switches. These
topologies are the following:

� 2-D Torus (Figure 4). It is made up of 64 16-port
switches. Each switch is connected to each of its four neigh-
bors through a single link. There are 8 hosts connected to
each switch, so there are 512 hosts in the whole system.
There are 4 ports left open in each switch.

� 2-D Torus with express channels (Figure 5). This
topology is similar to the 2-D Torus except that all switches
are also connected to their second-order neighbors using
express channels [3] (neighbors located two hops away in
each dimension). Each switch has 16 ports. There are 8
hosts connected to each switch, so there are 512 hosts in the
whole system. All ports are used in all switches.

� CPLANT (Figure 6). This topology is used in the
Computational Plant (CPLANT) at the Sandia National
Laboratories [12]. It is made up of 50 16-port switches
connecting 400 nodes (each switch has 8 hosts attached to
it). Out of them, 48 switches are grouped into 6 groups of
8 switches. Each switch uses 4 ports to connect to other
switches in the same group and 4 ports to connect to its
equivalent switches in the remaining groups. Each group
forms a hypercube topology in which an additional link
is used at each switch to connect to the farthest node in



the group. The six groups form an incomplete hypercube,
which also contains connections between farthest nodes.
The remaining 2 switches form an additional group. There-
fore, the resulting topology i not completely regular.

4.2 Traffic Patterns

Message generation rate is constant and the same for all
the hosts. Several message destination distributions have
been used to generate network traffic:

� Uniform distribution. The destination of a message is
randomly chosen with the same probability for all the hosts.
This is the most widely used pattern.

� Bit-reversal distribution. The destination of a message
is computed by reversing the bits of the source host identi-
fication number. This pattern has been selected taking into
account the permutations that are usually performed in par-
allel numerical algorithms [9, 10]. Note that this distribu-
tion can only be used when the number of nodes is a power
of 2. This distribution is applied to all the networks pre-
sented above except to the CPLANT network.

� Hotspot distribution. A percentage of traffic is sent
to one host (different percentages are used). The selected
hotspot location is chosen randomly (10 different simula-
tions are performed using 10 different hotspot locations).
The rest of the traffic is generated randomly using a uni-
form distribution.

� Local distribution. Message destinations are, at most,
3 switches away from the source host, and are randomly
computed. Also, we studied the effects of local distribution
with 4 switches distance.

For message length, 32, 512, and 1024-byte messages
have been considered. However, taking into account that
the obtained results are qualitatively similar, for the sake of
brevity, onle results for 512-byte messages are presented.

4.3 Myrinet Links

We assume short LAN cables [11] to interconnect
switches and workstations. These cables are 10 meters long,
offer a bandwidth of 160 MB/s, and have a delay of 4.92
ns/m (1.5 ns/ft). Flits are one byte wide. Physical links
are also one flit wide. Transmission of data across channels
is pipelined [14]. Hence, a new flit can be injected into the
physical channel every 6.25 ns and there will be a maximum
of 8 flits on the link at a given time.

We do not use virtual channels since current Myrinet
switches do not support them. A hardware “stop and go”
flow control protocol [1] is used to prevent packet loss. In
this protocol, the receiving switch transmits a stop(go) con-
trol flit when its input buffer fills over (empties below) 56
bytes (40 bytes) of its capacity. The slack buffer size in
Myrinet is fixed at 80 bytes.

4.4 Myrinet Switches

Each Myrinet switch has a simple routing control unit
that removes the first flit of the header and uses it to select

the output link. That link is reserved when it becomes free.
If the requested output link is free, the first flit latency is
150 ns through the switch. After that, the switch is able to
transfer flits at the link rate (one flit every 6.25 ns). Each
output port can process only one packet header at a time.
An output port is assigned to waiting packets in a demand-
slotted round-robin fashion. When a packet gets the routing
control unit, but it cannot be routed because the requested
output link is busy, it must wait in the input buffer until
its next turn. A crossbar inside the switch allows multiple
packets to traverse it simultaneously without interference.

4.5 Myrinet Interfaces

Each host is connected to the Myrinet network through a
network interface card (NIC). This card contains the LANai
processor, some buffer memory (4MB in the current ver-
sion), and three DMA devices. Each NIC contains a routing
table with one or more entries for every possible destination
of messages. The LANai processor fills the routing table
and uses it to send packets to other hosts. The way tables
are filled determines the routing scheme that will be used.
We are interested in comparing the performance achieved
by the original Myrinet routes using the up*/down* routing
algorithm with the new routes that use in-transit buffers.

Although tables can be filled with all the possible routes
to every possible destination, to avoid using a huge table
that may result in a long look-up delay, we imposed a limit
of 10 alternative routes for each source-destination pair.
When using the original Myrinet routes, only one route is
inserted in the table for every source-destination pair. These
routes have been obtained from the simple routes pro-
gram that comes with the GM [7] protocol from Myricom.
This program computes the entire set of up*/down* paths
and then selects the final set of up*/down* paths (one path
for every source-destination pair) trying to balance traffic
among all the links. This is done by using weighted links.
So, it may happen that the simple routes program se-
lects a non-minimal up*/down* path, instead of an available
minimal up*/down* path. In fact, we have compared the
performance of the simple routes routing scheme ver-
sus using all the minimal up*/down* paths available. We
concluded that the routes given by the simple routes
program always achieve higher network throughput. Also,
by using the routes generated by the simple routes pro-
gram, we simulate the behavior of Myrinet using its original
routing algorithm.

In the case of minimal routing with in-transit buffers, the
incoming packet must be recognized as in-transit and the
transmission DMA must be re-programmed. We have used
a delay of 275 ns (44 bytes received) to detect an in-transit
packet, and 200 ns (32 additional bytes received) to program
the DMA to re-inject the packet 3. Also, the total capacity of
the in-transit buffers has been set to 90KB at each Myrinet
interface card.

3These timings have been measured on a real Myrinet network. Aver-
age timings have been computed from the transmission of more than 1000
messages using the Real Time Clock register (RTC) of the Myrinet inter-
face card.



Figure 4. 2-D Torus net-
work.

Figure 5. 2-D Torus with express chan-
nels.
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Figure 6. CPLANT net-
work at Sandia National
Labs.

4.6 Path Selection Policies

Although Myrinet uses only one of the shortest paths
for each source-destination pair to send packets, different
paths may be available for each source-destination pair. We
will use two path selection policies when using in-transit
buffers: The first one will always select the same (minimal)
path for each source-destination pair and the second one
will select the path from all the alternative minimal paths
in a round-robin fashion.

4.7 Simulation Results

In this section we show the results obtained from the
simulation of Myrinet networks using both the original
up*/down* routing scheme and the new routing strategy
with in-transit buffers. We will refer to the original rout-
ing as UP/DOWN. We combined the new routing scheme
based on in-transit buffers with the different path selection
policies described above. We will refer to them as ITB-SP
for the routing using in-transit buffers and single path se-
lection policy and ITB-RR for the routing using in-transit
buffers and round-robin path selection policy. We group re-
sults by traffic pattern. For all the cases, we show the aver-
age message latency4 measured in nanoseconds versus the
average accepted traffic5 measured in flits/ns/switch.

4.7.1 Uniform Distribution

Figure 7 shows the performance of the in-transit buffer
mechanism and the original Myrinet up*/down* routing al-
gorithm for a uniform distribution of message destinations
and different topologies. In the 2-D Torus network (Figure

4Latency is the elapsed time between the injection of a message into
the network at the source host until it is delivered at the destination host.

5Accepted traffic is the amount of information delivered by the network
per time unit.

7.a) both routings schemes using in-transit buffers (ITB-SP
and ITB-RR) double the throughput achieved by the orig-
inal Myrinet routing algorithm (UP/DOWN). In particular,
ITB-SP and ITB-RR reach 0.029 and 0.032 flits/ns/switch,
respectively. UP/DOWN saturates at 0.015 flits/ns/switch.

One of the drawbacks of up*/down* routing is that it
does not always provide minimal paths. In this topology,
80 % of the paths computed by the original Myrinet rout-
ing algorithm are minimal paths. On the other hand, the
in-transit buffer mechanism uses always minimal paths. So,
the in-transit buffer mechanism adds 20% of minimal paths
to up*/down* routing. The average distance to destination
(measured as the number of traversed links) for up*/down*
routing is 4.57 whereas with the in-transit buffer mechanism
is 4.06. However, this does not justify the performance im-
provement achieved when using in-transit buffers.

The other drawback of up*/down* routing is that it
forces most of the traffic to cross the root switch. The in-
transit buffer mechanism distributes network traffic better
by allowing the use of alternative paths. Figure ?? shows
the link utilization for UP/DOWN and ITB-RR when traf-
fic is 0.015 flits/ns/switch (UP/DOWN reaches its saturation
point). When using UP/DOWN routing (Figure ??.a), links
near the root switch (the top leftmost switch) are congested
(utilization in those links reaches 50 %), whereas the uti-
lization of the rest of links in the network is low (65 % of
links have a utilization less than 10 %). On the other hand,
the ITB-RR routing algorithm (Figure ??.b) balances traffic
among all the links in the network. The utilization of all the
links is less than 12 %. For higher traffic, when ITB-RR is
reaching its saturation point, ITB-RR still distributes traffic
evenly among all the links. Figure ?? shows the link uti-
lization for ITB-RR routing at injection rate equal to 0.03
flits/ns/switch. Traffic is quite balanced among all the links
(link utilization ranges from 14 % to 29 %). So, when us-
ing in-transit buffers, minimal paths are always used and,
most important, traffic is balanced among all the links in
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Figure 7. Performance results for the uniform distribution. a) 2-D Torus, b) 2-D Torus with express
channels, c) CPLANT
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Figure 8. Link utilization in a 2-D Torus. a) UP/DOWN (0.015 flits/ns/switch) b) ITB-RR (0.015
flits/ns/switch) c) ITB-RR (0.03 flits/ns/switch).

the network, doubling the network throughput achieved by
up*/down* routing. It can be observed that the network sat-
urates when link utilization is still low. The long routing
time (150 ns) and the small capacity of slack buffers (80
bytes) lead to a high correlated message blocking. Thus, at
the saturation point for the ITB-RR routing algorithm, 20 %
of links are iddle more than 10 % of the total time due to the
flow control mechanism, reaching 30 % of the total time for
some links.

Comparing ITB-SP and ITB-RR performance (Figure
7.a), ITB-SP achieves slightly lower latency. This is due
to the fact that, on average, more in-transit buffers are used
by messages when using ITB-RR (0.43 in-transit buffers per
message when using ITB-SP and 0.54 when using ITB-RR,
on average). However, ITB-RR has a higher saturation point
(0.032 flits/ns/switch) than ITB-SP (0.029 flits/ns/switch).
This is due to the higher number of choices that ITB-RR
offers to forward messages toward their destinations, dis-
tributing traffic even better.

Figure 7.b shows results for the 2-D Torus with express
channels. ITB-SP and ITB-RR almost double the through-
put achieved by UP/DOWN routing. The benefits of us-
ing in-transit buffers are slightly smaller than in the 2-

D Torus because when using express channels, there are
twice as many links and there are more alternative paths
towards the root switch (where UP/DOWN routing satu-
rates). UP/DOWN multiplies the throughput achieved in
the 2-D Torus network by 4.6, reaching 0.07 flits/ns/switch,
whereas ITB-SP and ITB-RR multiply network throughput
by 4, reaching 0.12 and 0.11 flits/ns/switch, respectively.
The increase in network throughput (with respect to the 2-
D Torus network) is due to the added express channels. The
number of links in the network is doubled, so more mes-
sages can be crossing the network at the same time. Also,
average distance to message destinations is almost reduced
to the half. Thus, each packet uses half the resources (slack
buffers). Also, as a consequence, routing time for the over-
all path is also reduced.

The use of express channels increases the number of
minimal paths provided by UP/DOWN. In this case, the
percentage of minimal paths is 94 %. So, providing
more minimal paths is not as important as in the 2-D
Torus. On the other hand, traffic distribution plays a key
role in this network. Figure 9 shows link utilization for
UP/DOWN and ITB-RR routing at the saturation point for
UP/DOWN (0.066 flits/ns/switch). We can see that when
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Figure 9. Link utilization in a 2-D Torus with express channels at saturation point for UP/DOWN.

using UP/DOWN (Figure 9.a) links near the root switch
have a utilization near 50 %, whereas the rest of links in the
network have a low utilization (as in the 2-D Torus). On the
other hand, when using ITB-RR routing (Figure 9.b), link
utilization is more balanced, as in the 2-D Torus. All links
have a utilization lower than 30 %. If we take a closer look
at Figure 9.b we can observe that there are links more fre-
quently used than others. The added express channels have
a utilization of 25 %, whereas the rest of links have a uti-
lization of 10 %. Express channels are more frequently used
because they provide shorter paths to destinations, while
the other links are only used to deliver packets to their fi-
nal switch (when the packet is one hop away from desti-
nation). So, traffic is not evenly distributed among all the
links due to the different use of links, and therefore, ITB-
RR does not evenly distribute traffic among all the links.
So, the throughput increase when using in-transit buffers
is slightly smaller than the one achieved in the 2-D Torus.
Even though, the in-transit buffer mechanism (with the sin-
gle path selection policy) increases the throughput achieved
by up*/down* routing by a factor of 1.71.

Regarding the CPLANT network (Figure 7.c), ITB-
SP almost doubles the network throughput achieved by
UP/DOWN whereas ITB-RR doubles it. UP/DOWN sat-
urates at 0.05 flits/ns/switch whereas ITB-RR saturates at
0.095 flits/ns/switch. CPLANT has a complex topology
formed by groups of switches. When UP/DOWN is used
as the routing algorithm, most of the traffic must cross the
root switch (that is located in a certain group of switches),
unbalancing traffic among all the groups. On the other
hand, when using the in-transit buffer mechanism, travel-
ing across the root switch is not needed, therefore distribut-
ing better the traffic among the groups. ITB-RR achieves
better performance than ITB-SP because it uses different
alternative paths to forward messages (unbalancing traffic
even more). Regarding minimal paths, UP/DOWN always

uses minimal paths in this topology, so the improvement
achieved by in-transit buffers is only due to a more balanced
traffic distribution.

4.7.2 Bit-Reversal Traffic Pattern

For the bit-reversal traffic pattern, similar results have been
obtained. Figure 10 shows the performance results obtained
for UP/DOWN, ITB-SP, and ITB-RR routing when using
the bit-reversal traffic pattern. The figure shows results for
the 2-D Torus, and for the 2-D Torus with express channels,
respectively.

For the 2-D Torus (Figure 10.a), UP/DOWN through-
put is almost doubled when using in-transit buffers (0.017
flits/ns/switch for UP/DOWN and 0.032 flits/ns/switch for
ITB-RR). Again, when comparing ITB-SP and ITB-RR,
ITB-RR incurs a slightly higher latency due to the use of
more in-transit buffers on average but, on the other hand, it
also increases network throughput.

For the 2-D Torus with express channels (Figure 10.b),
the benefits of using in-transit buffers are slightly smaller
(as for the uniform distribution). UP/DOWN saturates
at 0.07 flits/ns/switch whereas ITB-RR saturates at 0.11
flits/ns/switch.

As for the uniform distribution, traffic distribution
among all the links plays a key role in improving network
performance. As soon as the root switch becomes congested
when using UP/DOWN routing, the entire network satu-
rates. The in-transit buffer mechanism allows the use of
alternative paths without the constraint of crossing the root
switch.

4.7.3 Hotspot

Ten different hotspot locations have been considered for
each topology. Also different hotspot traffic loads have been
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Figure 10. Performance results for the bit-Reversal traffic pattern. a) 2-D Torus, b) 2-D Torus with
express channels.

used to model hotspot traffic. Table 1 shows the through-
put achieved by each routing algorithm in the 2-D Torus
network. In particular, we have used two hotspot traffic
loads for the 2-D Torus: 5 % hotspot traffic and 10 %
hotspot traffic. On average, ITB-SP and ITB-RR increase
UP/DOWN throughput by a factor of 2.13 and 2.19, respec-
tively, when 5 % hotspot traffic is used. On the other hand,
for 10 % hotspot traffic, ITB-SP and ITB-RR decrease their
performance. However, ITB-SP and ITB-RR still increase
UP/DOWN throughput by a factor of 1.4 and 1.48, respec-
tively.

From Table 1 we can observe that up*/down* routing is
only slightly affected by the hotspot. For a uniform dis-
tribution, UP/DOWN routing reaches a network through-
put of 0.015 flits/ns/switch. With a 5 % hotspot traffic,
network throughput is decreased only by 16 % (0.0125
flits/ns/switch on average) and for 10 % hotspot traffic,
network throughput is almost the same (on average, net-
work throughput is 0.0123 flits/ns/switch). This is because
the root switch behaves as a big hotspot and UP/DOWN
saturates when the root switch is overloaded. Figure 11
shows the link utilization for UP/DOWN and ITB-RR rout-
ing for 10 % hotspot traffic when the saturation point is
being reached by UP/DOWN (0.0123 flits/ns/switch). For
UP/DOWN (Figure 11.a) links near the root switch are
much more heavily used than links near the hotspot switch
(marked as H). On the other hand, when using ITB-RR rout-
ing (Figure 11.b), only links near the hotspot switch start to
saturate. So, for UP/DOWN routing, the root switch be-
haves as a big hotspot and saturates the network, whereas
ITB-RR routing saturates due to the hotspot.

Table 2 shows the throughput achieved when using dif-
ferent hotspot locations and different hotspot traffic loads
for the 2-D Torus with express channels. In particular, we
have used 3 % hotspot traffic and 5 % hotspot traffic. ITB-
SP increases UP/DOWN throughput by a factor of 1.13 and
1.08 for 3 % and 5 % hotspot traffic, respectively. On the
other hand, ITB-RR increases UP/DOWN throughput by a

factor of 1.12 and 1.07 for the hotspot traffic loads.
Taking into account the results obtained for the uniform

distribution, the throughput achieved by UP/DOWN rout-
ing with a uniform distribution is reduced by 26 % for 3
% hotspot traffic, and by 49 % for 5 % hotspot traffic.
For ITB-SP, the reduction of throughput achieved with re-
spect to the uniform distribution is 50 % and 67 %, re-
spectively. For ITB-RR, the reduction is 54 % and 70
%, respectively. So, ITB-SP and ITB-RR are more heav-
ily affected by hotspots. Figure ?? shows the link utiliza-
tion for UP/DOWN and ITB-RR routing at their saturation
points (0.0483 flits/ns/switch for UP/DOWN and 0.0542
flits/ns/switch for ITB-RR) using 3 % hotspot traffic. It can
be observed that due to the hotspot in UP/DOWN (Figure
??.a), the root switch is less congested, but links between
the root switch and the hotspot are much more heavily used
than the other links in the network. For ITB-RR (Figure
??.b) only links near the hotspot switch are heavily used.
It can be observed that all the saturated links are express
channels.

Finally, for the CPLANT network, Table 3 shows the
throughput achieved by each routing algorithm for different
hotspot locations and for 5 % hotspot traffic. On average,
ITB-SP and ITB-RR routing increase network throughput
by a factor of 1.24 and 1.32, respectively.

4.7.4 Local Distribution

Figure 12 shows the performance achieved by the rout-
ing algorithms when using a local distribution of messages.
Message destinations are at most 3 switches away from their
source. For the 2-D Torus (Figure 12.a), ITB-SP and ITB-
RR obtain higher throughput than UP/DOWN. UP/DOWN
saturates near 0.1 flits/ns/switch, whereas ITB-SP and ITB-
RR saturate near 0.13 flits/ns/switch. For the 2-D Torus
with express channels (Figure 12.b) UP/DOWN performs as
ITB-RR. ITB-SP achieves slightly higher throughput than
UP/DOWN. Also, for the CPLANT network (Figure 12.c)



5 % 10 %
Hotspot U/D ITB-SP ITB-RR U/D ITB-SP ITB-RR

1 0.0120 0.0264 0.0288 0.0120 0.0168 0.0168
2 0.0144 0.0240 0.0288 0.0121 0.0191 0.0168
3 0.0120 0.0287 0.0289 0.0145 0.0168 0.0192
4 0.0120 0.0289 0.0289 0.0120 0.0168 0.0192
5 0.0120 0.0241 0.0264 0.0120 0.0168 0.0193
6 0.0120 0.0312 0.0265 0.0120 0.0168 0.0193
7 0.0144 0.0241 0.0264 0.0120 0.0191 0.0193
8 0.0120 0.0241 0.0264 0.0120 0.0168 0.0191
9 0.0120 0.0290 0.0264 0.0120 0.0169 0.0168

10 0.0120 0.0265 0.0264 0.0120 0.0168 0.0168
Avg 0.0125 0.0267 0.0274 0.0123 0.0173 0.0183

Table 1. Throughput for different hotspot locations and different hotspot traffic. 2-D Torus.

3 % 5 %
Hotspot U/D ITB-SP ITB-RR U/D ITB-SP ITB-RR

Avg 0.0483 0.0546 0.0542 0.0334 0.0363 0.0359

Table 2. Throughput for different hotspot locations and different
hotspot traffic. 2-D Torus with express channels.

5 %
Hotspot U/D ITB-SP ITB-RR

Avg 0.0340 0.0423 0.0451

Table 3. Throughput for different
hotspot locations. CPLANT net-
work.

small benefits are obtained. In general, UP/DOWN achieves
good results because traffic is evenly distributed among all
the links in the network (due to the traffic pattern). Note
that up*/down* routing is always able to use a minimal path
when the destination is one hop away (two switches away)
or is connected to the same switch. So, the benefits of using
in-transit buffers are small. However, the in-transit buffer
mechanism does not decrease UP/DOWN performance.

5 Conclusions

When performance is the primary concern, Myrinet
products are being used to build large commodity clusters
with regular topologies. In this paper we have evaluated
the in-transit buffers mechanism for different networks with
regular topologies and with different traffic patterns. Re-
sults show that network performance is always improved
when using the in-transit buffer mechanism. For uniform
and bit-reversal distributions, the in-transit buffer mecha-
nism doubles the network throughput achieved by the orig-
inal routing used in Myrinet (up*/down*). For hotspot dis-
tribution benefits are lower but still significant. For local
distribution the in-transit buffer mechanism offers a low im-
provement. This mechanism is valid for any network with
source routing. It can be implemented in Myrinet thanks to
the flexibility offered by the MCP.

As for future work, we plan to implement the proposed
mechanism on an actual Myrinet network in order to con-
firm the simulation results obtained. Also, we are working
on reducing the latency overhead and on new route selection
algorithms that implement some adaptivity at the source
host.
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