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Abstract

During the last decade a lot of research and develop e�orts have

been made to design competitive still image coders for several kinds of

applications. Some popular standards have emerged [7, 5] and the work

is not �nished yet [8].

We are interested in wavelet-based still-image coders. This kind of

coders have a lot of interesting properties that make them very attractive

for most applications. Wavelet-based coders outperforms the DCT-based

ones in terms of rate-distortion and subjective quality performance metrics.

A lot of wavelet coders were proposed until now. Many of them were

candidates for the JPEG 2000 still-image standard. However, the work is

not �nished and the research in this area still goes on.

In this paper, we present an optimized version of the Shapiro's EZW

algorithm [12]. We have identi�ed up to �fteen di�erent implementation

choices related with all the wavelet coder stages, from wavelet decomposition

until the last entropy coding stage. After evaluating the proposed implementation

options, we have chosen the ones that better performance results show,

resulting in a wavelet coder that improves the original one in up to 0:8

dB at low bit rates (0:25 bpp) with the Lena standard image.

Keywords : Image compression, wavelet-based coders, EZW, performance

evaluation.

1 Introduction

A wide variety of wavelet-based image compression schemes have been reported

in the literature, ranging from simple entropy coding to more complex techniques

such as vector quantization, adaptive transforms, tree encodings, edge-based

coding, joint space-frequency coding schemes, etc. In this section we are going

to introduce the most signi�cative techniques that have been proposed for this

kind of coders.

The early wavelet-based image coders [16, 1] were designed in order to exploit

the ability of compacting energy on the typical wavelet decomposition. They

used quantizers and variable-length entropy coders, showing little improvements
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with respect to the popular DCT-based algorithms. In [4], some early wavelet

coder proposals were compared with JPEG, concluding that wavelet coders

obtain better results than JPEG only when low bit rates are used (bellow 0:25

bpp).

However, the properties of wavelet coeÆcients can be exploited more eÆciently.

In that sense, Shapiro [12] developed a wavelet-based coder that considerably

improves the previous proposals. The coder, called Embedded Zero-treeWavelet

coder (EZW), is mainly based on two questions (a) the similarity between the

same kind of sub-bands in a wavelet decomposition, and (b) a quantization

based on a successive-approximation scheme that can be adjusted in order to

get a speci�c bit rate. The own coder includes an entropy encoder (typically an

adaptive arithmetic encoder) as its �nal stage.

Said and Pearlman [11] proposed a variation of EZW, called SPIHT (Set

Partitioning In Hierarchical Trees). It is able to achieve better results than

EZW, even without taking into account the �nal arithmetic encoding stage.

The improvements are mainly due to the way it groups the wavelet coeÆcients

and how it stores the signi�cant information.

A di�erent approach to the previous algorithms is the one proposed by Tsai,

Villasenor and Chen [14], known as the stack-run algorithm. This algorithm has

a similar structure than JPEG coders. That is, after wavelet decomposition, the

wavelet coeÆcients are quantized using a classic quantization scheme. Then,

quantized coeÆcients are entropy coded using a run-length encoder (RLE) and,

�nally, an arithmetic encoder is used. The originality of this algorithm resides

on the use of a symbol set that allows an eÆcient storage of each pair of values

supplied by the RLE stage. The stack-run authors state that it achieves better

results than those obtained with EZW in a range from 1 to 2 dB [14].

In [17], a joint space-frequency quantization scheme was proposed. It uses

a spatial quantization, like zero-tree, in combination with a standard scalar

quantizer. The idea is based in the fact that natural images are perfectly

modeled by a lineal combination of compacted energy in both domains the

frequency and space. In [18] a wavelet packet coder is proposed using the

principles of the joint space-frequency quantization.

Finally, in [6], another wavelet coder proposal is presented. It is based on the

use of a scalar quantizer and the construction of a coeÆcient map with a trellis

state coder based on the Viterbbi algorithm [15]. By using the Trellis Coded

Quantization (TCQ), a very good image quality is obtained with a relatively

low complexity. In fact, this was the algorithm that best results achieved in the

Sidney JPEG 2000 meeting [13].

In general, when a new wavelet coder is proposed, the associated algorithm

use to need a set of optimizations in order to be competitive in performance.

These optimizations are mainly related to the �nal algorithm implementation.

So, it is very important to evaluate the di�erent implementation choices before

the �nal version of the wavelet coder, in order to achieve the highest performance

results.

In this paper, we are going to implement a version of EZW wavelet still

image coder based on the one proposed by Shapiro [12]. Then, we are going to

test di�erent implementation alternatives in order to show their impact on the

overall coder performance. Also, we will test the performance results obtained

with our implementation comparing them with those published by the EZW

author in order to check its correctness.
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In section 2 details about the implementation of both the 2D DWT transform

and EZW algorithm are given. In section 3 a detailed evaluation of the EZW

implementation choices is shown. Finally, in section 4 some conclusions and

future work are drawn.

2 2D DWT wavelet transform and the EZW

algorithm

Coders based on the Discrete Cosine Transform (DCT), like MPEG, JPEG and

H.261, present several drawbacks. Images are divided into regular small blocks

that are processed separately, so when high compression rates are required,

blocking artefacts appear in the reconstructed image, degrading the objective

and subjective quality considerably. On the other hand, the DCT uses a �xed

orthonormal basis (the DCT) which seems not to be always the best choice.

The Discrete Wavelet Transform (DWT) is another mathematical tool that

relies on a recently developed theory [10, 3, 9], which has resulted of interest

on several �elds of engineering and computer science. In particular, it o�ers

very good results when it is applied to image and video coding algorithms,

improving signi�cantly the performance of DCT-based coders. To implement

wavelet decomposition, �lter banks are commonly used. In this case, symmetric

extension is performed when using symmetric �lters, otherwise periodic extension

is used.

In the �rst decomposition level, high and low-pass �lters are applied to

both columns and rows by separate. Thus, it divides the image into four sub-

bands: one representing the low frequencies (LL) and which corresponds with

the scaled version of the original image, and the others containing the horizontal

(HL), vertical (LH) and diagonal (HH) high frequency bands. We implemented

a dyadic decomposition, where the next coarser scale of wavelet coeÆcients are

obtained making a recursive decomposition of the LL sub-band, until the desired

decomposition level is achieved.

Since all the coeÆcients are perfectly allocable in a sub-band at a speci�c

position, this type of decomposition is said to present both spatial and frequency

location. Moreover, as the image is processed entirely no block artefacts will

appear. Another advantage of the DWT with respect to the DCT, is the chance

to choose the preferred �lter (wavelet family).

As we said in prior section, the Embedded Zero-treeWavelet (EZW) algorithm

is considered the �rst really eÆcient wavelet coder. Its performance is based on

the similarity between sub-bands and a successive-approximation scheme. Some

of the coeÆcients from di�erent sub-bands represent the same spatial location,

in the sense that one coeÆcient in a scale corresponds with four in the previous

one. This connection can be settled recursively with these four coeÆcients and

its corresponding ones from the lower levels, so coeÆcient trees can be de�ned.

In natural images most energy tends to concentrate at coarser scales (higher

levels of decomposition). Then, it can be expected that the nearer from the root

node a coeÆcient is, the larger magnitudes it has. So if a node of a coeÆcient

tree is lower than a threshold, its descendent coeÆcients will probably be lower

as well. We can take pro�t from this fact, coding the sub-band coeÆcients by

means of trees and successive-approximation, so that when a node and all its
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descendent coeÆcients are lower that a threshold, just a symbol is used to code

that branch.

The EZW algorithm is performed in several steps, with two �xed stages per

step: the dominant pass and the subordinate pass. Successive-approximation

can be implemented as a bit-plane encoder, so that the method can be outlined

as follow (notice that an implementation outlook is taken).

Consider we need n bits to code the highest coeÆcient of the image (in

absolute value). The �rst step will be focused on all those coeÆcients that

need exactly n bits to be coded (range from 2n�1 to 2n � 1). In the dominant

pass, the coeÆcients which fall (in absolute value) in this range are labeled as

signi�cant positive/negative, sp=sn, according to its sign. These coeÆcients will

no longer be processed in further dominant passes, but in subordinate passes.

On the other hand, the rest of coeÆcients (those in the range [0; 2n�1[) are

labeled as zero-tree root, zr, if all its descendants also belong to this range, or

as isolated zero, iz, if any descendant can be labeled as sp=sn. Notice that none

descendant of a zero-tree root need to be labeled in this step, so we can code

entire zero-trees with just one symbol. In the subordinate pass, the bit n of

those coeÆcients labeled as sp=sn in any prior step is coded. In the next step,

the n value is decreased in one so we focus now on the following least signi�cative

bit. Compression process �nishes when the desired bit rate is reached, that is

why this coder is so called embedded.

In the dominant pass four types of symbols need to be coded sp, sn, zr,

and iz, whereas in the subordinate pass only two are needed (bit zero and

bit one). Finally, an adaptive arithmetic encoder is used to get higher entropy

compression. More details about the EZW algorithm can be found in the original

paper [12].

3 Tuning the EZW algorithm.

Shapiro's EZW is a relatively complex algorithm, with several stages and parameters

that can be optimized. We have implemented the EZW algorithm in order to

get its best performance by tuning the coder. So, in this section, we present

di�erent implementations alternatives that we found in the algorithm, some of

them mentioned by Shapiro and others not, and evaluate its contribution to the

performance of the EZW. All these options can be grouped in four categories,

(a) �lters, (b) coeÆcient preprocessing, (c) improvements on the EZW, and (d)

improvements related to the adaptive arithmetic encoder.

Notice that when results are presented (in tables or curves), all con�guration

options are assumed to be set to its default value with the exception of those

explicitly mentioned (the default image will be the standard Lena).

3.1 Choosing the best �lters.

Choosing a good �lter set is crucial to achieve a good compactness of the image

in the LL band, thus we reduce the amount of nonzero coeÆcients and its

magnitude, and therefore the image entropy. Shapiro uses an Adelson 9-tap

QMF bank �lter, with this �lter and the standard image Lena, he obtains

the results shown in Table 1 (Orig column). Our implementation, with the

same image and �lter (Adel column), throws similar results. We think that
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these results validate our implementation. However, biorthogonal �lters, B9/7

and Villasenor 10/18 (Vil), which make a better energy compactation, provide

better results. Daubechies 4-tap �lter (D4) gets poorer compactness and hence

lower PSNR values. Similar results are obtained with the standard image

Baboon. However, with this image, Villasenor 10/18 achieves remarkably better

performance, showing a great capability to eÆciently decompose full-detailed

images.

PSNR Lena PSNR Baboon

Bit Rate Orig Adel Vil B9/7 D4 Adel Vil B9/7

2 n/a 44.03 44.05 44.18 43.90 31.86 32.46 32.02

1 39.55 39.53 39.64 39.63 39.17 27.46 27.83 27.39

0.5 36.28 36.28 36.59 36.49 35.54 23.84 24.50 23.88

0.25 33.17 33.18 33.50 33.43 32.23 22.37 22.54 22.70

Table 1: Filter comparison with Lena and Baboon source images.
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Figure 1: Evaluating di�erent �lters for (a) Lena, and (b) Baboon.

All these results are also shown in Figure 1. Notice that both Lena and

Baboon images have been downloaded from [2].

Another important aspect in wavelet processing is the number of decomposition

levels performed. It mainly depends on the image size and the number of �lter

taps. As we can see in Figure 2, for a 512x512 image and a 9-tap QMF �lter, it

is highly interesting decomposing the LL sub-band up to four times. However,

less improvements are attained with more than four decomposition levels. By

default, we, as Shapiro does, will perform a six level dyadic decomposition with

Adelson 9-tap QMF �lter on the 512x512 standard image Lena.

3.2 CoeÆcient preprocessing.

Shapiro proposes that the image mean can be removed before the EZW algorithm

is applied. Figure 3 shows the e�ect of this idea. It was performed in two

di�erent manners: (a) removing simultaneously the mean of all the bands, and

(b) removing it only from the LL band (similar to remove the original image

mean). As wavelet sub-bands are expected to be zero mean, trying to remove

the mean of these bands does not seem to be a good idea, as Figure 3 shows.
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option.

On the other hand, the e�ect of removing the mean of the LL band is nearly

negligible (default value is no mean removed).

An important e�ect that appears in all the Rate/Distortion curves based on

the EZW algorithm is its scalloped aspect; it can be easily noticed the peaks in

the performance which correspond with the end of a full EZW iteration. That

is due to its embedded nature: the EZW presents its best performance when

the algorithm �nishes its bit budget just at the end of a subordinate pass. A

uniform quantization of the coeÆcients can move these peaks along di�erent

rates. This e�ect is shown in Figure 4.a, where at established bit rates, di�erent

quantization factors (q values) have been used. In this case, with 1 bpp, best

performance is obtained at q = 0:2 � k being k integer. These peaks are shifted

to the right when the bit rate decreases, until a 0:5 bpp value is reached. Then,

a full pass is completed and peaks repeat again at q = 0:2 � k. Figure 4.b shows

that with q = 0:8 peaks are achieved at 1=2n rates.

Therefore, with suitable values of q, results from Table 1 can be signi�cantly

improved. These results are shown in Table 2 (default value: no uniform

quantization used).

PSNR 9-tap QMF �lter PSNR Villasenor 10/18 �lter

Bit Rate Orig No quant. q = 0.8 No quant. q = 0.4

2 n/a 44.03 44.49 44.05 44.79

1 39.55 39.53 39.83 39.64 40.20

0.5 36.28 36.28 36.87 36.59 37.04

0.25 33.17 33.18 33.52 33.50 33.97

Table 2: Optimized results improving the quantization of coeÆcients.

3.3 Improvements on the main EZW algorithm.

Some options can be established in the main algorithm. Curve "no reduce &

no swap", in Figure 5.a, shows the di�erent gradient existing between dominant

and subordinate passes. This could mean that bits from subordinate passes

are more valuable than those from dominant passes. Hence, performing a swap

between the order of those stages could be a good idea. Curve "no reduce &

swap" shows the results of performing �rstly the subordinate pass and then the
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Figure 4: Uniform quantization option (a) PSNR for di�erent quantization

factors at constant rates, and (b) Rate/Distortion curves at di�erent

quantizations.

dominant pass for every EZW iteration. In this way, when we run out of bits,

no bit from the dominant pass is processed prior than one from the subordinate

pass (with the same threshold).
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Figure 5: EZW improvements: (a) Swapping dominat and subordinate passes

(b) CoeÆcient scanning order.

Another improvement consist on reducing the uncertainty interval at the

decoder. The decoder must predict the bits which the coder could not send

because he �nished its bit budget. It can assume that the rest of bits are

0, or maybe that all are 1. But the best option seems to suppose that, for

every coeÆcient, the more signi�cative predicted bit is 1 and the rest 0, so

we would have a lower uncertainty interval and, as consequence, less error.

Curves "reduce" from Figure 5.a shows the improvement of this action, and how

performing a swap is not actually signi�cative when the uncertainty interval is

already reduced.

Other options on the EZW coder are shown in Figure 5.b. One of them is

the scanning order of the coeÆcients in the dominant pass. We can see that a

Morton order, that performs the scan in small groups, improves the performance

of the algorithm, due to the best adaptivity achieved in the arithmetic encoder.

Another improvement could be not to code the �rst bit of a coeÆcient, because

the decoder can deduce it from the signi�cative symbols in the dominant pass.

The last option is to sort the coeÆcients in the subordinate pass, according
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to its magnitude for the decoder, so bigger coeÆcients are coded before than

smaller ones. Figure 5.b shows that, evaluating these options, only the scan

order seems to be important (Morton order is better than regular order).

3.4 Improvements on the arithmetic encoder.

Several actions can be tackled on the adaptive encoder. First, four histograms

can be used in the dominant pass, depending on the signi�cance of the previously

coded coeÆcient and its parent coeÆcient in the current pass. Second, all the

histograms can be restarted at the end of a full pass, to improve the adaptivity.

Finally, as last sub-bands do not have o�spring, we do not need to use a four-

symbol alphabet for these bands, and another arithmetic encoder (without the

isolated-zero symbol) can be used. By default, all these improvements are

tackled. Figure 6 shows the contribution of every option to the performance

of the algorithm (removing them one by one). Only the �rst option seems to be

of interest (notice the smaller scale of this graph).
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Figure 6: Arithmetic encoder evaluation.

It is also important the maximum frequency count in the adaptive arithmetic

code and howmany the histogram is increased with every symbol (default values,

512 and 6 respectively).

Notice that although most results have been presented for the Adelson 9-tap

QMF bank �lter (because it was the �lter used by Shapiro), the rest of the

�lters from subsection 3.1 behave similarly.

4 Conclusions and future work

An implementation of a wavelet-based still-image coder was presented. We have

proved its correctness and we have compared its performance with the one stated

by the EZW authors.

The main contribution of this paper resides in a deep study of the EZW

implementation, evaluating many alternatives (up to 15) in the di�erent coder

stages. Also, we have shown that it is possible to get better results (around 0:4

dB) than those published by authors under the same conditions, and if more

eÆcient �lter banks are used, the EZW performance signi�cantly increases (up

to 0:8 dB).
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As future work, we are planning to improve the EZW performance by adding

a new stage behind the wavelet decomposition, in order to reduce the entropy

of the wavelet coeÆcients before the quantization stage.
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