
On the Efficient Memory Usage in the Lifting 
Scheme for the Two-Dimensional Wavelet Transform 

Computation 
 

Jose Oliver, Elena Oliver, Manuel P. Malumbres 
Department of Computer Engineering (DISCA) 

Universidad Politécnica de Valencia 
Camino de Vera 17, 46022 Valencia, Spain 

e-mail: joliver@disca.upv.es 
 
 

Abstract—In this paper, a new algorithm to efficiently implement 
the two-dimensional lifting scheme is presented. The 1D lifting-
scheme performs in-place processing of the input samples, and 
hence it provides reduction in memory requirements. However, 
for image processing (2D), in-place computation is not enough, 
resulting in a memory-intensive algorithm, since it has to keep 
the whole image in memory. We propose the use of line-by-line 
processing algorithm for the lifting scheme, and we address some 
issues on how to perform synchronization among different buffer 
levels, so that an implementation can be easily written. 
Experimental results show that, for a 5-Megapixel image, our 
algorithm requires 200 times less memory and it is more than 3 
times faster than the usual one. 

Keywords: Lifting scheme, line-based, Efficient memory usage 

I.  INTRODUCTION 
The discrete wavelet transform (DWT) is a mathematical 

tool that has aroused great interest in the last years. However, 
one of its major drawbacks is the high memory requirements of 
the regular algorithms that compute it. A proposal that reduces 
the amount of memory need for the computation of the 1D WT 
is the lifting scheme [1]. It implements the DWT 
decomposition as an alternative algorithm to the classical filter 
bank algorithm. This scheme provides in-place computation of 
the wavelet coefficients and hence, it does not need extra 
memory to store the resulting coefficients. A disadvantage of 
the lifting scheme for the 1D DWT is that the high frequency 
and low frequency coefficients are interleaved in memory. 
Thus, the later reordering of the wavelet coefficients would 
need extra memory. 

For the image wavelet transform (2D), the use of the lifting 
scheme shows little benefit, since the entire image has to be 
kept in memory. Therefore, it has to be applied along with 
other strategies that allow us to avoid keeping the entire image 
in memory. The line-based approach [2] can help us to 
overcome this problem. In the line-based approach, for the first 
decomposition level, we receive directly image lines, one by 

one. On every input line, a one-level 1D DWT is applied. 
Then, these lines are stored in a buffer associated to the first 
decomposition level. When there are enough lines in the buffer 
to calculate a line of each wavelet subband, we compute them. 
Then, the wavelet subband lines can be processed and released. 
However, the first line of the LL1 subband does not belong to 
the final result, and is needed as incoming data for the 
following decomposition level.  In order to get more lines, we 
have to update the buffer, filling it with more lines and 
discarding those that are no longer needed. At the second level, 
its buffer is filled with the LL1 lines that have been computed 
in the first level. Once the buffer is completely filled, it is 
processed as we have described for the first level. As it is 
depicted in Figure 1, this process can be repeated until the 
desired decomposition level (nlevel) is reached. 

Several hardware implementations of this line-based 
strategy have been proposed and they can be found in the 
literature [3] [4] [5] [6]. 

However, this algorithm cannot be easily implemented in 
software without a control unit, since a buffer must be 
completely filled with lines from previous buffers before it can 

This work was supported by the Spanish Ministerio de Ciencia y 
Tecnología, funded with the CICYT project under grant TIC2003-0052, and by 
la Junta de Comunidades de Castilla la Mancha under grant PBC-03-001 

1st level buffer 

2nd level 
buffer 

HL2 

LH2 

HH2 

nlevel 
buffer 

LL1 

LL2 

LLnlevel … 

width

width / 2 

width / 2nlevel-1 
width / 4 

width / 2  

2N+1 

input image lines (LL0) 

HL1 

LH1

HH1

Figure 1: Overview of a line-based wavelet transform 

0-7803-9134-9/05/$20.00 ©2005 IEEE



produce lines, and therefore they have different delays, and this 
control is hard to be performed. Moreover, all the buffers 
exchange their result at different intervals. In the next section 
we propose a general recursive algorithm that clearly specifies 
how to perform this communication between buffers. Then, we 
will present two implementation options, using a filter 
algorithm and the lifting scheme. 

II. A RECURSIVE LINE-BASED ALGORITHM 
The function that implements this recursive algorithm is 

called GetLLlineBwd() (see Algorithm 1.1). This function 
receives a decomposition level as a parameter, and calculates a 
line of each wavelet subband (LH, HL and HH) at that level, 
and returns a line from the low-frequency (LL) subband at that 
level.  

The first time that this recursive function is called at every 
level, it has its buffer ( levelbuffer ) empty (case 3.1). Therefore, 
the buffer has to be recursively filled with lines from the 
previous level. On the other hand, if the buffer is not empty, it 
simply has to be updated by discarding some lines and 
introducing additional lines from the contiguous level (by 
means of a recursive call again) (case 3.3). However, if there 
are no more lines in the previous level, this recursive call 
would return End Of Line (EOL). That points out that we are 
about to finish the computation at this level, but we still have to 

calculate some subband lines from the lines in the buffer (case 
3.2). We will give more details of each recursive case in 
Sections 3 and 4, since they are treated in a different way 
depending on whether we are dealing with a convolution 
algorithm or with lifting. In both convolution and lifting, at the 
end of the recursive case, we have a wavelet subband line that 
is processed and released depending on the application purpose 
(e.g., compressed), and it returns an LL line. 

This function has two base cases. The first case is when all 
the lines at this level have been read. In this case, the function 
returns EOL. The second base case is achieved when the level 
reaches 0 and then no further recursive call is needed since an 
image line can be read directly from the I/O system and 
returned. 

The inverse DWT algorithm is similar to the forward DWT, 
but applied in reverse order. A drawback that has not been 
considered yet is the need to reverse the order of the subbands, 
from the forward DWT to the inverse one. This problem can be 
solved using some buffers at both ends, so that data are 
supplied in the right order [2]. Other simpler solutions are: to 
save every level in secondary storage separately so that it can 
be read in a different order and, if the WT is used for 
compression, to keep the compressed bitstream in memory. 

III. A FILTER-BANK IMPLEMENTATION 
We are going to use the general description given in 

Section 2 to implement the DWT computation using a filter-
bank algorithm. For convolution, each buffer at every level 
must be able to keep 2N+1 lines, where 2N+1 is the number of 
taps for the largest analysis filter bank.  

Since the base cases are completely defined in Algorithm 
1.1, we only have to describe the recursive case. For this 
convolution implementation, when the buffer is empty (case 
3.1), its upper half (from N to 2N) is recursively filled with 
lines from the previous level. Once the upper half is full, the 
lower half is filled using symmetric extension. On the other 
hand, if the buffer is not empty, we have to update it (case 3.3). 
Thus, we shift it so that a new line can be introduced in the last 

function GetLLlineBwd( level ) 
1) First base case:  

If there are no more lines to return at this level 
return EOL 

2) Second base case: 
If 0=level  

return ReadImageLineIO( )  
3) Recursive case  
3.1) If levelbuffer  is empty  

Fill up levelbuffer  calling GetLLlineBwd(level-1) 

Get subband lines from levelbuffer  
3.2) else if no more lines can be read from the level-1 level 

Start cleaning levelbuffer  

Get subband lines from levelbuffer  
3.3) else 

Update levelbuffer  calling GetLLlineBwd(level-1) 

Get subband lines from levelbuffer  

Process the high freq. subband lines{ }HHlineLHlineHLline ,,  

return LLline  

end of fuction 

Algorithm 1.1: Backward recursive DWT computation 

function LowMemUsageDWT( nlevel ) 

set nlevellevelemptybuffer level ∈∀=  

repeat  
LLline = GetLLlineBwd( nlevel )  

if (LLline!=EOL) Process the low freq. line( LLline ) 
until LLline=EOL 

end of function 

Algorithm 1.2: Filter-bank implementation, recursive case 

3.1) if levelbuffer  is empty 
for NNi 2K=   

=)(ibufferlevel 1DFWT(GetLLlineBwd( level-1)) 

FullSymmetricExtension( levelbuffer  ) 
3.2) if  not( more_lines( level-1) ) 

repeat twice 
Shift( levelbuffer  ) 

=)2( Nbufferlevel SymmetricExt( levelbuffer ) 
3.3) else  

repeat twice 
Shift( levelbuffer  ) 

=)2( Nbufferlevel 1DFWT(GetLLlineBwd( level-1 ) ) 

For 3.1), 3.2) and 3.3) 

{ }HLlineLLline, = ColumnFWT_LowPass( levelbuffer  ) 

{ }HHlineLHline, = ColumnFWT_HighPass( levelbuffer  ) 



position (2N) using a recursive call. This operation is repeated 
twice. However, if there are no more lines in the previous level 
(case 3.2), we fill it using symmetric extension again. In all the 
cases, once there are enough lines in the buffer to perform one 
step of a column wavelet transform, the convolution process is 
calculated vertically twice, first using the low-pass filter and 
then the high-pass filter. This way, we get a line of every 
wavelet subband. The whole process is described in Algorithm 
1.2. 

IV. 2D DWT COMPUTATION WITH LIFTING 
SCHEME AND EFFICIENT MEMORY USAGE 

The convolution implementation that has been presented in 
the previous section introduces wide benefits in memory usage, 

since we only keep in memory a few (2N+1) low-frequency 
lines for each decomposition level. However, we can still 
reduce the amount of memory required by using the lifting 
scheme. 

In the lifting scheme, the wavelet coefficients are computed 
by means of several steps on the input samples (see Figure 2). 
In the first step, the samples in odd positions (black squares in 
the figure) are processed from the contiguous even samples 
(the white ones). This way, we try to predict each odd sample 
as a linear combination of the even ones, and thus this step is 
called prediction step. In the second step, the even values are 
computed from the contiguous odd ones, and it is called update 
step. This way, we compute successive prediction and update 
steps. The total number of steps depends on the DWT 
transform that is being computed. Finally, the odd values 
calculated in the last prediction step are normalized by a 
constant factor (K), to achieve the high-frequency wavelet 
coefficients, and the values from the last update step are 
normalized by 1/K to get the low-frequency coefficients. The 
lifting scheme depicted in Figure 2 is for the popular B7/9. The 
derivation from the filter bank to the weighting factors of every 
prediction and update step is given in [7]. 

The main advantage of the use of the lifting scheme instead 
of convolution in our recursive algorithm is the extra reduction 
of memory achieved. Let us define W as the total number of 
weighting factors (prediction and update) for a DWT. Then, the 
buffer height in the lifting scheme has to be W+2, so it can 
perform the W prediction and update steps needed to compute 
a low and a high-frequency line in a segmented way, as we will 
see later. The two additional lines are needed for the first and 
last computed steps, and they are read but not modified. In 
general W+2 is lower than 2N+1 (see [7] for details) and hence 
we need less lines in the buffers.  For example, for B7/9, 2N+1 
is 9 while W+2 is only 6. 

In Algorithm 1.3 we describe how to implement the 
recursive case of Algorithm 1.1 using the lifting scheme. In this 
algorithm, when the buffer is empty (case 3.1), we fill it from 
W to 0 (W+1 is left empty), using a recursive call. Then, we 
compute the successive prediction and update steps, using only 
the lines in the buffer. So, in every step, we can compute fewer 
lines, since the rest of lines rely on information that still has not 
been input. Finally, we get a low frequency line (the first line 

Algorithm 1.3: Lifting implementation, recursive case 

3.1) if levelbuffer  is empty 
for 0KWi =   

=)(ibufferlevel 1DFWT(GetLLlineBwd( level-1)) 

Successively predict and update the lines in levelbuffer , 
provided that the required lines are in buffer. 

{ }HLlineLLline, = )/1(*)( KWbufferlevel  
3.2) if  not( more_lines( level-1) ) 

repeat twice Shift( levelbuffer  ) 
Update and predict the remaining lines in the buffer 
{ }HHlineLHline, = KWbufferlevel *)1( +  

{ }HLlineLLline, = )/1(*)( KWbufferlevel  
if there are no more LL lines to be calculated at this level 

{ }HHlineLHline, = KWbufferlevel *)1( −  
3.3) else  

repeat twice 
Shift( levelbuffer  ) 

=)0(levelbuffer 1DFWT(GetLLlineBwd( level-1 ) ) 

=)1(levelbuffer )1())2()0(( 1 levellevellevel bufferpbufferbuffer ++  

=)2(levelbuffer )2())3()1(( 1 levellevellevel bufferubufferbuffer ++  
… 

=)(Wbufferlevel  )())1()1(( 2/ WbufferuWbufferWbuffer levelWlevellevel +++−  

{ }HHlineLHline, = KWbufferlevel *)1( +  

{ }HLlineLLline, = )/1(*)( KWbufferlevel  

input 
lines 

high-freq. lines 
(LH+HH)

low-freq. lines 
(LL+HL)

× K 

× (1/K) 

Figure 2: Overview of the lifting scheme for the B7/9 DWT

1/K 

p2 

p2 

u1

u1

u2 

u2 

p1

p1

K

Figure 3: Line processing in a buffer for a lifting scheme 



of the LL and HL subbands). The lines that have been handled 
in this step are shown in the area selected on the left of Figure 
2. At this moment, all the lines in diagonal are predicted or 
updated. Hence, if we introduce two new lines, and discard two 
other lines (W+1 was empty and W was saved), we can 
compute two more lines in a segmented way (case 3.3). When 
we introduce two lines in a buffer, their lines are processed as 
described in Figure 3. The first column in this figure indicates 
the initial state, in which we have two new lines (white and 
black squares). Then, the odd line is predicted from its two 
contiguous even lines (it becomes a grey square). Afterwards, 
we update the third line in the buffer from the contiguous even 
lines, and so on. At the end of this process, we have computed 
two new full lines (four subband lines). The new high 
frequency line (represented as a black square, since it stems 
from an odd line) is not released because it is need for the 
following computation. Thus, we normalize and release the 
low-frequency line, and the high-frequency line that was 
computed in the previous stage. In Figure 2, the left dotted area 
represents the initial state in Figure 3 (first column), while the 
right dotted area is the final state (last column). Finally, the 
area selected on the right of Figure 2 shows the lines that are 
processed when no more lines can be read from the previous 
level (case 3.2). In this case, we use the remaining intermediate 
lines to generate more subband lines while we are cleaning the 
buffer by shifting it two positions in each call. 

TABLE I. MEMORY REQUIREMENT (KB) COMPARISON. 

Image size 
(megapixel) 

Regular 
WT 

Proposed 
convolution 

Proposed 
lifting 

20 (4096 x 5120) 81,980 324 205 
16 (3712 x 4480) 65,013 293 186 
8 (2560 x 3328) 33,319 202 128 
3 (1600 x 1984) 12,423 127 80 

VGA (512 x 640) 1,288 41 26 
 

V. EXPERIMENTAL RESULTS 
For the experimental tests, we have used the standard Lena 

(512x512) and Woman (2048x2560) images. With six 
decomposition levels, the regular WT needs 1030 KB for Lena 
and 20510 KB for Woman, while the convolution algorithm 
requires 41 KB for Lena and 162 KB for Woman, i.e., it uses 
25 and 127 times less memory. However, the lifting proposal 
needs 26 KB for Lena and 102 KB for Woman, which means 
that it only requires 60% of memory with respect to the 
convolution algorithm. In addition, Table 1 shows that our 
proposals are much more scalable than the usual DWT.  

An execution time comparison between both proposals and 
the regular DWT is presented in Figure 4. It shows that our 
proposals work faster than the regular DWT, since they use the 
cache memory in a better way. Thus, our algorithms have a 
linear behavior while the regular DWT approaches to an 
exponential curve. However, we see that for very big images, 
the convolution algorithm has an exponential behavior, because 
it uses more memory than the lifting one, and thus it does not 
fit in cache memory. For more tests, our implementation is 
available at http://www.disca.upv.es/joliver/lift. 

VI. CONCLUSIONS 
A recursive line-by-line lifting algorithm has been 

presented that solves the existing problems about different 
delays and rhythm among the buffers. It can be used as a part 
of compression algorithms, such as JPEG 2000, speeding up its 
execution time and reducing its memory requirements 
compared with the usual DWT algorithm. 

REFERENCES 
[1] Sweldens, “The lifting scheme: a custom-design construction of 

biorthogonal wavelets,” Appl. Comput. Harmon. Anal., 1996J. Clerk 
Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. 
Oxford: Clarendon, 1892, pp.68–73. 

[2] C. Chrysafis, and A. Ortega, “Line-based, reduced memory, wavelet 
image compression,” IEEE Transactions on Image Processing., Mar. 
2000. 

[3] T. Acharya, P. Tsai, “JPEG 2000 Standard for Image Compression: 
Concepts, Algorithms and VLSI Arquitectures,”  Chapter 5, Wiley, 
October 2005. 

[4] G. Dillen, B. Georis, J. Legat, O. Cantineau, “Combined Line-Based 
Architecture for the 5-3 and 9-7 Wavelet Transform of JPEG 2000,” 
IEEE Transactions on Circuits and Systems for Video Technology, vol. 
13,  pp. 944-950, September 2003. 

[5] N. Zervas, G. Anagnostopoulos, V. Spiliotopoulos, Y. Andreopoulos, C. 
Goutis, “Evaluation of Design Alternatives for the 2-D-Discrete Wavelet 
Transform,” IEEE Transactions on Circuits and Systems for Video 
Technology, vol. 11,  pp. 1246-1262, December 2001. 

[6] W. Chang, Y. Lee, W. Peng, C. Lee, “A Line-Based, Memory Efficient 
and Programmable Architecture for 2D DWT using Lifting Scheme,” 
International Symposium on Circuits and Systems ISCAS 2001. 

[7] I. Daubechies, W. Sweldens, “Factoring wavelet transforms into lifting 
steps,” J. Fourier Anal., no.3, 1998. 

 

 

0

500

1000

1500

2000

2500

3000

2 4 6 8 10 12 14 16 18 20

E
xe

cu
tio

n 
tim

e 
(M

ill
io

n 
of

 C
P

U
 c

yc
le

s)

Megapixel

Regular Wavelet Transform
Proposed with convolution

Proposed with lifting

 
 

Figure 4: Execution time comparison (excluding I/O) 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


